Gruen described a realistic model for a micelle which clusters above the critical micelle concentration (cmc) in a cooperative manner, forming stable but highly dynamic structures. Different "zones" making up a micelle: (i) a dry region or inhibited compared to the reaction in aqueous solutions. This model has been validated for both ionic and nonionic micelles using molecular dynamics simulations. In micellar solutions, reactions can be either accelerated or inhibited compared to the reaction in aqueous solutions without added cosolutes. Remarkable success in enhancing reaction rates introducing catalytic moieties in surfactants has been achieved. However, we limit discussion solely to "medium effects" as they occur in solutions of unfunctionalized micelle-forming amphiphiles.

The exact mechanism of micellar acceleration and deceleration has remained obscure because a good description of the local reaction environment offered by micellar binding sites, often referred to as the "micellar pseudophase", is lacking. The present (and our previous) study investigated mechanistic aspects of micellar effects on water-catalyzed hydrolysis reactions to develop a satisfactory description of the micellar pseudophase as a reaction medium. Nevertheless, the distinct differences between micellar core and Stern region make it impossible to describe the complete micelle as a homogeneous "entity" or "pseudophase". Descriptions of medium effects exerted by micelles describe either the Stern region or the hydrocarbon core, depending on the binding location of the (reactive) probes that are used.
A prerequisite for understanding the reaction medium offered by micelles is to know where reaction occurs. A micelle offers several binding sites for relatively apolar molecules. These include the hydrophobic core and hydrophobic binding sites located in the Stern region. The latter region is particularly flexible in binding molecules as it contains, apart from water molecules, highly hydrophilic surfactant headgroups and hydrophobic domains due in part to backfolding of surfactant tails. In our previous study, we showed that the water-catalyzed hydrolysis reactions of activated amides take place in the micellar Stern region. This conclusion agrees with the binding locations found using a variety of techniques for many other, especially aromatic, molecules.\(^{11}\)

In view of the literature evidence mentioned above, the kinetic probes used in the study reported here almost certainly bind in the micellar Stern region. Hence, the experiments effectively provide information about the reaction medium properties of the Stern region. The aim of this study was to model the medium properties of the micellar Stern region in terms of aqueous solutions comprising compounds mimicking molecules and parts of molecules present in the Stern region.

A key feature of the micellar Stern region is the concentration of headgroups and counterions. The concentration of headgroups in the Stern region\(^{12-14}\) lies in the range of 3–5 mol dm\(^{-3}\), though recent work suggested lower values. In our previous work, we determined upper limits for the concentration of headgroups in the Stern regions of n-dodecyltrimethylammonium bromide (DTAB), n-hexadecyldimethylammonium bromide (CTAB), and sodium n-dodecyl sulfate (SDS) of approximately 4 M.\(^{1}\) The concentration of counterions is slightly less due to incomplete counterion binding, locally creating an electrically nonneutral environment.

In our preceding study,\(^{1}\) we showed that rate-retarding effects exerted by micelles on certain hydrolysis reactions can be largely explained in terms of salt effects. However, the success of modeling the micellar Stern region using a concentrated salt solution depends on the reaction chosen to probe the Stern region’s properties as a reaction medium.\(^{1,16}\) In this study we incorporate in the mimic both polar and apolar components with the aim of inducing medium effects still more representative of the Stern region.

A Kinetic Model for Reactions in Micellar Solutions

The hydrolytic reactions described here are the water-catalyzed, pH-independent hydrolysis reactions of substituted 1-benzoyl-1,2,4-triazoles (1a–f) and 1-benzoyl-3-phenyl-1,2,4-triazole (2).

The reactions proceed via a dipolar activated complex in which two water molecules, one acting as a nucleophile and the other as a general base, are involved with three protons in flight (Scheme 1).\(^{17-19}\)

Kinetic data for reactions in micellar solutions are analyzed using eq 1 in a nonlinear least-squares fitting procedure. Equation 1 represents the nonlinear form of the Menger–Portnoy equation:\(^{20}\)

\[
k_{\text{obsd}} = \frac{k(\text{mic}) + k(\text{surf}) - \text{cmc}/N}{1 + k(\text{mic})/\text{cmc}/N}
\]

Here \(k_{\text{obsd}}\) is the observed rate constant at a surfactant concentration \([\text{surf}]\), \(k(\text{mic}) = 0\) is the rate constant in water without added cosolute (\(pH = 4.0\)),\(^{21}\) and \(k(\text{surf})\) is the rate constant under conditions of complete binding of the substrate to the micelles. For the present system, the micellar rate constant \(k(\text{mic})\) is the rate constant for reaction in the micellar Stern region, \(N\) is the aggregation number of the micelle, and \(k(\text{mic})\) is the binding constant of the kinetic probe to the micelle (the kinetic probe residing in the Stern region), and \(k(\text{surf})\) is the critical micelle concentration of the surfactant.

In addition to micellar rate constants \(k(\text{mic})\) and micellar binding constants \(K_m\), transition-state pseudoequilibrium constants \(K^{AC}\) can be determined.\(^{22,23}\) Transition-state pseudoequilibrium constants \(K^{AC}\) are hypothetical bind-

\(^{13}\) Mukerjee, P. J. Phys. Chem. 1962, 66, 943–945.

ing constants of the activated complex to the micelle. For the system under study, \(K_{AC} \) is given by eq 2.

\[
K_{AC} = \frac{k_{mic}K_m}{k(m_\ell = 0)} = \frac{k_{mic}^w[H_2O]^2m^w}{k^w[H_2O]^2} \tag{2}
\]

In eq 2, \(k_w^\ell \) and \(k_{mic}^\ell \) are the third-order rate constants (rate of reaction of probe \(P \): \(d[P]/dt = k_\ell [P][H_2O]^2 \), where \(z \) represents subscripts mic and \(w \) in eq 2) in bulk water and in the micellar Stern region, respectively. \([H_2O]_w\) is the water concentration in water, and \([H_2O]_m\) is the water concentration in the micelle, i.e., in the Stern region.

An Extended Model of the Micellar Stern Region

Concentrated salt solutions may effectively reproduce the medium effects exerted by the micellar Stern region on one (series of) probe(s) but not on another series. For example, medium effects on the solvatochromic ET(30) probe cannot be accounted for solely on the basis of the polarity of a concentrated salt solution.\(^1\)

Similarly, the hydrolysis of phenyl chloromethanoate is not nearly as much retarded in salt solutions as in micellar solutions.\(^16\) Another indication is the failure of 3, a hydrolytic probe that is particularly sensitive to hydrophobic interactions, to show a relation between the charge of the Stern region and the rate-retarding effect,\(^1\) as was also observed by others for the hydrolysis of 4-nitrophenyl 2,2-dichloropropanoate.\(^25,26\)

If the ET(30) probe is a good micropolarity reporter, the micropolarity of the micellar Stern region is considerably lower than expected on the basis of the concentrated salt solutions used as mimics of the Stern region. This lower polarity is envisaged to be primarily caused by interactions of the probes with the hydrophobic tails of the surfactants in the Stern region.

In this context, we chose the hydrolysis of a series of substituted 1-benzoyl-1,2,4-triazoles 1a–f\(^27\) in the presence of micelles of DTAB and CTAB for detailed analysis. The Stern region of micelles of ionic surfactants is modeled by including both hydrophobic and ionic interactions. Our new model solutions contain both salt, mimicking ionic interactions, and 1-propanol, mimicking hydrophobic interactions.\(^28\) We separate the effect of the ionic headgroups and of the hydrophobic tails leading to a satisfactory reproduction of the behavior of all tested probes. It should be noted that ionic interactions do not only include the effect of the charges of the surfactant headgroups\(^29\) but instead are defined to include all rate-influencing effects of the surfactant headgroups, i.e., charge, effect on local water activity, and direct 1:1 interactions with the hydrolytic probe.

Results and Discussion

Rate constants for hydrolysis of 1a–f in water without added cosolutes, \(k(m_\ell = 0) \), together with the Hammett substituent constants \(\sigma_p \), are summarized in Table 1 (subscript \(x \) indicates the probe molecule).

It is shown that the rate of hydrolysis increases with increasing electron-withdrawing ability of the para-substituent, as expected for a reaction in which a (partial) negative charge develops on the carbonyl group going toward the activated complex (Scheme 1). The hydrolysis of all of these probes is retarded in solutions containing micelles of CTAB and DTAB (examples given in Figure 1).

From a nonlinear least-squares fit to eq 1, micellar rate constants for hydrolysis and micellar binding constants were determined (Table 2).

There is no appreciable trend in the micellar binding constants of 1a–f (Table 2) with substituent constant (Table 1). However, micellar binding constants for CTAB on average are about three times larger than those for DTAB. For comparison of the rate-retarding effects on the hydrolysis of the individual hydrolytic probes, the relative rate constants of hydrolysis in aqueous solutions of DTAB and CTAB and the logarithms of these relative rate constants are given in Table 3.

For 1d–f, micelles of CTAB retard hydrolysis more than micelles of DTAB. However, micelles of DTAB retard the hydrolysis of 1a, b more compared with micelles of CTAB (Table 3). Apart from these rather unusual rate effects, \(\ln(k_{mic}/k_\ell(m_\ell = 0)) \) tends to increase (decrease in absolute value) with increasing \(\sigma_p \).

We improved our previous model for the micellar Stern region\(^1\) by adding a compound mimicking the interactions with the alkyl tails of the surfactants. 1-Propanol was used as added cosolute being the highest linear alcohol

<table>
<thead>
<tr>
<th>probe</th>
<th>(\sigma_p)</th>
<th>(k_{mic}/k_\ell(m_\ell = 0))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>-0.28</td>
<td>4.1</td>
</tr>
<tr>
<td>1b</td>
<td>-0.14</td>
<td>9.4</td>
</tr>
<tr>
<td>1c</td>
<td>+0.00</td>
<td>21.2</td>
</tr>
<tr>
<td>1d</td>
<td>+0.24</td>
<td>36.0</td>
</tr>
<tr>
<td>1e</td>
<td>+0.32</td>
<td>43.1</td>
</tr>
<tr>
<td>1f</td>
<td>+0.81</td>
<td>278</td>
</tr>
</tbody>
</table>

\(^{(26)}\) In our opinion, the conclusion in ref 25 that the rate-retarding effect brought about by the micelles is not a salt effect is unwarranted. The conclusion has been based on activation parameters of the reaction occurring in the micelle. However, these activation parameters will include effects of the thermodynamics of micellization changing with temperature.

\(^{(28)}\) Recently, similar attempts at including both "headgroup mimics" and "tail mimics" in model solutions for the micellar Stern region have been made. However, these tertiary solutions either (i) do not distinguish between the rate effects of headgroup mimic and tail mimic (refs 25 and 40) or (ii) seem to reproduce the rate of a single reaction only (Tada, E. B.; Quarti, N.; Silvà, P. L.; Blagoeva, I. B.; El Seoud, O. A.; Ruasse, M.-F.; Langmuir 2003, 19, 10666–10672).

completely miscible with water at 298.15 K. In addition, widely accepted micelle models suggest that on average about 2–3 methylene units are in contact with water.2 The effects of ionic headgroups and alkyl tails as mimicked by TMA\textsubscript{B} and 1-propanol, respectively, have to be distinguished. Ideally, trends in sensitivity toward the presence of these two compounds should be different within the series of hydrolytic probes. By analogy with 1:1 interactions in (aqueous) solutions (see ref 33 for short reviews), we quantify rate-retarding effects exerted by the two mimicking compounds using the slopes of plots of the logarithm of the relative rate constant of hydrolysis as a function of molality of cosolute m\textsubscript{c}, eq 3.34,35

$$\ln [k(m_c)/k(m_c = 0)] = \frac{2}{RTm_0^2}G(c)m_c - NM_0 \phi m_c $$ \hspace{1cm} (3)

Here k(m\textsubscript{c}) is the (pseudo-)1 first-order rate constant for hydrolysis in an m\textsubscript{c} molal aqueous solution of cosolute c; k(m\textsubscript{c} = 0) is the rate constant in the absence of added cosolute, R is the gas constant, and T is the absolute temperature. G(c) is the difference [g\textsubscript{cx} - g\textsubscript{c}] in interaction Gibbs energies between the cosolute c and the reactants x on one hand and the cosolute c and the activated complex β on the other hand. M\textsubscript{c} is the molar mass of water, N is the number of water molecules involved in the rate-determining step, and ϕ is the practical osmotic coefficient for the aqueous solution where the molality of added solute is m\textsubscript{c}. In this study, N equals 2 (vide supra). Since the solutions are very dilute, ϕ can be taken as unity; m\textsubscript{c} 1 mol kg-1 is, the molality of the solute reference state. In short, NM_0 \phi m_c gives the change in water activity upon addition of m\textsubscript{c}.

FIGURE 1. Rate constants of hydrolysis of 1c at 298.15 K in solutions containing micelles of DTAB (left) and CTAB (right).

TABLE 2. Overview of Micellar Rate Constants of Hydrolysis and Micellar Binding Constantsa of Para-Substituted 1-Benzoyl-1,2,4-triazoles 1a–f at 298.15 K

<table>
<thead>
<tr>
<th></th>
<th>k\textsubscript{CTAB}/104 s-1</th>
<th>k\textsubscript{DTAB}/104 s-1</th>
<th>K\textsubscript{CTAB}/103 dm3 mol-1</th>
<th>K\textsubscript{DTAB}/103 dm3 mol-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>0.34 ± 0.03</td>
<td>0.25 ± 0.04</td>
<td>9.3 ± 0.3</td>
<td>3.1 ± 0.2</td>
</tr>
<tr>
<td>1b</td>
<td>0.10 ± 0.08</td>
<td>0.70 ± 0.06</td>
<td>10.3 ± 0.4</td>
<td>3.4 ± 0.1</td>
</tr>
<tr>
<td>1c</td>
<td>2.5 ± 0.2</td>
<td>2.4 ± 0.3</td>
<td>3.44 ± 0.07</td>
<td>1.5 ± 0.1</td>
</tr>
<tr>
<td>1d</td>
<td>5.4 ± 0.2</td>
<td>6.67 ± 0.10</td>
<td>13.9 ± 0.4</td>
<td>4.2 ± 0.1</td>
</tr>
<tr>
<td>1e</td>
<td>7.0 ± 0.1</td>
<td>8.4 ± 0.2</td>
<td>21.0 ± 0.3</td>
<td>6.0 ± 0.1</td>
</tr>
<tr>
<td>1f</td>
<td>67 ± 3</td>
<td>74 ± 12</td>
<td>6.4 ± 0.3</td>
<td>1.4 ± 0.2</td>
</tr>
</tbody>
</table>

a Cmcs set to 0.9 and 14.0 mM for CTAB and DTAB, respectively. These are the average values of the cmcs determined from initial curve-fitting with unrestricted cmcs. b Based on an aggregation number of 110.31 c Based on an aggregation number of 70.31

TABLE 3. Relative Rate Constants of Hydrolysis of 1a–f Taking Place in Micelles of DTAB and CTAB at 298.15 K

<table>
<thead>
<tr>
<th></th>
<th>CTAB</th>
<th>DTAB</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>0.08</td>
<td>0.06</td>
</tr>
<tr>
<td>1b</td>
<td>0.08</td>
<td>0.07</td>
</tr>
<tr>
<td>1c</td>
<td>0.12</td>
<td>0.12</td>
</tr>
<tr>
<td>1d</td>
<td>0.15</td>
<td>0.19</td>
</tr>
<tr>
<td>1e</td>
<td>0.16</td>
<td>0.20</td>
</tr>
<tr>
<td>1f</td>
<td>0.24</td>
<td>0.27</td>
</tr>
</tbody>
</table>

31 van Os, N. M.; Haak, J. R.; Rupert, L. A. M. Physico-Chemical Properties of Selected Anionic, Cationic and Nonionic Surfactants; Elsevier: Amsterdam, 1993.

32 Hydrophobic interactions are rather dependent on size and shape of the hydrophobic (parts of) molecules involved; see e.g.: Southall, N. T.; Dill, K. A. J. Phys. Chem. B 2000, 104, 1326–1331. We therefore restricted our choice of alcohols for our mimicking solution to linear alcohols. The actual choice of linear alcohol is expected to be unimportant as all short-chain linear alcohols retard the hydrolysis reactions of activated amides in similar ways following an additivity scheme (see ref 35 and the following: Buurma, N. J.; Pastorello, L.; Blandamer, M. J.; Engberts, J. B. F. N. J. Am. Chem. Soc. 2003, 125, 11848–11853).

Figure 2. Rate-retarding effects of 1-propanol (●) and TMAB (○) on the hydrolysis of probes 1a–f at 298.15 K as a function of Hammett substituent constants.

Table 4. Concentration Dependence (kg mol⁻¹) of Rate-Retarding Effects of 1-Propanol and TMAB on the Hydrolysis of Substituted 1-Benzoyl-1,2,4-triazoles 1a–f at 298.15 K

<table>
<thead>
<tr>
<th>Probe</th>
<th>d ln(kₚ)/d ln(m₁-propanol)</th>
<th>d ln(kₚ)/d ln(m₁-propanol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>-0.236 ± 0.005</td>
<td>-0.306 ± 0.015</td>
</tr>
<tr>
<td>1b</td>
<td>-0.232 ± 0.006</td>
<td>-0.240 ± 0.007</td>
</tr>
<tr>
<td>1c</td>
<td>-0.201 ± 0.005</td>
<td>-0.258 ± 0.006</td>
</tr>
<tr>
<td>1d</td>
<td>-0.151 ± 0.003</td>
<td>-0.259 ± 0.007</td>
</tr>
<tr>
<td>1e</td>
<td>-0.131 ± 0.003</td>
<td>-0.226 ± 0.002</td>
</tr>
<tr>
<td>1f</td>
<td>-0.058 ± 0.002</td>
<td>-0.240 ± 0.007</td>
</tr>
</tbody>
</table>

retardation is caused by interactions with ionic headgroups (Figure 3).

Hydrolysis of a probe with a substituent with αᵣ = 1.13 is expected to be solely retarded by ionic interactions. Because rate retardation by ionic interactions as modeled by TMAB is approximately constant for all hydrolytic probes, the horizontal dotted line at ln(kₚ) varies linearly with molality m. Because m is expected to be additive for dilute solutions, the rate-retarding effect is given by the difference in sensitivity trends existing. Whereas the variation in the presence of TMAB on the hydrolysis of 1a–f is the rate retardation is caused by interactions with ionic headgroups (Figure 3).

An alternative approach uses equations used in the study of interactions in aqueous solutions. The rate retardation in an aqueous solution containing 1-propanol and TMAB can be described as the sum of effects caused by added TMAB and 1-propanol:

\[
\ln \frac{k(x,m_c = 0)}{k(x,m_c = 0) + m_{1-propanol}} + \ln \frac{k(x,m_c = 0)}{k(x,m_c = 0) + m_{TMAB}} = \ln \frac{k(x,m_c = 0)}{k(x,m_c = 0)}
\]

Equation 4 is more conveniently written in the form of 5:

\[
a_{x,1-propanol}m_{1-propanol} + a_{x,TMAB}m_{TMAB} = c_x
\]

Here, \(a_{x,1-propanol}\) is the derivative of the logarithm of the
Table 5. Molalities and Concentrations of 1-Propanol and TMAB in Solution 1 for Binding Sites of 1a–f in Micelles of DTAB and CTAB

<table>
<thead>
<tr>
<th></th>
<th>DTAB molarity</th>
<th>DTAB molality</th>
<th>CTAB molarity</th>
<th>CTAB molality</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-propanol</td>
<td>9.3 ± 0.9</td>
<td>5.1</td>
<td>5.0 ± 0.5</td>
<td>2.6</td>
</tr>
<tr>
<td>TMAB</td>
<td>1.5 ± 0.6</td>
<td>0.8</td>
<td>4.9 ± 0.3</td>
<td>2.6</td>
</tr>
<tr>
<td>water</td>
<td>30</td>
<td>29</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Concentrations were calculated using the (experimentally determined) densities of the first-order solutions Soln.1 at 298.15 K (densities of the first-order solutions for CTAB and DTAB are 1.079 and 0.975 g cm⁻³, respectively).

relative rate constant with respect to molality of 1-propanol, \(a_{x,TMAB} \) is the same derivative with respect to the molality of TMAB, and \(c \) is the logarithm of the relative micellar rate constant. For a model solution consistently describing the micellar Stern region of the micelles formed by a certain surfactant, this equation should hold for all the hydrolytic probes in combination with this surfactant. Hence, for a given surfactant, there is a model solution of \(m_{1-propanol} \) mol kg⁻¹ in 1-propanol and \(m_{TMAB} \) mol kg⁻¹ in TMAB in which the hydrolysis reactions of all hydrolytic probes 1a–f are retarded to the same extent as in the micellar Stern region. Hence, for every surfactant a set of linear equations is given by eq 5. In its extended form, these equations form the matrix given in eq 6:

\[
\begin{bmatrix}
\alpha_{MeO,1-propanol} & \alpha_{MeO,TMAB} \\
\alpha_{Me,1-propanol} & \alpha_{Me,TMAB} \\
\alpha_{H,1-propanol} & \alpha_{H,TMAB} \\
\alpha_{Cl,1-propanol} & \alpha_{Cl,TMAB} \\
\alpha_{F3CO,1-propanol} & \alpha_{F3CO,TMAB} \\
\alpha_{NO2,1-propanol} & \alpha_{NO2,TMAB}
\end{bmatrix}
\begin{bmatrix}
m_{1-propanol} \\
m_{TMAB}
\end{bmatrix}
= \begin{bmatrix}
c_{MeO} \\
c_{Me} \\
c_{H} \\
c_{Cl} \\
c_{F3CO} \\
c_{NO2}
\end{bmatrix}
\]

(6)

Overdetermined (not exact) matrix systems of the form in eq 6 can be solved using singular value decomposition. The entries in vector \(c \) and matrix \(a_{x,c} \) are given in Tables 3 and 4, respectively. With application of the singular value decomposition method, a calculated model solution mimicking the micellar Stern region of a CTAB micelle is described in Table 5. The solution describes a "first-order solution" of eq 6, based entirely on extrapolated 1:1 interactions. This solution will be referred to as Soln.1.

The salt concentrations in Table 5 are lower than those in the concentrated salt solutions described in our previous paper where the salt was taken as the sole origin of rate retardation. Nevertheless, the salt concentrations match the calculated concentration ranges given in our previous report but now at the lower end of the calculated range. In fact, the value of 2.6 mol dm⁻³ is in reasonable agreement with the concentrations of bromide anions (1.6 mol dm⁻³) and ions of groups (2.0 mol dm⁻³) assuming a counterion binding of 0.8 as determined by the Romsted group using their arenediaminon probe. Rate constants for hydrolysis of 1a–f and \(E_T(30) \) value were determined for the solution mimicking CTAB made according to Table 5, i.e. in Soln.1(CTAB) (Table 6).

According to Table 6, rate constants for hydrolysis of individual probes in the model solution are only slightly higher than those in the CTAB Stern region. This discrepancy is attributed to the fact that hydrolysis data for 1a–f in binary aqueous solutions of TMAB or 1-propanol as determined at intermediate molalities have been extrapolated to higher molalities. In addition, the final solution is a ternary solution, introducing further deviations from the extrapolations for binary solutions. An encouraging observation is that the \(E_T(30) \) value for the micellar solution (55.8 kcal mol⁻¹) is in fair better agreement with the value for CTAB micelles (53.5 kcal mol⁻¹) than the \(E_T(30) \) values of the model solutions containing only TMAB. Further, we calculated the expected micellar (CTAB and DTAB) rate constant of hydrolysis for 2. Using the molalities (and concentrations) determined here, together with the G(c) value of 1-propanol for hydrolysis of 2 determined previously and the dependence of the hydrolysis of 2 in aqueous solutions containing TMAB on molarity (Figure 2 in ref 1), the rate constant of the hydrolysis of 2 in the Stern region of CTAB micelles is expected to be (1.4 ± 0.4) × 10⁻⁴ s⁻¹. Experimentally, a micellar rate constant of (0.67 ± 0.08) × 10⁻⁴ s⁻¹ is observed. Similarly, the rate constant for the hydrolysis of 2 in DTAB micelles is expected to be (1.1 ± 0.3) × 10⁻⁴ s⁻¹, in good agreement with the experimental micellar rate constant of (1.26 ± 0.05) × 10⁻⁴ s⁻¹. In other words, the model predicts reasonably well reaction rates for reactions that were not used in the development of the model.

Using the results of the analysis, we describe the micellar binding and micellar inhibition in a single scheme (Scheme 2, different contributions not drawn to scale).

Both reactant (R) and activated complex (AC) bind to the micelle in the Stern region (Table 2). However, R binds much more strongly than AC, causing the rate retardation. We divide the Gibbs energy of binding of R to the micelle into a "dynamic" part, causing rate effects,

(37) The 1-propanolysis of 1a–f is expected to make a negligible contribution to the observed rate constants (see ref 35).
and a “passive” part, not causing rate effects (cf. a related division into passive and dynamic interactions in ref 38, for the present case the passive interactions correspond to K^A). Using eq 6, the dynamic part has been divided into rate-retarding effects caused by interactions with ionic groups (as quantified by $a_{x,\text{TMAB}}$) as well as by interactions with hydrophobic groups (as quantified by $a_{x,1\text{-propanol}}$). For probes for which the dynamic part of the Gibbs energy of binding to the micelle is the same (i.e. probes with the same kinetic sensitivity toward hydrophobic and ionic interactions but for which the passive part is different), a linear relation between pK_m and pK^A with a slope of 1 is expected. Indeed, such a linear relation is found for probes of which only the hydrophobicity is increased by elongating an alkyl chain remote from the reaction center.39 Similarly, the reason for the absence of a correlation between rate-retarding effects, micellar binding constants, and hydrophobicity of the surfactants constituting the micelle as found in this study stems from different and uncorrelated passive and dynamic contributions to the Gibbs energy of binding to the micelles.

The present analysis, separating the contributions of hydrophobic and ionic interactions, uses the differences in rate-retarding effects caused by hydrophobic interactions and ionic interactions. However, additional effects causing differences in rate-retarding effects have not been included in the present model. Three of these effects are readily identified, and their source, effect, and importance can be estimated.

First, different hydrolytic probes could bind in different zones of the micelle (or their distribution over different zones of the micelle could change) and therefore experience different interactions. However, the kinetic probes used in this study are structurally similar and are therefore expected to reside in the micellar Stern region.11 Hence, any difference in rate effect caused by a difference in binding locations is expected to be of minimal importance.

Second, the electrostatic non-neutrality of the micellar Stern region can (de)stabilize charges developing in the activated complex. In the present case, the partial negative charge on the AC will be stabilized by the effectively cationic Stern region. This effect will be modified by other factors (destabilizing the partial negative charge, e.g. (de)stabilization by substituent effects. Hence, different probes can be differently stabilized by the cationic nature of the micellar Stern region.

Third, the local pH in the Stern region may be different from the bulk pH. The local pH on the micellar surface can be calculated from the bulk pH and the micellar surface charge using the Poisson–Boltzmann equation.29 For a bulk pH of 4.0, the pH in the micellar Stern region of CTAB is calculated to be approximately 6.5. Experiments using 1 Le indicate that hydroxide-ion catalyzed hydrolysis contributes less than 5% to the rate constant of hydrolysis of 1 Le in the “second-order solution” (vide infra) at pH 6.5. This suggests that, for the system studied here, hydroxide-ion catalyzed hydrolysis as a result of the different pH is not an important factor.

Notwithstanding the fact that conclusions about the micellar binding sites can be drawn from the first-order solution, it would be useful to have a real solution accurately reproducing rate constants in the micellar Stern region. In the study of bimolecular reactions occurring in the Stern region, it is often especially difficult to determine independently binding constants for both reactants and the micellar rate constant.40–42 We therefore extended the model for CTAB to prepare a solution that includes the nonlinear rate-retarding effects at high molalities of TMAB and 1-propanol (vide supra).

We determined these rate-retarding effects at high molality in much the same way as was used at low molality. Instead of using rate constants in water without added cosolute as reference points, rate constants in Soln.1, k_0 (mod. $m_{\text{TMAB}} = 4.85$, $m_{1\text{-propanol}} = 5.00$), denoted as k_0 (Soln.1), were taken as reference points. Rate constants for hydrolysis of the hydrolytic probes in the presence of high molalities of TMAB and 1-propanol, k_x (mod. m_{TMAB}, $m_{1\text{-propanol}}$), were determined in solutions where TMAB and 1-propanol molalities were around 4.85 and 5.00 mol kg$^{-1}$, respectively, i.e. around the molalities in Soln.1.

Plots of $\ln[k_1(m_{\text{TMAB}}, m_{1\text{-propanol}})/k_0(\text{Soln.1})]$ as a function of 1-propanol molality around the 1-propanol molality of Soln.1 and at a constant m_{TMAB} of 4.85 mol kg$^{-1}$ are not linear (Figure 4).

Nevertheless, a linear fit, forced through the reference point provided by Soln.1, was used to obtain $\ln[k_1(m_{\text{TMAB}}, m_{1\text{-propanol}})/k_0(\text{Soln.1})]/m_{1\text{-propanol}}$ (denoted $a_{x,1\text{-propanol}}$). For the dependence on m_{TMAB}, only one additional data point (for every probe) was determined as an indication of $\ln[k_1(m_{\text{TMAB}}, 5.00)/k_0(\text{Soln.1})]/m_{\text{TMAB}}$ (denoted $a_{x,\text{TMAB}}$). The calculated slopes are given in Table 7.

An improved estimate of the molalities for a model solution accurately reproducing micellar rate constants can be determined starting from the first-order solution. Equation 6 with $c_x = \ln[k_0]/k_x(\text{Soln.1})$ (the residual of the first-order model solution) and with $a_{x,1\text{-propanol}}$ and $a_{x,\text{TMAB}}$ set to $a_{x,1\text{-propanol}}$ and $a_{x,\text{TMAB}}$ (Table 7),

![Figure 4](image)

Figure 4. Representative examples of the rate-retarding effect of (additional) added 1-propanol on the hydrolysis of 1a (•), 1b (○), 1d (●), and 1f (△) at 298.15 K at a constant TMAB molality of 4.85 mol kg$^{-1}$, using Soln.1 as reference.

TABLE 7. Rate-Retarding Effects of 1-Propanol and TMAB on the Hydrolysis of Substituted 1-Benzoyl-1,2,4-triazoles 1a–f at 298.15 K for Molalities around Soln.1

<table>
<thead>
<tr>
<th></th>
<th>(\delta_{1, \text{propanol}})</th>
<th>(\delta_{\text{TMAB}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>(-0.129 \pm 0.0005)</td>
<td>(-0.13^a)</td>
</tr>
<tr>
<td>1b</td>
<td>(-0.160 \pm 0.0008)</td>
<td>(-0.19)</td>
</tr>
<tr>
<td>1c</td>
<td>(-0.160 \pm 0.0008)</td>
<td>(-0.19)</td>
</tr>
<tr>
<td>1d</td>
<td>(-0.080 \pm 0.0008)</td>
<td>(-0.18)</td>
</tr>
<tr>
<td>1e</td>
<td>(-0.078 \pm 0.0005)</td>
<td>(-0.22)</td>
</tr>
<tr>
<td>1f</td>
<td>(+0.022 \pm 0.019)</td>
<td>(-0.19)</td>
</tr>
</tbody>
</table>

\(^a\) Error has been set to 0.01 mol\(^{-1}\) for all entries in this column.

Conclusions

The failure of concentrated salt solutions to reproduce polarity-related properties of the micellar Stern region indicated the necessity of expanding our previous model mimicking the Stern region in such a way that rate-reducing hydrophobic interactions are correctly taken into account. For DTAB and CTAB, this has been accomplished by modeling the micellar Stern region using an aqueous solution containing both 1-propanol, mimicking hydrophobic surfactant tails, and TMAB, mimicking ionic surfactant headgroups. The molalities of TMAB and 1-propanol in these solutions can be determined graphically and mathematically, using singular value decomposition. We distinguish two “types” of model solutions, viz. first-order and second-order solutions. First-order solutions are determined from the rate-retarding effects of 1-propanol and TMAB at intermediate molalities and indicate the relative importance of ionic and hydrophobic groups in the micellar Stern region. Second-order solutions can be derived from first-order solutions and take into account the nonlinear rate retardations at high molalities of cosolutes. Second-order solutions can be used to obtain estimates of micellar rate constants for reactions of which the micellar rate constants cannot be determined directly. The present approach can be used for both micellar and vesicular systems and probably has an even wider applicability.

Experimental Section

Substituted 1-benzoyl-1,2,4-triazoles 1a–f and 1-benzoyl-3-phenyl-1,2,4-triazole (2) were synthesized according to literature procedures. The ET(30) probe was kindly provided by Prof. Dr. Chr. Reichardt. Micellar solutions were 1 × 10\(^{-4}\) mol dm\(^{-3}\) in HCl, and model compound solutions were acidified to pH 4 to achieve conditions for pH-independent hydrolysis. All solutions were made in water that was distilled twice in an all-quartz apparatus. Surfactants and salts were dried before use. If solutions were made volumetrically, the mass of all components of the solutions was determined to know both solute and solvent concentration. If model solutions were made by weight, the density was determined. Reactions were followed at 260, 262, 252, 262, 253, and 262 nm for 1a–f, respectively, and at 273 nm for 2, at 298.15 ± 0.2 K for at least half-lives. Good to excellent pseudo-first-order kinetics were obtained, the error in the rate constants being 2% or less for the micellar solutions and the dilute solutions but up to 10% for the concentrated solutions.

The probes were injected as 6 \(\mu\)L of a stock solution of 1a–f or 2–5 \(\mu\)L of a stock solution of 2 in cyanomethane into a 1 cm quartz cuvette of ca. 2.5 mL yielding a total probe concentration during the reaction of ca. 10\(^{-5}\) mol dm\(^{-3}\). These concentrations were chosen to have absorbance changes not larger than 0.6.

The measurements involving 1a–f were performed at pH 11. The ET(30) probe was injected as < 6 \(\mu\)L of a stock solution of the solvatochromic probe in EtOH.

The singular value decomposition method was used as implemented in Mathcad 2001 Professional by Mathsoft Inc.

Acknowledgment. Marie Jëtta den Otter is gratefully acknowledged for her contribution to this work.

(43) The relatively high sensitivity of the ET(30) probe toward hydrophobic interactions provides a possibility for a quick test of the nature of the micellar Stern region. The ET(30) probe can be used mainly for the interactions with the alkyl tails whereas 1a is mainly suitable for the interactions with the ionic headgroups. This results in a 2 × 2 matrix with one row strongly dependent on TMAB molality and one row mainly dependent on 1-propanol molality, yielding a reasonable first indication of the Stern region as a reaction medium.