Bifurcations of a predator-prey model with non-monotonic response function

H.W. Broera, Vincent Naudota, Robert Roussarieb, Khairul Saleha

a University of Groningen, Department of Mathematics, P.O. Box 800, NL-9700 AV Groningen, The Netherlands
b Institut mathématiques de Bourgogne, 9, avenue Alain-Savary, B.P. 47870, 21078 Dijon cedex, France

Presented by Étienne Ghys

Abstract

A 2-dimensional predator-prey model with five parameters is investigated, adapted from the Volterra–Lotka system by a non-monotonic response function. A description of the various domains of structural stability and their bifurcations is given. The bifurcation structure is reduced to four organising centres of codimension 3. Research is initiated on time-periodic perturbations by several examples of strange attractors.

1. Introduction

This Note deals with a particular family of planar vector fields which models the dynamics of the populations of predators and their prey in a given ecosystem. The system is a variation of the classical Volterra–Lotka system [7,12] given by

\[
\begin{align*}
\dot{x} &= x(a - \lambda x) - yP(x), \\
\dot{y} &= -\delta y - \mu y^2 + cyP(x),
\end{align*}
\]

(1)

where the variables \(x\) and \(y\) denote the density of the prey and predator populations respectively, while \(P(x)\) is a non-monotonic response function [1] given by \(P(x) = mx/(\alpha x^2 + \beta x + 1)\), where \(0 \leq \alpha, 0 < \delta, 0 < \lambda, 0 \leq \mu\) and \(0 \leq \beta\).
$\beta > -2\sqrt{\alpha}$ are parameters. The coefficient a represents the intrinsic growth rate of the prey, while $\lambda > 0$ is the rate of competition or resource limitation of prey. The natural death rate of the predator is given by $\delta > 0$. The function $cP(x)$ where $c > 0$ is the rate of conversion between prey and predator. The non-negative coefficient μ is the rate of the competition amongst predators [2]. See [3,5] for a more detailed discussion concerning system (1).

Our goal is to understand the structurally stable dynamics of (1) and in particular the attractors with their basins where we have a special interest for multi-stability. We also study the bifurcations between the open regions of the parameter space that concern such dynamics thereby giving a better understanding of the family.

We briefly address the modification of this system, where a small parametric forcing is applied in the parameter λ, i.e., $\lambda = \lambda_0(1 + \varepsilon \sin(2\pi t))$, (as suggested by Rinaldi et al. [11]) where $\varepsilon < 1$ is a perturbation parameter. Our main interest is with large scale strange attractors. For several phase portraits of the Poincaré return map (or stroboscopic map) see Fig. 3.

2. Sketch of results

The investigation concerns the dynamics of (1) in the closed first quadrant $\text{clos}(Q)$ where $Q = \{x > 0, y > 0\}$ with boundary $\partial Q = \{x = 0, y \geq 0\} \cup \{y = 0, x \geq 0\}$, which are both invariant under the flow associated to system (1). Since limit cycles are hard to detect mathematically, our approach is to reduce, by surgery [8,9], the structurally stable phase portraits to new portraits without limit cycles. In [3,5] with help of topological means (Poincaré–Hopf Index Theorem, Poincaré–Bendixson Theorem [8,10]) a complete classification of all Reduced Morse–Smale Portraits is found, which is of great help to understand the original system (1).

Theorem 2.1 (General properties). System (1) has the following properties:

1. (Trapping domain) The domain $B_p = \{(x, y) | 0 \leq x, 0 \leq y, x + y \leq p\}$, where $p > 1/\lambda((1 - \delta)^2/(4\delta) + 1)$ is a trapping domain, meaning that it is invariant for positive time evolution and also captures all integral curves starting in $\text{clos}(Q)$;

Table 1

<table>
<thead>
<tr>
<th>Notation</th>
<th>Name</th>
<th>Notation</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC1</td>
<td>Transcritical</td>
<td>TC2</td>
<td>Degenerate transcritical</td>
</tr>
<tr>
<td>TC3</td>
<td>Doubly degenerate transcritical</td>
<td>SN1</td>
<td>Saddle-node</td>
</tr>
<tr>
<td>SN2</td>
<td>Cusp</td>
<td>BT2</td>
<td>Bogdanov–Takens</td>
</tr>
<tr>
<td>BT3</td>
<td>Degenerate Bogdanov–Takens</td>
<td>NF3</td>
<td>Singularity of nilpotent-focus type</td>
</tr>
<tr>
<td>H1</td>
<td>Hopf</td>
<td>H2</td>
<td>Degenerate Hopf</td>
</tr>
<tr>
<td>L1</td>
<td>Homoclinic (or Blue Sky)</td>
<td>L2</td>
<td>Homoclinic at saddle-node</td>
</tr>
<tr>
<td>DL2</td>
<td>Degenerate homoclinic</td>
<td>SNLC1</td>
<td>Saddle-node of limit cycles</td>
</tr>
</tbody>
</table>

Fig. 1. Reduced Morse–Smale portraits occurring in system (1); A is a sink, S is a saddle-point and R a source. C is either a sink or a saddle.

Fig. 1. Portraits de phase reduits réalisés par le système (1); A est un puit, S est un point de scelle, R une source. C est soit un puit soit un point de scelle.
Fig. 2. (a) Region $\Delta = \{\delta > 0, \lambda > 0\}$. (b) Bifurcation set in $W = \{\alpha \geq 0, \beta > -2\sqrt{\alpha}, \mu \geq 0\}$ when $(\delta, \lambda) \in \Delta_1$. (c) Similar to (b) for the case $(\delta, \lambda) \in \Delta_2$. (d) Bifurcation diagram in 2-dimensional section $S_1 \subset \{\mu = 0\}$ of figure (b), $(\delta, \lambda) = (1.01, 0.01) \in \Delta_1$. For terminology see Table 1. See [3,5] for description of the other sections.

2. (Number of singularities) There are two singularities on the boundary ∂Q, namely $(0, 0)$ which is a hyperbolic saddle-point and $C = (1/\lambda, 0)$, which is (semi-) hyperbolic with $\{x > 0, y = 0\} \subset W^s(C)$. In Q there can be no more than three singularities and the cases with zero, one, two and three singularities all occur;

3. (Classification of the Reduced Morse–Smale case) Exactly six topological types of Reduced Morse–Smale vector fields occur, listed in Fig. 1.

The following theorem is illustrated by Fig. 2.

Theorem 2.2 (Organising centres). In the parameter space $\mathbb{R}^5 = \{\alpha, \beta, \mu, \delta, \lambda\}$ consider the projection $\Pi : \Delta \times W \rightarrow \Delta$, where $\Delta = \{0 < \delta, 0 < \lambda\}$ and $W = \{\alpha \geq 0, \beta > -2\sqrt{\alpha}, \mu \geq 0\}$. There exists a smooth curve C that separates Δ into two open regions Δ_1 and Δ_2.
For all $(\delta, \lambda) \in \Delta_1$ the corresponding 3-dimensional bifurcation set in W has four organising centres of codimension 3:

1. One transcritical point (TC$_3$);
2. Two nilpotent-focus type points (NF$_3^a$ and NF$_3^b$) connected by a smooth Hopf curve (H$_2$) and by a smooth cusp curve (SN$_2$) containing TC$_3$;
3. One Bogdanov–Takens point (BT$_3$) connected to NF$_3^b$ by a smooth Bogdanov–Takens curve (BT$_2$).

Furthermore, the points NF$_3^a$, NF$_3^b$ collide when (δ, λ) approach C and disappear for $(\delta, \lambda) \in \Delta_2$. The organising centres TC$_3$ and BT$_3$ remain.

References