Electrode surface modification by a spirobifluorene derivative. An XPS and electrochemical investigation
Cecchet, F; Fioravanti, G; Marcaccio, M; Margotti, M; Mattiello, L; Paolucci, F; Rapino, S; Rudolf, P

Published in:
Journal of Physical Chemistry B

DOI:
10.1021/jp051786w

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2005

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Electrode Surface Modification by a Spirofluorene Derivative. An XPS and Electrochemical Investigation.

Francesca Cecchet,a Giulia Fioravanti,b,c Massimo Marcaccio,c Massimo Margotti,c Leonardo Mattiello,b† Francesco Paolucci,c# Stefania Rapino,c and Petra Rudolfd*

Supplementary Information

Electrochemical instrumentation and measurements. Cyclic Voltammetry (CV) experiments were carried out in 0.05 M TBAH dichloromethane solutions in one-compartment electrochemical cell of airtight design with high-vacuum glass stopcocks fitted with either Teflon or Viton O-rings in order to prevent contamination by grease. The connections to the high-vacuum line and to the Schlenck containing the solvent were obtained by spherical joints also fitted with Viton O-rings. The pressure measured in the electrochemical cell prior to perform the trap-to-trap distillation of the solvent was typically 1.0 to 2.0x10⁻⁵ mbar. The working electrode was a Pt disc (diameter: 125 µm) or a glassy-carbon disc electrode (diameter: 3 mm). The counter electrode consisted of a platinum spiral and the quasi-reference electrode was a silver spiral. The quasi-reference electrode drift was negligible for the time required by a single experiment. Both the counter and the reference electrode were separated from the working electrode by ~0.5 cm. Potentials were measured with respect to the ferrocene standard. $E_{1/2}$ values correspond to $(E_{pc}+E_{pa})/2$ from CV. Ferrocene was also used as an internal standard for checking the electrochemical reversibility of a redox couple.

Voltammograms were recorded with a AMEL Model 552 potentiostat controlled by either a AMEL Model 568 function generator or a ELCHEMA Model FG-206F. Data acquisition was

† Corresponding author for materials: leonardo.mattiello@uniroma1.it
Corresponding author for electrochemical measurements: Francesco.Paolucci@ciam.unibo.it
* Corresponding author for thin film preparation and XPS characterization: P.Rudolf@phys.rug.nl
performed by a Nicolet Model 3091 digital oscilloscope interfaced to a PC. Temperature control was accomplished within 0.1 °C with a Lauda RL6 thermostat.

Results and discussion

CV experiments carried out in 1 solutions in ultra-dry dichloromethane evidenced that bulk films of 1 may also be obtained onto conducting substrates (platinum and glassy-carbon), by electrochemically-induced polymerization. Figure 1S shows the CV curves obtained in subsequent scans in the positive potential region, upon increasing the high potential limit. A peak corresponding to the one-electron reversible oxidation of 1 was observed with \(E_{1/2} = 0.98 \) V. At more positive potentials, the CV curve displayed an additional anodic peak which, from comparison with the first oxidation peak, can be estimated to comprise two subsequent two-electron oxidation processes, located at close potentials (\(E_p = 1.82 \) and 2.00 V) and only partly reversible. In fact, both the shape and the scan rate dependence of the cathodic peak observed in the reverse scan (at \(E_p = 1.70 \) V) are typical of adsorbed species (current \(\propto \) scan rate) and suggest adsorption of the product of multiple oxidation of 1 onto the electrode surface. Furthermore, subsequent scans between 0.0 and 2.1 V evidenced the gradual accumulation onto the electrode of an electroactive species responsible for the overall increase of current as shown in Figure 1Sa. Such a behavior was enhanced when potential was scanned up to larger potentials (Figure 1Sb) where the species undergoes a further oxidation process (with \(E_p = 2.05 \) V). All of the above suggests that, in line with previously reported electrochemical studies on spirobifluorene derivatives [Mattiello, L.; Rampazzo, L. *J. Chem. Soc., Perkin Trans.* 1993, 2, 2243; Mattiello, L.; Rampazzo, L. *Electroch. Acta* 1997, 42, 2257; Mattiello, L.; Fioravanti, G. *Synth. Commun.* 2001, 31, 89.], the multiple oxidation of 1 triggers its polymerization and the growth of a reversible and stable electroactive polymeric film onto the electrode surface. Further investigation aimed to the characterization of
electrochemical and, possibly, electrochromic properties of such electrochemically-active films is in progress.

Figure 1S

Figure 1S. Cyclic voltammetry curves recorded for 2-amino-9,9’-spirobifluorene in a 0.05 M TBAH dichloromethane solution upon increasing the high potential limit from a) to b).