SecA is an intrinsic subunit of the *Escherichia coli* preprotein translocase and exposes its carboxyl terminus to the periplasm
Table 1. Bacterial strains and plasmids.

<table>
<thead>
<tr>
<th>Strain/Plasmid</th>
<th>Relevant characteristic</th>
<th>Reference/Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. coli strain</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DH5α</td>
<td>supE44 ΔlacU169 (φ80lacZΔM15) hisDR17 recA1 endA1 gyrA96 thi-1 relA1 supE44 Δlac-proAB</td>
<td>Hanahan (1983)</td>
</tr>
<tr>
<td>JM105</td>
<td>supE endA sbcB15 hisDR4 rpsL thi Δ(lac-proAB)</td>
<td>Yanisch-Perron et al. (1985)</td>
</tr>
<tr>
<td>NO2347</td>
<td>Δlac[POZYA], araD139, Δ[ara-leu]7697, galiU, galK, rpsL, recA56 srl::Tn10, i_{S}_{16}</td>
<td>K. Linton</td>
</tr>
<tr>
<td>BL21(DE3)</td>
<td>hsdS gal (r.cit857 sodI sam7 nin5 lacU57 T7 gene 1)</td>
<td>Studier and Moffatt (1986)</td>
</tr>
<tr>
<td>S100F</td>
<td>F - ΔlacX74 galE galK thi rpsL (strA) ΔphoA(PvuII), ΔompT</td>
<td>Barelx and Georgiou (1990)</td>
</tr>
<tr>
<td>UT5600</td>
<td>F ara14 leuB az6 iacY1 proC14 tsx67 Δ(lacI-ompT-ompF)266 endA403 tsp38 rfbD1 rpsL109 ylx5 mtl1 ompP</td>
<td>Elish et al. (1988)</td>
</tr>
<tr>
<td>Plasmid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pBlueSK+</td>
<td>amp T7 promoter</td>
<td>Stratagene</td>
</tr>
<tr>
<td>pUC19</td>
<td>amp lacZ</td>
<td>Yanisch-Perron et al. (1985)</td>
</tr>
<tr>
<td>pTRC99A</td>
<td>amp trc promoter</td>
<td>Amann et al. (1988)</td>
</tr>
<tr>
<td>pET301</td>
<td>pTRC99A with NcoI–BamHI fragment (secE) of pET316</td>
<td>This work</td>
</tr>
<tr>
<td>pET313</td>
<td>pSK(+) with KpnI–ClaI PCR fragment of secY</td>
<td>This work</td>
</tr>
<tr>
<td>pET314</td>
<td>pSK(+) with BamHI–XbaI PCR fragment of secG</td>
<td>This work</td>
</tr>
<tr>
<td>pET316</td>
<td>pSK(+) with Clal–BamHI PCR fragment of secE</td>
<td>This work</td>
</tr>
<tr>
<td>pET324</td>
<td>NsI–BamHI fragment of pUC19 cloned into the PstI–BamHI site of pTRC99A</td>
<td>This work</td>
</tr>
<tr>
<td>pET329</td>
<td>pSK(+) with KpnI–ClaI PCR fragment of secY</td>
<td>This work</td>
</tr>
<tr>
<td>pET335</td>
<td>Sall–XbaI fragment of pET329 containing secY cloned into PET313</td>
<td>This work</td>
</tr>
<tr>
<td>pET338</td>
<td>Clal–BamHI fragment of pET316 cloned into pET347 (T7, secYEG)</td>
<td>This work</td>
</tr>
<tr>
<td>pET340</td>
<td>NcoI–XbaI fragment of pET338 cloned into pET324 (trc, secYEG2)</td>
<td>This work</td>
</tr>
<tr>
<td>pET347</td>
<td>BamHI–XbaI fragment of pET314 cloned into pET335 (T7, secYEG)</td>
<td>This work</td>
</tr>
</tbody>
</table>

(B) indicates that the site is made blunt using T4 polymerase.

and Wickner, 1994) and non-translocating (Kim et al., 1994) conditions.

We now show that the high-level, plasmid-directed overexpression of the heterotrimeric integral membrane domain of the translocase results in an increased level of SecA membrane association. This form of SecA is active in translocation and appears to be firmly attached to the membrane while it exposes a carboxy-terminal domain to the periplasmic face of the membrane under non-translocating conditions. It is concluded that SecA is an intrinsic membrane-protruding subunit of the translocase, and the possible role of membrane anchoring is discussed.

Results

Overexpression of SecY, SecE and SecG

To achieve overexpression of the integral subunits of the preprotein translocase, a synthetic operon was created with the gene order secY-secE-secG, and placed behind the inducible T7 and trc promoters (Table 1). Inducible overexpression of a secE-secY-secG construct has been reported by Douville et al. (1995). Different combinations of strains and plasmids were checked under inducing conditions for expression levels of the SecY, SecE and SecG proteins by SDS–PAGE (Fig. 1A) and immunoblotting (Fig. 1B) of isolated membranes. Although with all strains and constructs substantial overexpression of SecY, SecE and SecG could be achieved, the highest levels were obtained with the ompT deletion strain SF100 transformed with a vector harbouring the secYEG constructed operon under the control of the inducible trc promoter (pET340) (Fig. 1). Based on quantification of Coomassie brilliant blue-stained gels, the SecY polypeptide represents at least 15% of the membrane proteins in this strain. Further experiments were performed with membranes derived from SF100 cells harbouring either pET340 (secYEG*) or pET324 (control).
Fig. 1. Overexpression of the SecY, SecE, and SecG proteins in E. coli SF100 cells.
A. Coomassie brilliant blue-stained SDS-PAGE of membranes derived from SF100 cells harbouring plasmids pET324 (control) (lane 1) or pET340 (SecYEG+) (lane 2). The positions of the molecular mass markers are indicated.
B. Immunoblots of control and SecYEG+ membranes developed with pAbs raised against SecA and synthetic peptides corresponding to SecY, SecE, and SecG domains. Anti-SecY pAb stains, in addition to intact SecY, two amino-terminal degradation products of SecY with apparent molecular masses of about 24 and 14.5 kDa.

Functional characterization of SecYEG+ membrane vesicles

To establish whether the SecYEG complex was functionally overexpressed, the preprotein-stimulated translocation ATPase and translocation activity of ISO membrane vesicles derived from SecYEG+ and control cells was determined. Membranes were extracted with 6 M urea to inactivate the membrane-resident SecA (Cunningham et al., 1989). Even after this treatment, a significant level of translocation ATPase activity was detected in the SecYEG+ membranes, i.e. 50 ± 7 nmol of released Pi mg$^{-1}$ of protein min$^{-1}$ ($n=9$). Addition of purified SecA dramatically stimulated the translocation ATPase activity to a level of 380 nmol mg$^{-1}$ protein min$^{-1}$. The translocation ATPase activity of control membranes was negligible in the absence of added SecA (< 2 nmol mg$^{-1}$ protein min$^{-1}$) and increased to about 80 nmol mg$^{-1}$ protein min$^{-1}$ in the presence of SecA.

To preclude the notion that translocation is limited by the availability of preprotein, saturating amounts of 125I-labelled proOmpA were used to assay for translocation, rather than in vitro-synthesized $[^{35}$S]-proOmpA. In the presence of an excess of purified SecA, SecYEG+ membrane vesicles showed an enhanced (four- to fivefold) rate of $[^{125}$I]-proOmpA translocation (Fig. 2, B and C). Even in the absence of added SecA, a low but significant level of ATP-dependent proOmpA translocation was observed with the urea-treated SecYEG+ membranes (Fig. 2C). As expected (Cabelli et al., 1988; Cunningham et al., 1989), a strict requirement for SecA addition was not evident when non-urea-treated membranes were used (Fig. 2A), while addition of an excess of purified SecA resulted in a twofold stimulation of translocation (data not shown). In control membranes, a greater fraction of the translocated proOmpA was processed to OmpA as compared to SecYEG+ membranes (Fig. 2A), suggesting that the amount of leader peptidase in SecYEG+ membranes is a limiting factor in processing. These data demonstrate that the SecYEG complex is overproduced in a functional state.

Overexpression of SecYEG increases the amount of SecA that is tightly associated with the membrane

The total amount of SecA in both control and SecYEG+ cells was determined by quantitative immunoblotting using a dilution series. SecYEG+ cells consistently contained about 1.3 ± 0.1 ($n=3$) times the amount of total SecA found in the control cells. To examine the cellular distribution of SecA, extracts obtained by sonication were separated into a soluble (cytosolic) fraction and a pellet (membrane) fraction by ultracentrifugation analogous to the method described by Cabelli et al. (1991). SecYEG+ membranes contained a larger amount of membrane-bound SecA than the control membranes (Fig. 3, A and B). The increase in SecA membrane association was accompanied with a slight decrease of the SecA present in the cytosolic fraction. Sucrose-gradient-purified SecYEG+ membranes used for the translocation assays shown in Fig. 2B bear about three- to fourfold more SecA than the control membranes (Figs 1B and 3B). When membranes were extracted with 6 M urea, nearly all of the SecA was removed from the control membranes, while in SecYEG+...
membranes only a fraction was removed (Fig. 3B). A second extraction of these membranes with urea did not further reduce the amount of membrane-bound SecA (data not shown). Taken together, these results indicate that upon SecYEG-overproduction, a greater share of the cellular SecA is membrane-associated, consistent with the observation that SecYEG overexpression increases the number of high-affinity SecA-binding sites (Douville et al., 1995). A considerable portion of the SecA bound to SecYEG+ membranes, however, resists urea-extraction, suggesting that this subfraction of SecA is tightly associated with the integral domain of the translocase.

Increased membrane association of SecA is not due to a changed phospholipid content

The level of SecA membrane association is known to vary with the phospholipid composition of the membrane (Lill et al., 1990; Rietveld et al., 1995). To exclude the possibility that the extra SecA membrane binding is due to an altered phospholipid content in cells overexpressing SecYEG, the phospholipid composition of membranes derived from the SecYEG+ and control cells was determined. No significant difference was detected in the amount of chloroform/methanol-extractable phospholipids per mg of cellular protein between both cell types (Table 2). The total amount of acidic phospholipids (cardiolipin and phosphatidylglycerol) increased only slightly from 27 to 33 mol% in the SecYEG-overproducing strain (Table 2). Since the substitution of all of the phosphatidylethanolamine for acidic phospholipids causes only a twofold increase in the amount of the membrane-associated SecA (Rietveld et al., 1995), it is concluded that the moderate change in phospholipid composition in the SecYEG-overproducing strain cannot account for the large increase in membrane-bound SecA.

SecYEG-associated SecA penetrates the membrane and exposes a domain to the periplasmic face of the membrane

To determine if the SecYEG-bound SecA is in a membrane-inserted state, the trypsin-susceptibility of SecA was assessed in rightside-out (RSO) membrane vesicles

Table 2. Phospholipid composition of the parental and SecYEG overproducing E. coli strain SF100.

<table>
<thead>
<tr>
<th>Phospholipid</th>
<th>Control</th>
<th>SecYEG*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phosphatidylethanolamine</td>
<td>73</td>
<td>67</td>
</tr>
<tr>
<td>Phosphatidylglycerol</td>
<td>22</td>
<td>21</td>
</tr>
<tr>
<td>Cardiolipin</td>
<td>5</td>
<td>12</td>
</tr>
<tr>
<td>Phospholipid:protein ratio</td>
<td>1.26</td>
<td>1.23</td>
</tr>
</tbody>
</table>

* Phospholipid composition is expressed in mol% on the basis of phosphate content and set to 100% for the three dominant lipid species. The remainder of the phospholipids, i.e. less than 1%, was lyso phosphatidylethanolamine.

b. Amount of chloroform/methanol-extractable phospholipid per mg of cell protein.

© 1996 Blackwell Science Ltd, Molecular Microbiology, 22, 619–629
Fig. 3. Overproduction of the SecYEG complex increases the amount of membrane-associated SecA. A. The subcellular location of SecA in control and SecYEG+ cells is shown. Cell lysates (lane 1, control; lane 2, SecYEG+) were fractionated into a soluble (control, lane 3; SecYEG+, lane 4) and a pellet (control, lane 5; SecYEG+, lane 6) fraction by centrifugation. The pellet fraction was resuspended in the original volume of fresh buffer, and, for each fraction, identical volumes were loaded on SDS-PAGE, blotted and immunostained with an anti-SecA pAb. B. Urea-extraction of SecA from control and SecYEG+ ISO vesicles. As indicated, membrane vesicles (0.5 mg of protein ml−1) in 50 mM Tris-HCl, pH 7.6, were incubated for 30 min at 4°C with or without 6 M urea. Membranes were subsequently collected by ultracentrifugation (TLA100, 200,000 × g, 60 min), washed once, and resuspended in identical volumes of 50 mM Tris-HCl, pH 7.6. Equal volumes of the various fractions (about 12 µg of protein for non-urea-treated membranes) were subjected to SDS-PAGE, and further analysed by immunoblotting with a pAb against SecA. The blot was quantified by densitometric scanning. The amount of SecA associated with non-urea-treated SecYEG+ vesicles was set to 100%.

that expose the periplasmic membrane face to the outside, and in ISO membrane vesicles that expose the cytosolic face of the membrane to the outside. The correct ‘sidedness’ of these membranes was confirmed by analysing the trypsin-susceptibility of the β-subunit of the F1-β-domain of the F1F0-ATPase as a marker of the cytosolic face of the membrane, and penicillin-binding protein 1B (PBP1B) as a marker of the periplasmic face of the membrane. PBP1B is a periplasmic protein that is anchored to the cytoplasmic membrane by an amino-terminal membrane-spanning segment (Nakagawa and Matsuhashi, 1982; den Blaauwen and Nanninga, 1990). ISO and RSO membrane vesicles were incubated for 15 min on ice (PBP1B) or 3 h at 30°C (F1-β) with increasing trypsin concentrations and analysed by SDS–PAGE and immunoblotting. PBP1B was readily digested in the RSO membrane vesicles (Fig. 4A, data shown for SecYEG+ membranes alone, but identical results were obtained with control membranes). From the PBP1B digestion pattern, it appears that these membranes are contaminated with about 19% ISO membrane vesicles. Such levels are typical for osmotic lysis vesicles (Kaback, 1971; Poolman et al., 1983). Apart from the small amino-terminal cytosolic domain, PBP1B is almost completely resistant to proteolysis in ISO membrane vesicles. As a complementary result, F1-β was found to be readily digested by trypsin in ISO membrane vesicles, whereas it was far less trypsin-susceptible in RSO membrane vesicles (Fig. 4A). At very high trypsin concentrations the F1-β was entirely digested in RSO membrane vesicles, indicating that under those conditions the vesicles are no longer sealed. It is important to note that F1-β is far more resistant to trypsin (Schneider et al., 1995; Fig. 4A) relative to PBP1B (Fig. 4A) or SecA (Fig. 4B, and see below). Therefore these results not only demonstrate the correct ‘sidedness’ of the vesicles, but also show that the integrity of the vesicles is not compromised under conditions in which the trypsin treatment digests the SecA.

SecA was readily digested by trypsin in ISO membrane vesicles (Fig. 4B), consistent with the notion that SecA exposes large domains to the cytosolic side of the membrane. Free SecA was about 50-fold more sensitive to trypsin-digestion than was SecA bound to ISO membranes. On the other hand, in RSO membrane vesicles of the control only limited proteolysis of SecA occurred, and a sub-fraction was digested to a 98 kDa fragment that was not further proteolysed (Fig. 4C). Strikingly, almost all of the SecA in the SecYEG+ RSO membrane vesicles was digested to the 98 kDa fragment, while only a small fraction of the SecA remained intact. Taking into account the fact that the samples were normalized for SecA protein prior to loading on the gel to correct for the increased level of SecA membrane association in SecYEG+ membranes relative to the control (Fig. 3), the data demonstrate that in the SecYEG-overproducing strain a greater amount of membrane-bound SecA exposes a trypsin cleavage site to the periplasmic face of the membrane.

The 98 kDa tryptic fragment of SecA lacks the carboxyl terminus

The tryptic 98 kDa fragment found in RSO membrane vesicles represents either an amino-terminal or a carboxy-terminal truncate of SecA. To determine the identity of this fragment, a polyclonal antiserum (pAb) was raised against a synthetic peptide that corresponds to the carboxy-terminal 20 amino acids of SecA. In trypsin-treated control and SecYEG+ RSO membrane vesicles, the antibody

© 1996 Blackwell Science Ltd, Molecular Microbiology, 22, 619–629
Fig. 4. Trypsin-accessibility of SecA in ISO and RSO membrane vesicles of control and SecYEG+ cells.

A. Trypsin digestion of the F1-β subunit of the F1F0-ATPase (F1) (cytosolic membrane face marker) and penicillin-binding protein 1B (PBP1B) (periplasmic membrane face marker) in ISO and RSO membrane vesicles of SecYEG+ cells. Membranes were incubated with trypsin, as described in the Experimental procedures section, and, after quenching of the proteolysis by the addition of trypsin inhibitor, the vesicles were analysed using 10% SDS-PAGE. Immunoblots of trypsin-treated ISO and RSO membrane vesicles were developed with pAb against F1-β or a mAb F2-12 against PBP1B.

B. Trypsin digestion of SecA in ISO membrane vesicles of control and SecYEG+ cells.

C. Trypsin digestion of SecA in RSO membrane vesicles of control and SecYEG+ cells. Immunoblots in (B) and (C) were developed with a pAb against SecA. The open arrow indicates the tryptic 98 kDa SecA fragment formed in RSO membrane vesicles.

detected the intact SecA but failed to immunostain the tryptic 98 kDa fragment (Fig. 5A). Immunostaining of the same blot with a pAb against SecA confirms the presence of the intact SecA and the 98 kDa fragment (Fig. 5A). As an alternative approach, the carboxy-terminal cysteines of SecA were biotinylated with 3-(N-maleimidylpropionyl)biotin (MPB) (Bayer et al., 1985). SecA has cysteiny1 residues at amino-acid-residue positions 98, 885, 887, and 896, of which the cysteine at position 98 is poorly accessible for bulky maleimides (Driessen, 1993). RSO membrane vesicles of control cells were incubated with trypsin to convert a fraction of the SecA into the 98 kDa fragment. Although MPB is membrane permeable (Loo and Clarke, 1995), membranes were sonicated in addition during the biotinylation to ensure complete equilibration of the MPB across the membrane. Subsequently, SecA was immunoprecipitated with a pAb against SecA and analysed by immunoblotting. Both the intact SecA and the 98 kDa fragment were immunoprecipitated from the trypsin-treated RSO membrane vesicles by the SecA pAb as both forms were detected by a mouse oAb (oligoclonal antibody, i.e. a mixture of monoclonal antibodies) (Fig. 5B). Staining of the same sample with avidin-conjugated alkaline phosphatase, in order to identify biotinylated proteins, stained only the intact SecA and not the 98 kDa SecA fragment (Fig. 5B). These data indicate that the SecYEG-bound SecA exposes a carboxy-terminal domain to the periplasmic face of the membrane that is accessible to externally added trypsin. On the basis of the loss of a 4 kDa fragment, the trypsin cleavage site is probably after Arg-850.

Fig. 5. The 98 kDa tryptic SecA fragment lacks its carboxyl terminus.

A. RSO membrane vesicles of control and SecYEG+ cells were incubated with 110 U ml⁻¹ trypsin as described and analysed by immunoblotting using an anti-SecA pAb, and pAb 1045 was raised against a synthetic peptide that recognizes the carboxy-terminal 20 amino acid residues of SecA. The amount of membrane protein loaded on the gel was 8 µg.

B. RSO membrane vesicles of control cells were incubated with 100 U ml⁻¹ trypsin, and biotinylated with MPB as described in the Experimental procedures section. SecA protein was immunoprecipitated with anti-SecA pAb, and analysed by immunoblotting using an oAb against SecA and a streptococcal avidin-alkaline phosphatase conjugate to detect the biotin. The trypsin 98 kDa SecA fragment is indicated by the open arrow. The additional band stained by avidin-APase is an unrelated protein that is co-immunoprecipitated by the anti-SecA pAb but not recognized by the oAb.
Discussion

In recent years, compelling evidence has demonstrated that the E. coli preprotein translocase consists of the SecA, SecY, SecE and SecG proteins (for reviews, see Wickner et al., 1991; Diessen, 1994). The SecA subunit is particularly intriguing as it is a preprotein-stimulated ATPase that exists in soluble and membrane-bound forms (Cabelli et al., 1991), while the membrane-bound form may alternate between a surface-bound and membrane-integrated state (Breukink et al., 1992; Economou and Wickner, 1994). The functional overexpression of the SecY, SecE, and SecG proteins from a tandem gene construct has been reported before (Douville et al., 1995), but the impact of the overexpression on the SecA-membrane association and topology has not been studied. We now show that in a SecYEG-overproducing strain, the level of membrane-bound SecA is elevated, most of the protein being firmly associated with the membrane. The increased membrane binding at the SecYEG complex is due to a shift of the cytosolic SecA pool to the membrane-bound form and a slight increase in the total amount of cellular SecA. Further examination of the SecA membrane topology demonstrates that the protein exposes a carboxy-terminal region to the periplasmic face of the membrane. It is concluded that SecA is a membrane-protruding subunit of the translocase, even under conditions in which it is not involved in protein translocation.

SecA binds with low affinity to phospholipids (Hendrick and Wickner, 1991), and with high affinity (K_d ≈ 40 nM) to the SecYEG complex (Hartl et al., 1990). To observe high-affinity SecA binding (Hartl et al., 1990) and translocation that strictly depends on the addition of purified SecA (Cunningham et al., 1993), membrane vesicles must be extracted with urea. This treatment only partly removes the SecA from the membrane (Cabelli et al., 1991; Watanabe and Blobel, 1993; this study), while it has been argued that the urea-resistant SecA retains the ability to translocate preproteins (Watanabe and Blobel, 1993). SecA membrane overproduction results in an increased number of SecA high-affinity binding sites in urea-extracted membranes (Douville et al., 1995). Our study elaborates on this observation and demonstrates that the overproduction of the SecYEG complex elevates the amount of membrane-bound SecA without producing a notable change in the lipid composition. Most of the additionally bound SecA cannot be extracted by 6M urea or by 100mM sodium hydrogen carbonate, pH 10 (C. van der Does, unpublished results) and it seems, therefore, that a significant fraction of the membrane-bound SecA in the overproducing strain is firmly associated with the SecYEG complex. This form of SecA is catalytically active, as urea-treated membranes retain a significant level of translocation ATPase and translocation activity.

SecA penetrates the cytoplasmic membrane with a domain that is periplasmically exposed (Kim et al., 1994). This inserted state has been detected under conditions in which the secDF locus is overproduced (Gardel et al., 1990), while the translocase is not actively involved in protein translocation. The present study shows that the functional overproduction of the SecYEG protein results in a larger fraction of membrane-bound SecA being accessible to trypsin in RSO membrane vesicles. In contrast to the study of Kim et al. (1994), this study indicates that SecA is not completely digested but only truncated to a 98 kDa tryptic fragment. Two independent techniques were used to determine whether trypsin cleaves the SecA at the carboxyl or amino terminus. In contrast to intact SecA, the 98 kDa fragment could not be immunostained by an antipeptide antibody that recognizes the carboxy-terminal 20 amino acids of SecA, and could not be alkylated by bio-tin-maleimide that reacts with the cysteine residues present in the carboxy-terminal fragment of SecA. Therefore, these data suggest that the SecYEG-associated SecA protrudes from the cytoplasmic membrane with a carboxy-terminal domain. This region has been implicated in membrane binding before (Breukink et al., 1995), but not in the context of the SecYEG complex. It also seems to be involved in coupling of ATP hydrolysis to protein translocation, and in the interaction between SecA and SecB (Breukink et al., 1995; Rajapandi and Oliver, 1994; P. Fekkes, unpublished results).

It has been shown that a membrane-protected tryptic 30 kDa fragment of SecA is formed when the protein is actively involved in translocation (Economou and Wickner, 1994), or when it is supplied with a non-hydrolysable ATP analogue such as AMP-PNP (Economou et al., 1995). Overexpression of SecD and SecF stabilizes the membrane-inserted tryptic 30 kDa SecA fragment at the SecYEG complex (Economou et al., 1995). In native membrane vesicles, the carboxy terminus of SecA protrudes from the periplasmic side of the membrane (this study). Mechanistically, membrane penetration of the carboxyl terminus of SecA may serve to anchor the protein stably at the SecYEG complex. This may allow an efficient ATP-driven movement (i.e. the creation of a ‘pushing’ force) of another SecA domain into the membrane concurrently with a preprotein segment (Economou and Wickner, 1994) driving the stepwise translocation of the preprotein. Such a model would explain why truncation of the carboxy terminus results in a poorer coupling of ATP hydrolysis to preprotein translocation (Breukink et al., 1995; Rajapandi and Oliver, 1994) without losing the ability to support translocation.

In conclusion, the current study suggests that SecA is an intrinsic subunit of the translocase complex and protrudes
from the membrane while it is associated with the SecYEG complex. In this respect, it seems to resemble the ATPase domains of binding protein-dependent transport systems that stably penetrate the membrane while in association with the integral membrane subunits (Baichwal et al., 1993). Unlike these ATPase subunits, SecA is a dissociable subunit (Van der Wolk et al., 1993; Economou and Wickner, 1994). It will be important to define the molecular details of SecA membrane insertion, how the different domains and subunits of the SecA dimer are involved in this process, and how this process is linked to preprotein translocation.

Experimental procedures

Materials

E. coli SecA (Cabelli et al., 1988; Cunningham et al., 1989), SecB (Weiss et al., 1988), and proOmpA (Crooke et al., 1988) were purified as described. Purified proOmpA was labelled with carrier-free 125I (Radiochemical Centre) to specificity of activity of about 4 x 10^6 cpm/mol^{-1} following the following procedure. Purified proOmpA (100 μg) was suspended in 200 μl of Buffer A (50 mM Tris-HCl, pH 7.6, 6 M urea, 50 mM KCl, 5 mM MgCl_2) and transferred to a reaction vial coated with IODO-GEN Iodination Reagent (Pierce). The reaction was started by the addition of 2 μl of KI (2.5 M) for 15 min at room temperature by transferring the mixture into a new reaction vial containing DTT at a final concentration of 10 mM. Free iodine was removed by chromatography on a PD-10 Sephadex column (Pharmacia Biotech AB) which was prewashed with Buffer A containing 1 mM DTT.

SecA polyclonal antiserum (pAb) 1045 (Neosystem Laboratories) was raised against the synthetic peptide H_N-GR-NPDSPCGLSGKKYKQCHGR-COOH, and recognizes amino acid residues 879–901 of SecA. The mouse oAb is a mixture of monoclonal antibodies (mAbs) raised against different epitopes of _E. coli_ SecA (T. den Blaauwen, unpublished results). pAbs against synthetic peptides corresponding to amino acid residues 64–81 of SecE (H_N-KGKATVAFARETEVLRK) and 88–97 of SecG (H_N-APAKTEQTQP) were raised by Research Genetics Inc. pAbs directed against SecY, SecA and SecB were from W. Wickner (Dartmouth College, Hanover, NH, USA), the pAb against the cytosolic F1 domain of the _E. coli_ ATPase was from K.-H. Altendorf (Universität Osnabrück, Osnabrück, Germany), and the mAb F2-12 against PBP1B was from N. Nanninga (University of Amsterdam, Amsterdam, The Netherlands). Trypsin (specific activity of 11,000 U mg^{-1} protein) and soybean trypsin inhibitor were purchased from Sigma Chemical Co. Proteinase K was from Boehringer Mannheim, and MPB was from Molecular Probes.

Bacterial strains and growth conditions

The strains used in this work are shown in Table 1. Unless indicated otherwise, strains were grown aerobically at 37°C on L broth supplemented with 50 μg of ampicillin ml^{-1} until the end of the logarithmic phase. For the induction of plasmid-encoded genes under the control of an IPTG-inducible promoter, exponentially growing cultures were supplemented with 0.5 mM IPTG at OD_{660} = 0.5 and grown for another 2 h.

Construction of a synthetic operon containing the secY, secE and secG genes

To construct a synthetic secYEG operon, individual genes were amplified from _E. coli_ chromosomal DNA by the polymerase chain reaction (PCR), using the primers described in Table 3. All PCR reactions were performed with Pwo polymerase (Boehringer Mannheim) using a Biometra trip-thermoblock, employing the manufacturers' recommendations. The PCR products contained the entire genes with new ribosome-binding sites (RBS), and new restriction sites directly in front of the RBS or directly after the stop codon. In addition, new NcoI sites were created in the start codons of secY and secE to facilitate the cloning in various expression vectors. The introduction of the NcoI site in secE caused a substitution of the serine at position 2 by a glycine. The secY gene contains an internal ClaI site. To simplify cloning procedures, this ClaI site was removed by PCR using the secYΔClaI and the secY, reverse primer. PCR fragments were digested with KpnI/CiaI (secY), CiaI/BamHI (secE), BamHI/XbaI (secG), and Sali/ClaI (secYΔClaI), cloned in pBluescript-II SK+ (Stratagene) and subsequently sequenced on a Vistra DNA sequencer 725 (Amersham) using the automated Δtaq sequencing kit of Amersham. A synthetic operon of secY–secE–secG under the control of the T7 promoter in pBluescript-II SK+ was derived from the single gene constructs by standard cloning techniques (see Table 1) essentially as described by Sambrook et al. (1989). To place the synthetic secYEG operon under the control of the trc promoter, the partially digested large NcoI/XbaI fragment from pET33 was cloned in pET324 digested with NcoI/XbaI in to yield pET340. The pET324 vector was derived from pT7C89A (Amann et al., 1989).

| Table 3. Mismatch oligonucleotides and PCR amplification primers |
|-----------------------|---------------------|
| Primer | Sequence |
| secYΔClaI | 5’ -CGGGGAAATGTGAGAGAACATACGAAATAGG |
| Sali | 5’ -CGGGGAAATGTGAGAGAACATACGAAATAGG |
| PCR amplification primers | |
| secY, forward | 5’ -CGGCGTACGGGAATGGGCGAAAGCAGTACGTAAC |
| KpnI | NcoI |
| secY, reverse | 5’ -CGGCGTACGGGAATGGGCGAAAGCAGTACGTAAC |
| CiaI | Sali |
| secE, forward | 5’ -CGGCGTACGGGAATGGGCGAAAGCAGTACGTAAC |
| CiaI | NcoI |
| secE, reverse | 5’ -CGGCGTACGGGAATGGGCGAAAGCAGTACGTAAC |
| BamHI | XbaI |
| secG, forward | 5’ -CGGCGTACGGGAATGGGCGAAAGCAGTACGTAAC |
| BamHI | XbaI |
| secG, reverse | 5’ -CGGCGTACGGGAATGGGCGAAAGCAGTACGTAAC |

Recognition sites of indicated restriction enzymes are underlined. Introduced ribosome-binding sites, start and stop codons are indicated in bold.

© 1996 Blackwell Science Ltd, Molecular Microbiology, 22, 619–629
Overexpression of SecY, SecE, and SecG, subcellular fractionation, and immunoblotting

Cells overexpressing SecY, SecE, and SecG were grown as described above, harvested by centrifugation, washed once with 20% glycerol, 50 mM Tris-HCl, pH 8.0, and resuspended in the same buffer. The cell suspension (20 mg of protein ml⁻¹) was sonicated on ice with a Soniprep 150 (MSE Instruments) using 30 pulses of 15 s duration at 6 microns. Cell debris was removed by low-speed centrifugation (Eppendorf, 4000 × g, 5 min), and the supernatant (lysate) was fractionated in a soluble (cytoplasmic) and in a pellet (membrane) fraction by ultracentrifugation (TLA100, 200000 × g, 60 min). Pellet fractions were resuspended in 50 mM NaPO₄, pH 7.0, in a volume identical to that of the original cell lysate. Equal volumes of the fractions were analysed on 10 or 15% SDS–PAGE (Laemmli, 1970) stained with Coomassie brilliant blue or blotted onto PVDF membranes (Millipore) using a semi-dry blotter (BioRad). Immunodetection was carried out with pAb raised against synthetic peptides corresponding to regions of SecY, SecE, and SecG, and a pAb raised against SecA. Blots were developed using a chemiluminescence kit (Tropix).

Isolation of membrane vesicles and trypsin digestion

ISO and RSO membrane vesicles of E. coli SF100 cells were isolated as described by Kaback (1971) and Pooman et al. (1983), respectively, and stored in liquid N₂. Vesicles (0.65 mg protein ml⁻¹; final volume 50 µl) were incubated without or with various trypsin concentrations (0.0022–1.8 mg ml⁻¹) for 15 min on ice for SecA and PBP1B, and for 3 h at 30°C for the cytosolic F₁–β subunit of the E. coli F₁F₀-ATPase. The proteinase digestion was stopped by the addition of soybean trypsin inhibitor (5 µl of a 10 mg ml⁻¹ solution), and 10 µl (about 6 µg of membrane protein) of this suspension was loaded on 10% SDS–PAGE. In the case of SecA digestion, the samples were normalized with respect to the amount of SecA present in the membranes prior to loading on the gels. Immunodetection and digestion were carried out with a pAb against SecA, a pAb against the subunit of the F₁-domain, and mAb P2-12 against PBP1B (den Blaauwen and Nanninga, 1990). Blots were developed with alkaline phosphatase-conjugated anti-rabbit and anti-trypsin (9 µg ml⁻¹), were alkylated with the membrane-permeable maleimide MPB (Bayer et al., 1985; Loo and Clarke, 1995) as follows: before trypsin digestion, the cysteines of SecA were reduced in 50 mM Tris-HCl, pH 7.6, 0.1 mM DTT and incubated for 30 min on ice. Prior to alkylation by 0.8 mM MPB for 30 min on ice, the DTT was diluted to 0.015 mM by the addition of 50 mM Tris-HCl, pH 7.6, and the samples were sonicated to rapidly distribute the MPB across the membrane. The reaction was quenched by incubation for 20 min on ice in the presence of 80 mM DTT. Samples were immunoprecipitated with a pAb against SecA and analysed by SDS–PAGE. Immunoblotting and detection were carried out with an oAb against SecA and on an identical immunoblot with a Streptococcus avidin–alkaline phosphate conjugate (Boehringer Mannheim) using the chemiluminescence kit.

In vitro translocation and SecA translocation ATPase assays

In vitro translocation of ¹²⁵I-labelled proOmpA into inner membrane vesicles of E. coli vesicles was assayed by its accessibility to added proteinase K (Cunningham et al., 1989). Reaction mixtures (50 µl) contained the following: 50 mM HEPES–KOH, pH 7.5, 30 mM KCl, 0.5 mg ml⁻¹ BSA, 2 mM DTT, and 2 mM Mg(OAc)₂, 0.5 µg of SecA protein, 1.6 µg of SecB protein, 2 mM ATP, inner membranes (15 µg of protein), 10 mM creatine phosphate, and 0.5 µg of creatine kinase. Reactions were initiated by the addition of 1 µl of ¹²⁵I-labelled proOmpA (0.4 µg) and translocation followed at 37°C. Samples were treated with proteinase K (0.1 mg ml⁻¹) for 15 min on ice, precipitated with 7.5% (w/v) TCA, washed with acetone, and solubilized in SDS–sample buffer. Samples were separated by 10% SDS–PAGE and analysed by autoradiography.

Translocation ATPase of 6 M urea-extracted membranes (Cunningham et al., 1989) was measured as described by Lil et al. (1989) except that the reactions (50 µl final volume) were supplemented with 1.6 µg of SecB.

Other analytical techniques

The protein concentration of whole cells was determined by the method of Lowry (Lowry et al., 1951) in the presence of SDS, using BSA as a standard. Phospholipids were chloroform/methanol-extracted according to Blight and Dyer (1959) and Ames (1968), and stored at −20°C under N₂ in chloroform/methanol (1:2 v/v). Inorganic phosphate was determined using the method of Rouser et al. (1970). Phospholipids (700 nmol of inorganic phosphate) were spotted onto precoated silica-gel plates (Merck, Kieselgel 60) and separated by two-dimensional, thin-layer chromatography using the following solvent systems: A. chloroform/methanol/ammonia/water (90:54:5:5, v/v), B. chloroform/methanol/acetic acid/water (90:40:12:2, v/v). For the identification of the phospholipid species, chromatograms were stained with I₂ vapour (lipids) and ninhydrin (amino groups), and compared with the chromatographic behaviour of phospholipid standards. Phospholipids were stained by the method of Dittmer and Lester (1964), excised from the silica gel, and quantified by determination of phosphorous content.

Acknowledgements

We would like to thank Dr Karl-Heinz Allendorf for the pAb

© 1996 Blackwell Science Ltd, Molecular Microbiology, 22, 619–629
against the β-subunit of the F1-domain, Dr N. Nanninga for the mAb against PBS1B, and Drs Karry Linton and Jan Knol for strains SF100 and NO2947, respectively. The technical expertise of Wieny Kuiper and Harry Gosker is appreciated. These investigations were supported by a PIONIER grant from the Netherlands Organization for Scientific Research (NWO), and the Life Sciences Foundation (SLW, subsidized by NWO).

References

© 1996 Blackwell Science Ltd, Molecular Microbiology, 22, 619-629