Implant treatment of two failing or missing central incisors in the aesthetic region: a treatment protocol and 1-year prospective study

Abstract. Implant treatment for two central incisors in the maxillary aesthetic region is complex due to concerns regarding inter-implant hard and soft tissue stability. A treatment protocol was therefore developed and implemented in a 1-year prospective case series study involving 16 patients with two failing or missing central incisors in the maxillary aesthetic region. The protocol consists of five options depending on whether teeth are still present (options 13) or not (options 4 and 5) and on the amount of bone available at the start of treatment: (1) extraction followed by immediate implant placement and provisionalization, (2) extraction followed by immediate implant placement and delayed provisionalization, (3) extraction followed by ridge preservation, delayed implant placement and immediate provisionalization, (4) delayed implant placement and guided bone regeneration with delayed provisionalization, (5) guided bone regeneration (extensive bone augmentation of the alveolar ridge), delayed implant placement, and delayed provisionalization. The patients were assessed regarding peri-implant hard and soft tissue parameters, aesthetic index score, and patient satisfaction. All treatment options showed good clinical and radiographic results and high patient satisfaction.

Key words: adjacent implants; aesthetic zone; dental implants; treatment proposal.

Accepted for publication 11 January 2019
Available online 1 February 2019

Failure of two adjacent central incisors in the maxillary aesthetic region creates a difficult challenge for dental professionals. The extraction of these teeth is often preceded by a history of trauma and endodontic treatment or retreatment. When these teeth must be removed, periapical inflammation and root resorption often result. Prior to the introduction of dental implants, such cases were usually treated with conventional fixed dental prostheses or removable partial dentures.
Nowadays, implant treatment enables the replacement of these failing teeth with implant-supported solutions. Despite high reported implant survival rates\(^1\), the placement of two adjacent implants in the aesthetic region is considered a complex treatment due to the risk of loss of peri-implant hard and soft tissue and aesthetic concerns, especially in the inter-implant region\(^1\). The implant protocol that is used can influence the final outcome, especially peri-implant soft tissue aesthetics\(^2\).

In the case of a single failing tooth in the maxillary aesthetic region, promising results have been reported for immediate implant placement and immediate provisionalization\(^5,6\). In the case of buccal bony defects, immediate implant placement with delayed provisionalization and delayed implant placement have shown their merit\(^6\). However, it appears that no study has yet been published on the use of such single-tooth implant protocols for two adjacent implants, so it is uncertain whether these protocols can be applied to adjacent implant treatment.

In the study presented here, an implant treatment protocol was developed consisting of five treatment options for the replacement of two adjacent failing or missing central incisors in the maxillary aesthetic region. To assess the outcomes of these treatment options, they were tested in a 1-year prospective study.

Materials and methods

Treatment protocol for two central incisors

Based on an established treatment protocol for single tooth replacement in the maxillary aesthetic region\(^7,8\), five treatment options for two failing or missing central incisors are considered (Fig. 1), depending on whether teeth are still present (options 13) or not (options 4 and 5), as outlined below.

Options 13 involve the extraction of failing teeth and consecutive treatment: (1) option 1 comprises immediate implant placement and provisionalization; (2) option 2 comprises immediate implant placement with delayed provisionalization; (3) option 3 comprises ridge preservation, followed by delayed implant placement and immediate provisionalization. Options 4 and 5 involve a healed site and consecutive treatment: (4) option 4 comprises implant placement and guided bone regeneration with delayed provisionalization; (5) option 5 comprises guided bone regeneration (extensive bone augmentation on the buccal and palatal aspect of the alveolar ridge), delayed implant placement, and delayed provisionalization.

Preoperative screening

The patients’ medical history and periodontal condition are assessed. The keratinized mucosa is measured to ensure a keratinized mucosa thickness of 2 mm\(^9\). Cone beam computed tomography (CBCT) is done to determine whether there is sufficient palatal bone volume for primary implant stability. Based on the bone condition seen on CBCT and the presence or absence of failing teeth, a preliminary treatment choice is made (Fig. 1).

Options 13: failing teeth, post-extraction assessment, consecutive treatment

In the case of failing teeth, mid-buccal mucosa levels of the failing teeth are

![Fig. 1. Flow chart showing patient allocation to the five treatment options for implant treatment of two failing or missing central incisors in the maxillary aesthetic region and the stages of treatment.](image-url)
assessed preoperatively for asymmetry with the neighbouring teeth. Symmetrical mucosa levels allow immediate implant placement and provisionalization (option 1). Asymmetry of 2 mm excludes the possibility of immediate provisionalization (option 2).

Next, extraction is performed without raising a flap. The alveolar bone geometry is assessed by bone sounding technique with a periodontal probe (Williams Color-Coded Probe; Hu-Friedy, Chicago, IL, USA) at the buccal, mesial, and distal aspects of the failing teeth and the proximal sides of the adjacent teeth facing the alveoli. In the case of a post-extraction defect of the buccal bone wall, this defect is measured to determine the treatment option. A bony defect and a distance measured in a vertical direction from the bony defect of the buccal bone wall to the mucosa at the cementenamel junction of the adjacent tooth of 5 mm (for example, 3 mm bony defect and 2 mm mucosa) allows immediate implant placement and provisionalization (option 1). A distance of >5 mm excludes the possibility of immediate provisionalization (option 2). When no primary implant stability can be reached, option 3 is applied.

For option 1 (immediate implant placement and provisionalization), symmetrical mucosa levels, sufficient palatal bone (CBCT) for primary implant stability, and a buccal defect of 5 mm allows immediate implant placement and provisionalization (Fig. 2a). After removal of the teeth, two implant sites are prepared on the palatal side of the alveoli using a surgical template representing the ideal position of the prospective implant restorations. The last implant drill used, depending on the diameter of the implants required, is placed in the prepared alveoli. The space remaining between the implant drill and the peri-implant bone is locally augmented. As grafting material, a 1:1 mixture of autogenous bone (harvested from the tuberosity region) and inorganic bone (Bio-Oss; Geistlich Pharma AG, Wolhusen, Switzerland) is used. Two implants with an expanding taper (NobelActive; Nobel Biocare AG, Kloten, Switzerland) are then inserted 3 mm apical to the most apical aspect of the prospective implant restoration. Primary stability is achieved with insertion torque of 45 N·cm. Within 24 hours after implantation, two non-occluding screw-retained provisional restorations are placed. Three months later, two final screw-retained implant restorations are fabricated and fixed on the implants (Fig. 2b).

For option 2 (immediate implant placement, delayed provisionalization), sufficient palatal bone (CBCT) for primary stability of the implants, an asymmetrical mucosa level of >2 mm and/or a buccal defect of >5 mm allows immediate implant placement and delayed provisionalization. The implant sites are prepared in the same manner as for option 1 and the space remaining between the last implant drill and the peri-implant bone and buccal bony defects is augmented with a 1:1 mixture of autogenous bone and inorganic bone (Bio-Oss). Next, two implants with an expanding taper (NobelActive) are inserted with the aid of a surgical template with insertion torque of 45 N·cm. Both implant sites are closed with a mucosa graft harvested from the tuberosity region. After 2 weeks of soft tissue healing, the sutures are removed. Following a 3-month submerged healing phase, two occluding screw-retained provisional restorations are placed. Six months after implant placement, two final screw-retained implant restorations are fabricated and fixed on the implants.

For option 3 (ridge preservation, delayed implant placement and immediate provisionalization), a lack of palatal bone (CBCT), compromised primary stability of the implants, and a buccal defect of >5 mm preclude options 1 and 2. The alveoli are augmented with a 1:1 mixture of autogenous bone from the tuberosity region and inorganic bovine bone (Bio-Oss). Next, both alveoli are closed with a mucosa graft harvested from the tuberosity region. After 2 weeks of soft tissue healing, the sutures are removed. Following a 3-month healing phase, two implants with an expanding taper (NobelActive) are inserted with the aid of a surgical template representing the ideal position of the prospective implant restorations. Primary stability is achieved with insertion torque of 45 N·cm. Within 24 hours after implant placement, two non-occluding screw-retained provisional restorations are placed. Three months after implant placement, two final screw-retained implant restorations are fabricated and fixed on the implants.

Options 4 and 5: healed site and consecutive treatment

If a healed site is present, buccal and palatal full thickness flaps are raised to assess the bone geometry and the subsequent treatment is chosen.

For option 4 (implant placement and guided bone regeneration, delayed provisionalization), sufficient palatal bone (CBCT) for primary implant stability allows delayed implant placement. First, two implants with an expanding taper...
(NobelActive) are inserted with the aid of a surgical template representing the ideal position of the prospective implant restorations. Primary stability is achieved with insertion torque of 45 N-cm. If parts of the implant remain uncovered or the buccal bone wall thickness is <2 mm,10 a local augmentation procedure is performed with a mixture of autogenous bone chips collected during implant bed preparation and inorganic bovine bone (Bio-Oss), which is covered with a resorbable collagen membrane (Bio-Gide; Geistlich Pharma AG). The wounds are closed with non-resorbable sutures (primary wound closure). After 2 weeks of soft tissue healing, the sutures are removed. Following a 3-month submerged healing phase, two occluding screw-retained provisional restorations are placed. Six months after implant placement, two final screw-retained implant restorations are fabricated and fixed on the implants.

For option 5 (guided bone regeneration) (extensive bone augmentation of the alveolar ridge), delayed implant placement, delayed provisionalization, insufficient bone (CBCT) for primary stability of the implants necessitates an extensive guided bone regeneration procedure. The bony defects are reconstructed with autogenous bone blocks harvested from the retrocom region. The wounds are closed primarily with non-resorbable sutures. After 2 weeks of soft tissue healing, the sutures are removed. Following a 3-month healing phase, a full thickness flap is raised and two implants with an expanding taper (NobelActive) are placed with the aid of a surgical template representing the ideal position of the prospective implant restorations. Next, the wounds are closed primarily with non-resorbable sutures. After 2 weeks of soft tissue healing, the sutures are removed. Following a 3-month submerged healing phase, two occluding screw-retained provisional restorations are placed. Six months after implant placement, two final screw-retained implant restorations are fabricated and fixed on the implants.

Case series

Study design

Consecutive patients referred to the Department of Oral and Maxillofacial Surgery of the University Medical Centre Groningen (University of Groningen, Groningen, the Netherlands) between April 2011 and July 2015 with two failing or missing maxillary central incisors were enrolled in the study. All eligible patients were informed about the features of the study and gave their informed consent before enrolment.

Eligibility criteria

Fulfilment of the inclusion criteria was verified by clinicians at the screening session, including the following: 18 years of age; failing or missing teeth are central upper incisors; natural teeth are located distally (regions 12 and 22) and opposing the failing or missing teeth; adequate oral hygiene; sufficient mesialdistal, buccalpalatal, and inter-occlusal space for the placement of implants and final restorations; sufficient inter-occlusal space to design non-occluding provisional restorations.

The following exclusion criteria were applied: medical or general contraindication to the surgical procedure (American Society of Anesthesiologists (ASA) status III11); presence of active periodontal disease (pocket probing depth 4 mm and bleeding on probing); excessive smoking (10 cigarettes per day); history of head and neck radiotherapy; pregnancy.

Depending on the presence or absence of teeth and the available soft tissue, patients were allocated to one of the five treatment options (Fig. 1). The surgical and prosthetic procedures have been described in detail by Slagter et al.7 All surgical procedures were performed by one or maxillofacial surgeon (G. M.R.). All prosthetic procedures were done by one prosthodontist (H.J.A.M.).

Outcome measures

Study parameters were collected at three time points: 2 weeks after implant surgery (T1), within 1 month after placement of the final implant restoration (T1), and 1 year after placement of the final implant restoration (T1). All clinical parameters at T1 and T1 were assessed by one examiner (W.G.V.N.). The following parameters were assessed: implant survival12 (T1); biological and technical complications (T1); change in marginal bone level (T1); implant probing depth (T1 and T1); papilla index13 (T1 and T1); plaque index14 (T1 and T1); gingiva index15 (T1 and T1); bleeding index15 (T1 and T1); pink aesthetic score and white aesthetic score (PESWES)16 (T1); patient satisfaction17 (T1).

Implant survival

No implants were lost during the 1-year follow-up (implant survival rate 100%).

Digital peri-apical radiographs (Planmeca Intra X-ray unit; Planmeca, Helsinki, Finland) were taken at T1, T1, and T1 using a paralleling technique. The known length and width of the implants were used to calibrate the radiographs. The implant collar was used as a reference line to determine the following measurements to the nearest 0.1 mm (Tymstra et al.5): marginal bone level facing the adjacent tooth (MBL-i); marginal bone level facing the adjacent implant (MBL-ii); inter-implant bone crest level (BC-ii). All radiographic measurements were performed twice by one examiner (W.G.V. N.), after which the average of the two measurements was used.

The aesthetic outcome was assessed on standardized digital photographs17 (Canon EOS 650 with ring flash; Canon Inc., Ota, Tokyo, Japan) taken at T1. Peri-implant soft tissue and implant crown aesthetics were determined with the PESWES. All measurements were performed in a blinded manner by two examiners (H.J. A.M., W.G.V.N.), in random order.

Patients received a validated questionnaire17 prior to the assessment at T1 and were asked to complete questions relating to their overall satisfaction score (numerical rating scale of 010, with 10 being highest possible score) and satisfaction regarding the colour of the crown and mucosa and the shape of the crown and mucosa (numerical rating scale of 04, with 4 being the highest possible score).

Statistical analysis

Due to the small number of patients, descriptive statistics were used.

Results

Patient characteristics

During the study recruitment period, 16 eligible consecutive patients were treated according to the implant treatment protocol presented above (option 1, n = 4; option 2, n = 3; option 3, n = 3; option 4, n = 3; option 5, n = 3). Nine of the patients were male (mean age 29 years, range 1863 years) and seven were female (mean age 36 years, range 1855 years). All patients were treated according to the treatment protocol after preoperative assessment. All patients underwent clinical assessments at T1 and T1.

Implant survival

No implants were lost during the 1-year follow-up (implant survival rate 100%).
Table 1. Changes in marginal bone level and bone crest level; mean (SD) values in millimetres.

<table>
<thead>
<tr>
<th>Location</th>
<th>Option 1</th>
<th>Option 2</th>
<th>Option 3</th>
<th>Option 4</th>
<th>Option 5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T1T12</td>
<td>T1T12</td>
<td>T1T12</td>
<td>T1T12</td>
<td>T1T12</td>
</tr>
<tr>
<td>BC-ii</td>
<td>0.92 (0.72)</td>
<td>0.53 (0.90)</td>
<td>1.41 (1.40)</td>
<td>0.53 (1.22)</td>
<td>1.20 (1.61)</td>
</tr>
<tr>
<td>MBL-ii</td>
<td>0.10 (0.29)</td>
<td>0.19 (0.41)</td>
<td>0.86 (0.61)</td>
<td>0.30 (1.00)</td>
<td>0.57 (0.67)</td>
</tr>
<tr>
<td>MBL-t</td>
<td>0.13 (0.16)</td>
<td>0.07 (0.31)</td>
<td>0.24 (0.52)</td>
<td>0.03 (0.40)</td>
<td>0.61 (0.76)</td>
</tr>
</tbody>
</table>

BC-ii = change in inter-implant bone crest level; MBL-ii = change in inter-implant marginal bone level; MBL-t = change in implant marginal bone level facing the adjacent teeth; T1 = directly after implant placement; T12 = 1 year after placement of the final restoration; SD, standard deviation.

Table 2. Papilla index; mean (SD) scores.

<table>
<thead>
<tr>
<th>Location</th>
<th>Option 1</th>
<th>Option 2</th>
<th>Option 3</th>
<th>Option 4</th>
<th>Option 5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T1</td>
<td>T12</td>
<td>T1</td>
<td>T12</td>
<td>T1</td>
</tr>
<tr>
<td>Between implants</td>
<td>1.25 (0.96)</td>
<td>0.75 (0.50)</td>
<td>1.33 (0.58)</td>
<td>1.00 (1.00)</td>
<td>0.33 (0.58)</td>
</tr>
<tr>
<td>Towards adjacent teeth</td>
<td>1.87 (0.75)</td>
<td>1.62 (0.75)</td>
<td>2.00 (0.50)</td>
<td>2.17 (0.76)</td>
<td>1.50 (0.50)</td>
</tr>
</tbody>
</table>

T1 = 1 month after placement of the final restoration; T12 = 1 year after placement of the final restoration; SD, standard deviation.

* Papilla index: score 0 = no papilla formation; score 1 = less than half of the papilla is present; score 2 = at least half of the papilla is present; score 3 = papilla fills the whole approximate space; score 4 = abundance of papilla/hyperplastic papilla.

Implants for failing or missing central incisors.
Table 4. Pink aesthetic score (PES) and white aesthetic score (WES) at 1 year after placement of the final restoration (T_{12}); mean (SD) values.

<table>
<thead>
<tr>
<th>Option 1</th>
<th>Option 2</th>
<th>Option 3</th>
<th>Option 4</th>
<th>Option 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>PES</td>
<td>7.75 (0.96)</td>
<td>7.00 (1.00)</td>
<td>5.33 (2.08)</td>
<td>5.67 (1.15)</td>
</tr>
<tr>
<td>WES</td>
<td>7.50 (3.00)</td>
<td>5.33 (1.53)</td>
<td>6.33 (1.15)</td>
<td>7.67 (0.58)</td>
</tr>
<tr>
<td>PESWES</td>
<td>15.25 (3.59)</td>
<td>12.33 (2.52)</td>
<td>11.67 (1.53)</td>
<td>13.33 (0.58)</td>
</tr>
</tbody>
</table>

SD, standard deviation.

Table 5. Results of the patient questionnaire at 1 year after placement of the final restoration (T_{12}); mean (SD) scores.

<table>
<thead>
<tr>
<th>Option 1</th>
<th>Option 2</th>
<th>Option 3</th>
<th>Option 4</th>
<th>Option 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall score</td>
<td>9.00 (1.15)</td>
<td>8.67 (0.58)</td>
<td>9.33 (1.15)</td>
<td>10.00 (0.00)</td>
</tr>
<tr>
<td>Colour of mucosa</td>
<td>3.75 (0.50)</td>
<td>3.33 (0.58)</td>
<td>3.67 (0.58)</td>
<td>3.67 (0.58)</td>
</tr>
<tr>
<td>Shape of mucosa</td>
<td>3.5 (0.58)</td>
<td>3.00 (1.00)</td>
<td>3.67 (0.58)</td>
<td>3.00 (1.00)</td>
</tr>
<tr>
<td>Colour of crown</td>
<td>3.75 (0.50)</td>
<td>3.67 (0.58)</td>
<td>4.00 (0.00)</td>
<td>4.00 (0.00)</td>
</tr>
<tr>
<td>Shape of crown</td>
<td>4.00 (0.00)</td>
<td>3.67 (0.58)</td>
<td>3.67 (0.58)</td>
<td>4.00 (0.00)</td>
</tr>
</tbody>
</table>

SD, standard deviation.

Overall satisfaction score (range 010): 0 = very dissatisfied, 10 = very satisfied. Satisfaction score, mucosa and crown (range 04): 0 = very dissatisfied, 4 = very satisfied.

were very high for all options (range 8.6710.00).

Discussion

In the study presented here, a protocol with five implant treatment options for specific conditions accompanying two failing or missing central incisors in the maxillary aesthetic zone is proposed. This protocol was tested in a prospective study involving patients with two failing or missing maxillary central incisors and differences in the degree of bone resorption. The study resulted in a 1-year implant survival rate of 100%, good clinical and radiographic results, and high patient satisfaction for all treatment options.

This study is novel in reporting the treatment outcomes of two adjacent implants in the maxillary central incisor region. Regarding the maxillary aesthetic zone in general, a randomized clinical trial by Tymstra et al. described a 1-year survival rate of 100% for two adjacent implants when using a delayed implant placement and provisionalization protocol.

In the present study, inter-implant marginal bone loss was acceptable for all options and ranged from 0.21 to 1.16 mm. In comparison, Tymstra et al. reported a mean 1-year inter-implant marginal bone loss of 0.9 mm (delayed implant placement, NobelReplace implants, Nobel Biocare AG). Loss of inter-implant bone crest was evident after extraction of the failing teeth (options 13) and continued after placement of the final implant restoration (options 13). This suggests that continuing inter-implant bone loss should be expected after the extraction of failing teeth, regardless of the treatment protocol used.

The inter-implant papilla was best preserved when implants were placed using an immediate placement protocol (options 1 and 2), although a decrease in papilla fill was still observed after placement of the final implant restoration. Additionally, all options were associated with compromised inter-implant papilla fill after placement of the final implant restoration, which is in line with previous studies using adjacent implants in the maxillary aesthetic zone.

The PES was scored the highest when implants were placed immediately (options 1 and 2), suggesting that additional surgical interventions and lower papilla index scores might negatively influence pink aesthetics. However, overall satisfaction was very high for all options. These findings might reflect patient satisfaction with a fixed dental solution instead of a removable partial denture. Similar patient satisfaction scores have been reported in earlier studies assessing the treatment outcomes of adjacent implants in the maxillary aesthetic zone.

A limitation of the case series presented here is the small number of patients. However, the clinical and radiographic results and the high patient satisfaction indicate that the treatment protocol proposed for two failing or missing central incisors in the maxillary aesthetic zone is an effective
guideline for clinicians on how to treat these patients.

In conclusion, based on the favourable clinical and radiographic results and the high patient satisfaction scores, the proposed implant treatment protocol for two failing or missing central incisors in the maxillary aesthetic zone could be considered a useful tool.

Funding

The authors declare that no external funding sources were used in this research.

Competing interests

No conflict of interest declared.

Ethical approval

This case series study was not subject to the Medical Research Involving Human Subjects Act, but only to the Agreement on Medical Treatment Act. Treatment procedures were part of routine practices in the department, without randomization for the selection of the different treatments.

Patient consent

Written patient consent was obtained from every patient for the possible use of clinical or radiographic photographs (only intraoral photographs) in any kind of material for publication.

References

Address:

W. G. van Nimwegen
Department of Oral and Maxillofacial Surgery
University Medical Center Groningen
PO Box 30.001
NL-9700 RB Groningen
The Netherlands
Tel.: +31 50 3613846
E-mail: w.g.van.nimwegen@umcg.nl