Conservation: Beyond population growth

In their Research Article “Cross-boundary human impacts compromise the Serengeti-Mara ecosystem” (29 March, p. 1424), M. P. Veldhuis et al. argue that human population growth in nearby areas, and the resulting increased human activity, is squeezing wildlife into existing protected areas in a way that might lead to decline in wildlife numbers throughout the ecosystem. As a solution, they suggest extending the space under protection by incorporating wildlife migration corridors and dispersal spaces into the core protected area, thereby implicitly heightening restrictions on human use. However, Veldhuis et al.'s attribution of problems to population growth is misleading. The increased human activity on the borders of protected areas has resulted from social, economic, and political variables.

In Kenya, the rapid expansion of new forms of conservancies has come at the expense of pastoralists’ communal lands, squeezing local people into ever-smaller and more marginal areas (1–3). The expansion of these conservancies has precipitated conflicts and led to widespread fencing of remaining open areas around Maasai Mara (2, 3). In Tanzania, authorities have violently forced pastoralists out of historical grazing spaces in Loliondo to establish buffer zones (4–7). Pastoral lands are therefore divided into “upgraded” buffer zones and “downgraded” village lands, leaving pastoralists with reduced landholdings and leading to mounting pressures on remaining grazing areas. When the land area available to local people shrinks because of dispossession and evictions implemented to expand protected areas, more human activity becomes necessary in the remaining areas bordering protected land.

Veldhuis et al.’s myopic focus on population growth reproduces a neo-Malthusian explanation (8, 9) of a bygone era. Such explanations may invite the immediate attention of the general public and policymakers due to the simplicity and sense of urgency that they communicate. However, effective conservation measures demand the recognition of historical and empirical complexity and the recognition and inclusion of local communities’ concerns about environmental justice. Teklehaimanot Weldemichel*, Tor. A. Benjaminsen†, Connor Joseph Cavanagh‡, Haakon Lein†

†Department of Geography, Norwegian University of Science and Technology, 7491 Trondheim, Norway. ‡Department of International Environment and Development Studies, Faculty of Landscape and Society, Norwegian University of Life Sciences, NO-1432 As, Norway.

*Corresponding author. Email: weldemichel@ntnu.no

REFERENCES AND NOTES
5. A. Mittal, E. Fraser, “Losing the Serengeti: The Maasai land that was to run forever” (The Oakland Institute, Oakland Institute, 2018).

Response

Weldemichel et al. dismiss our argument that human population growth drives mounting pressures around protected areas and instead propose that these patterns are driven through land dispossession by authorities for conservation, causing concerns about environmental justice. However, population growth and the resulting increased livestock and land use changes are the more likely cause of the trends we observed.

The establishment of Mara conservancies in Kenya since 2004 [discussed in our Research Article and in (7)] cannot be the main cause of the observed changes because, as our Research Article makes clear, the onset of the Mara wildlife declines predates the conservancies by about 30 years. In other parts of Kenya, increased fencing of private lands, which also predates conservancies, is better explained by human population growth, increasing competition for grazing areas, and land-use change (2, 3).
Owners of private land choose to establish wildlife conservancies (4, 5) because they are a viable land-use alternative in drylands (1, 6).

Our Research Article shows that, along with the increased human population, total livestock numbers have increased by 54% in the Mara area, including inside conservancies, matching Kenya-wide trends (2, 7). Conservancies cover 16% of the Mara area we studied, whereas agriculture, which is expanding into drier areas (8), increased from 4.7% in 1984 to 26.7% in 2018 in the same area (as shown in table S3 of our Research Article). Increased livestock numbers, settlements, and agricultural conversion, all of which are direct consequences of human population growth (9, 10), thus far outweigh the effect of partial livestock restrictions in conservancies (7). We consistently found these patterns across the entire ecosystem spanning two countries, multiple ethnic groups, and different types of protection status.

The heart of the problem is that current conservation paradigms were designed when the human population in East Africa was a tenth of the current size, and the current institutions responsible for managing the coexistence of people and wildlife have not evolved accordingly (2, 8). It is an important political and societal responsibility to ensure that this new reality does not increase inequality and marginalization of socioeconomically or politically weaker community members. Denying the importance of human population growth in Africa as the ultimate driver of change only blurs discussions of environmental justice and is dangerously shortsighted.

Joseph O. Ogutu1, Michiel P. Veldhuis2, Thomas A. Morrison3, J. Grant C. Hopcroft4, Han Olff5

1University of Hohenheim, Stuttgart, Germany; 2University of Groningen, 9747AG Groningen, Netherlands; 3University of Glasgow, Glasgow G12 8QQ, UK.

*Corresponding author.
Email: m.p.veldhuis@gmail.com

REFERENCES AND NOTES

10. F. Tanneberger, J. Kubacka, Eds., The Aquatic Warbler Conservation Handbook [Brandenburg State Office for Environment (LiU), Potsdam, 2018].

Full text: dx.doi.org/10.1126/science.aax5830

TECHNICAL COMMENT ABSTRACTS

Comment on “Long-term measles-induced immunomodulation increases overall childhood infectious disease mortality”
Niket Thakkar and Kevin A. McCarthy

Mina et al. (Reports, 8 May 2015, p. 694) used population-level statistical analysis to argue that measles infection results in a 2- to 3-year immunomodulation, implicating measles in substantially more child mortality than previously thought. We show, using both simulation and data from Iceland, that the statistical approach used may be confounded by the 2-year periodicity of measles incidence in the areas studied.

Full text: dx.doi.org/10.1126/science.aax5552

Response to Comment on “Long-term measles-induced immunomodulation increases overall childhood infectious disease mortality”
Michael J. Mina, Bryan T. Grenfell, C. Jessica E. Metcalf

Thakkar and McCarthy suggest that periodicity in measles incidence artifically drives our estimates of a 2- to 3-year duration of measles “immune-amnesia.” We show that periodicity has a negligible effect relative to the immunological signal we detect, and demonstrate that immune-amnesia is largely undetectable in small populations with large fluctuations in mortality of the type they use for illustration.

Full text: dx.doi.org/10.1126/science.aax6498
Conservation: Beyond population growth—Response
Joseph O. Ogutu, Michiel P. Veldhuis, Thomas A. Morrison, J. Grant C. Hopcraft and Han Olff

Science 365 (6449), 133-134.
DOI: 10.1126/science.aay3049

ARTICLE TOOLS
http://science.sciencemag.org/content/365/6449/133.2

RELATED CONTENT
http://science.sciencemag.org/content/sci/365/6449/133.1.full
http://science.sciencemag.org/content/sci/363/6434/1424.full

REFERENCES
This article cites 10 articles, 0 of which you can access for free
http://science.sciencemag.org/content/365/6449/133.2#BIBL

PERMISSIONS
http://www.sciencemag.org/help/reprints-and-permissions

Use of this article is subject to the Terms of Service

Science (print ISSN 0036-8075; online ISSN 1095-9203) is published by the American Association for the Advancement of Science, 1200 New York Avenue NW, Washington, DC 20005. 2017 © The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. The title Science is a registered trademark of AAAS.