High Efficiency and Enantioselectivity in the Rh-Catalyzed Conjugate Addition of Arylboronic Acids Using Monodentate Phosphoramidites

Jean-Guy Boiteau, Adriaan J. Minnaard,* and Ben L. Feringa*

Department of Organic and Molecular Inorganic Chemistry, Stratingh Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
feringa@chem.rug.nl

Received August 6, 2003

Abstract: A very fast reaction and enantioselectivities > 98% have been reached in the rhodium-catalyzed arylboronic acid addition to enones using a monodentate phosphoramidite ligand. Temperature-dependent studies show that monodentate phosphoramidites form stable complexes with metals and can induce high enantioselectivities even at high temperatures in polar solvents.

Enantioselective 1,4-additions of organometallic reagents to enones hold a prominent position in our repertoire to assemble carbon–carbon bonds in organic chemistry. Following the introduction of chiral phosphoramidite ligands for the copper-catalyzed conjugate addition of dialkylzinc reagents, which showed excellent enantioselectivities, numerous chiral catalysts have been introduced in recent years for this asymmetric reaction. These methods are, however, limited to alliphatic dialkylzinc reagents although a variety of functional groups are tolerated. A prominent example is the copper-catalyzed conjugate addition of an ester-functionalized organozinc reagent to a cyclohexenone as applied in the short asymmetric synthesis of prostaglandin PGE1. So far, the use of aryl- or alkenylzinc reagents in the copper-catalyzed conjugate addition has met with limited success.

Hayashi and Miyaura have reported the rhodium-catalyzed conjugate addition of boronic acids (Table 1, Scheme 2, entries 5–11). In most cases, full conversion was achieved within 5 h at 100 °C, and high levels of enantioselectivity (85 to > 98% ee) were reached. These results clearly show that the catalyst used in the screening is remarkably stable. Compared to bis-phosphines, phosphoramidites are simple, readily accessible, and easily tunable ligands. The amine part as well as the diol part can be extensively modified due to the molecular structure of these ligands. Despite the rather drastic conditions (dioxane, water, 100 °C for 5 h), the rhodium-bound phosphoramidite is remarkably stable. In an attempt to improve the observed enantioselectivity, we examined phosphoramidites L1–L4 in the rhodium-catalyzed conjugate addition of phenylboronic acid 1a to cyclohexenone 2 (Scheme 1 and Table 1, entries 1–4).

We were pleased to find that ligand L4 showed very high enantioselectivity, and (S)-3-phenylcyclohexanone (S)-2a was obtained quantitatively with an ee > 98% To extend the scope of this reaction, we tested phosphoramidite L4 using several substrates and arylboronic acids (Table 1, Scheme 2, entries 5–11). In most cases, full conversion was achieved within 5 h at 100 °C, and high levels of enantioselectivity (85 to > 98% ee) were reached. These results clearly show that the catalyst based on phosphoramidite L4 is more enantioselective than the catalysts based on phosphoramidites L1–L3 used in the screening.

Scheme 1. Rhodium-Catalyzed Conjugate Addition of Phenylboronic Acid to Cyclohexenone

\[
\begin{align*}
\text{Rh(acac)}(\text{SMe})_2 (3 \text{ mol\%}) \\
\text{L1-L4 (7.5 mol\%)} \\
\text{PhB(OH)}_2, 3 \text{ eq} \\
\text{dioxane/H}_2\text{O, 100 °C}
\end{align*}
\]

Substrates have been obtained. The chiral ligands employed in this reaction are bidentate in nature; most frequently, BINAP is used although binol-based diphosphines, and amidophosphines, are also successful.

Recently, we showed that simple monodentate phosphoramidites can be used as ligands in the rhodium-catalyzed asymmetric conjugate addition of boronic acids. This was confirmed in a communication by Miyaura and co-workers. Compared to bis-phosphines, phosphoramidites are simple, readily accessible, and easily tunable ligands. The amine part as well as the diol part can be extensively modified due to the molecular structure of these ligands. Despite the rather drastic conditions (dioxane, water, 100 °C for 5 h), the rhodium-bound phosphoramidite is remarkably stable. In an attempt to improve the observed enantioselectivity, we examined phosphoramidites L1–L4 in the rhodium-catalyzed conjugate addition of phenylboronic acid 1a to cyclohexenone 2 (Scheme 1 and Table 1, entries 1–4).

We were pleased to find that ligand L4 showed very high enantioselectivity, and (S)-3-phenylcyclohexanone (S)-2a was obtained quantitatively with an ee > 98% To extend the scope of this reaction, we tested phosphoramidite L4 using several substrates and arylboronic acids (Table 1, Scheme 2, entries 5–11). In most cases, full conversion was achieved within 5 h at 100 °C, and high levels of enantioselectivity (85 to > 98% ee) were reached. These results clearly show that the catalyst based on phosphoramidite L4 is more enantioselective than the catalysts based on phosphoramidites L1–L3 used in the screening.

TABLE 1. Asymmetric Conjugate Addition of Boronic Acids to Enonesa

<table>
<thead>
<tr>
<th>entry</th>
<th>enone</th>
<th>R(BOH)2</th>
<th>L</th>
<th>conv (%)</th>
<th>ee (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2a</td>
<td>1a</td>
<td>L1</td>
<td>100</td>
<td>84</td>
</tr>
<tr>
<td>2</td>
<td>2a</td>
<td>1a</td>
<td>L2</td>
<td>100</td>
<td>94</td>
</tr>
<tr>
<td>3</td>
<td>2a</td>
<td>1a</td>
<td>L3</td>
<td>100</td>
<td>89</td>
</tr>
<tr>
<td>4</td>
<td>2a</td>
<td>1a</td>
<td>L4</td>
<td>100</td>
<td>>98</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>1a</td>
<td>L4</td>
<td>100</td>
<td>85</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>1a</td>
<td>L4</td>
<td>95</td>
<td>96</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>1a</td>
<td>L4</td>
<td>100</td>
<td>87</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>1b</td>
<td>L4</td>
<td>60</td>
<td>95</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>1c</td>
<td>L4</td>
<td>100</td>
<td>98</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>1d</td>
<td>L4</td>
<td>100</td>
<td>96</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>1e</td>
<td>L4</td>
<td>100</td>
<td>98</td>
</tr>
</tbody>
</table>

a Reactions performed in dioxane/water at 100 °C, with 3 equiv of boronic acid on 0.4 mmol scale and a loading of 3 mol % catalyst. Ratio Rh/L: 1/2.5. b Conversions are determined by 1H NMR. c Ee’s are determined by chiral HPLC, on a DAICEL AD column.

SCHEME 2. Structure of the Substrates, Ligands, and Boronic Acids Used in the Rh-Catalyzed Conjugate Addition

To investigate the activity and robustness of our new catalytic system, the addition of phenylboronic acid 2a to cyclohexenone 2 was performed with a loading of 0.05 mol % of rhodium (ratio Rh:L: 1/2.5), which resulted in full conversion and ee of >98% within 2 h at 80 °C. This means a turnover number (TON) for this catalyst of 2000 which is remarkable for an asymmetric carbon–carbon bond-forming reaction. In addition, a comparison of phosphoramidite L4 versus BINAP under the same conditions was made. With L4 as a ligand using 1 mol % of catalyst, >99% conversion was reached within 5 min at 100 °C which corresponds to an initial turnover frequency (TOF) of 2500 h⁻¹ (initial TOF = 110 h⁻¹ for BINAP). The conversion against time for the two ligands is depicted in Figure 1. In both cases, high levels of enantioselectivity (97–98%) are obtained but the rate of the reaction using phosphoramidite L4 as a ligand is dramatically larger.

These exciting results showing fast catalytic conversion at 100 °C initiated several experiments at lower temperatures. Surprisingly, the ee found for (S)-2a was only improved marginally when the reaction was performed at 45 °C (Table 2).

This intriguing insensitivity of the ee toward the temperature incited us to run some reactions at higher temperatures. Much to our surprise, the ee of (S)-2a was still exceeding 94% at 140 °C, which is remarkable in an asymmetric catalytic reaction using monodentate ligands. A similar trend with a BINAP-based catalyst has also been observed by Hayashi, as the same enantioselectivity at 120 °C and at 40 °C was reported, although the conversion obtained at 40 °C was less than 2%.

In asymmetric catalysis, the observed enantioselectivity for a reaction is usually temperature dependent. Therefore, reactions are often performed at low temperature to allow an enhanced stereocontrol, though at the expense of reaction rate. In our particular case, we observed that the stereocontrol was hardly temperature-dependent, although obviously the conversion was slower at 45 °C than at 100 °C (16 h vs 5 min).

It is also interesting to note that the enantioselectivity of this reaction was found to be largely solvent-independent. When toluene and 2-propanol were used as solvent,
the ee for (S)-2a remained >98%, although complete conversion required 3 hours at 80 °C compared to 20 min in dioxane. In addition, the small amount of water (1%) present in these reactions could be replaced by methanol without a change in ee, although the rate of the reaction again decreased.

The catalytic cycle of the rhodium-catalyzed conjugate addition of boronic acids has been studied by Hayashi and several of the intermediates have been characterized by NMR (Scheme 3). The enantiodiscrimination is attributed to the addition of the phenyl bound to rhodium to one of the α,β-unsaturated ketone (step B → C).

Encouraged by the high enantioselectivities obtained, we were interested in determining the contributions of enthalpy and entropy to the ee of this reaction. The temperature independence allowed us to consider an entropy-driven or largely entropy-driven enantioselectivity. In asymmetric catalysis, the effect of temperature on enantioselectivity has been studied in the asymmetric hydrosilylation by Scharf et al. A partially entropy-controlled enantioselectivity has been reported for a Mn-catalyzed oxidation by Katsuki et al.

In a chemical reaction, when enantiomers or diastereoisomers are produced, the ee or de is determined by the difference in AG between the two transition states (ΔAG°). To determine the terms ΔΔH° and ΔΔS°, and their contribution to the enantioselectivity, a modified Eyring equation is usually employed (eq 1).

\[
\ln \left(\frac{k_S}{k_R} \right) = \frac{-\Delta \Delta H^\ddagger}{RT} + \frac{\Delta \Delta S^\ddagger}{R}
\]

Figure 2 shows the values of ln(kS/kR) with ligand L1 and L4 plotted against 1/T. As the reaction is essentially irreversible and the products do not racemize, kS/kR is identical to the enantiomeric product ratio.

The Eyring plots for the rhodium-catalyzed addition of boronic acid to cyclohexenone show a straight line with a small slope whereas a fully entropy controlled enantioselection should give a horizontal curve. Calculations of ΔΔH°, derived from the slope, and ΔΔS°, derived from the intercept (eq 1), reveals that in both cases the entropy contribution to the ee roughly equals the enthalpy contribution. Both ΔΔH° (<0) and ΔΔS° (>0) favor the major enantiomer, which gives a kind of rationale for the high ee’s observed. This large entropy contribution to the enantioselectivity probably originates from the catalytic complex and is not due to differences in solvation between the two diastereomeric complexes as various solvents give the same ee.

The interpretation of the large entropy contribution to the enantioselectivity is not straightforward, and cannot be related directly to a characteristic of monodentate ligands, since temperature independence of the ee has also been reported using the bidentate ligand BINAP. It is usually accepted that rigid and bulky bidentate ligands, like BINAP, create a well-defined chiral environment around the metal center where the substrate can access the metal almost exclusively in one orientation. For this reason, the bidentate nature of ligands is generally assumed to be very important in order to obtain a high enantioselectivity. Here, we show that small monodentate phosphoramidite ligands, like L4, can create probably a similar well defined asymmetric surrounding around the rhodium even at high temperatures. Compared to BINAP where the two phosphorus atoms are linked by covalent bonds, the preferred orientation of the phosphoramidites is probably only maintained by strong steric interactions. The similar performance of BINAP and L4, in terms of enantioselectivity, can be explained by a pseudo-bidentate behavior of two phosphoramidites linked by covalent bonds.

(22) The same behavior was observed for the two phosphoramidites although the ee values are lower in the case of L1. In the case of L4, the ln(kS/kR) values at 130 °C and 140 °C were not included in the curve because in this range, a decrease of 4% ee induces an important drop in the ratio value.

(23) Strictly spoken, the difference in ΔΔS° between both diastereomeric complexes is the same in various solvents.
at the metal center as these ligands might bind to the rhodium in a locked configuration, thereby mimicking a bidentate ligand. The high enantioselectivity obtained at 140 °C (entry 9, Table 2) indicates that the rotation of the ligands around the P–Rh bond should be difficult. An equilibrium of the rhodium–phosphoramidite complex with the free ligand has to be excluded because free L1 rapidly hydrolyses in dioxane/H2O 10/1 at 100 °C.10 Additional support for the hypothesis that the two monodentate ligands restrict each other in their conformational flexibility is obtained from the crystal structure of Rh(L1)4BF4 depicted in Figure 3,24 although the complex differs from the actual catalytic species (which contains two ligands L1 at the Rh in a cis coordination). Based on this crystal structure, a computational simulated rotation of the phosphoramidites around the rhodium–phosphorus bond using molecular mechanics showed that such a rotation is strongly disfavored by the steric hindrance of the bis-β-naphthol moieties. The concept that monodentate ligands can act in a similar way as bidentate ligands is of great interest in the search for new catalysts using simple monodentate chiral ligands.25

In conclusion, monodentate phosphoramidites are extremely effective ligands in the rhodium-catalyzed conjugate addition of boronic acids to enones. A very fast reaction and enantioselectivities > 98% have been reached, which clearly confirms that monodentate ligands and especially monodentate phosphoramidites can be as efficient as the bidentate diphosphines used so far. Temperature-dependent studies show that in contrast to the common notion, monodentate ligands can form stable complexes with metals and can induce high enantioselectivities even at high temperatures in polar solvents.

Acknowledgment. This work was supported by the European Combicat network. Prof. Dr. J. B. F. N. Engberts is acknowledged for helpful discussions. T. Tiemersma is gratefully acknowledged for the assistance with HPLC separations.

Supporting Information Available: Experimental details describing the synthesis, characterization, and analysis of the products. This material is available free of charge via the Internet at http://pubs.acs.org.

J O035155E
