The impact of school policy and stakeholders' actions on student learning

Kyriakides, Leonidas; Creemers, Bert P. M.; Antoniou, Panayiotis; Demetriou, Demetris; Charalambous, Charalambos Y.

Published in:
Learning and Instruction

DOI:
10.1016/j.learninstruc.2015.01.004

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2015

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
The impact of school policy and stakeholders' actions on student learning: A longitudinal study

Leonidas Kyriakides a, *, Bert P.M. Creemers b,1, Panayiotis Antoniou c,2, Demetris Demetriou a,3, Charalambos Y. Charalambous a,4

a Department of Education, University of Cyprus, P. O. Box 20537, 1678, Nicosia, Cyprus
b Faculty of Behavioral and Social Sciences, Department of Pedagogy & Educational Science, Grote Rozenstraat 38, 9712 TJ, Groningen, The Netherlands
c Faculty of Education, University of Cambridge, 184 Hills Road, Cambridge, CB2 8PQ, UK

A R T I C L E I N F O
Article history:
Received 8 April 2014
Received in revised form 22 December 2014
Accepted 23 January 2015
Available online 21 February 2015

Keywords:
School policy
Stakeholders' actions
School learning environment
Quality of teaching
Student learning outcomes

A B S T R A C T
This paper proposes a theoretical framework on how school policy can promote student learning. School policy is considered to have an indirect effect on student achievement by changing school stakeholders' actions toward improving the School Learning Environment (SLE) and teaching practice. A reciprocal relationship between school policy and stakeholders' actions is also considered. A longitudinal study was conducted to test the framework's main assumptions. A stratified sample of 64 primary schools was selected and students' achievement in Mathematics at the beginning of Grade 4 and at the end of the next three consecutive school years was measured, alongside the school policy and teachers' actions with regards to issues associated with teaching and the SLE. The results of multilevel structural equation modelling analyses supported the main assumptions of the framework. Implications for the development of school policy are drawn and suggestions for further research are provided.

1. Introduction

It is fundamentally important for each organization to develop policy which connects its vision and goals to internal operations. The term policy refers to a course or principle of action adopted or proposed by an organization or individual (Cohen & Hill, 2001). Given that schools can be seen as complex organizations, they are expected to propose a set of actions that school stakeholders (e.g., teachers, students, and parents) should follow to promote student learning. This set of actions is captured in official documents published by the school management team to designate roles of different stakeholders in the well-functioning of the school both inside and outside the classroom. School policy is also reflected in various documents issued periodically by the school management team, such as the minutes of the teaching staff meetings and announcements or guidelines sent to teachers and/or parents through regular mail or posted on the web.

Many scholars discuss the importance of establishing effective school policies which may have an effect on improving student learning outcomes (Hattie, 2009; Reynolds et al., 2014). Schools are seen as the “basic unit of change and school educators (teachers and principals) are not only the agents, but also the initiators, designers, and directors of change efforts” (Smith & O’Day, 1991, p. 235). Spillane (2005) argues that local school systems are more than mere implementers of top-down educational policies. Schools should be allowed to respond to national policy initiatives by developing and adopting their own distinct policies (Flessa, 2012). The main assertion is that increasing schools’ authority and flexibility will allow for the development of better and more effective educational processes which are more likely to correspond to local needs. School stakeholders are better aware of their school needs and may therefore be more able to direct effort, resources, and educational processes more efficiently to meet them (Nir & Ben Ami, 2005).

Despite the importance of policy development at the school level, the overall emphasis in the research literature has been focused on policy-making at the state and national levels (e.g.,...
Cohen & Hill, 2001; Honig, 2006; Spillane, Reiser, & Reimer, 2002). Less is known about the efforts of schools to create and implement policies to support student learning (Datnow, 2006; Duke et al., 2008). The results of two meta-analyses (i.e., Kyriakides, Creemers, Antoniou, & Demetriou, 2010; Scheerens, Seidel, Witziers, Hendriks, & Doornekamp, 2005) reveal that, although schools are expected to develop their own policies to improve the learning environment and teaching practice, school policy has a small direct effect on student achievement. In addition, secondary PISA analyses show that variables measuring school policy do not predict variation in student outcomes (Maslowski, Scheerens, & Luyten, 2007).

This paper argues that there is a need to establish a theoretical framework to understand the impact of school policy on student learning and guide the design of studies intended to investigate its effects. Most studies investigating the relationship between school policy and student achievement are cross-sectional (Hattie, 2009; Kyriakides et al., 2010). Although such studies were able to identify small correlations between school policy and student achievement, their results may underestimate the impact of school policy on changing the actions of school stakeholders (Land, 2002). Thus, a framework developed to understand the impact of school policy (as proposed in the next section). This framework is based not only on educational effectiveness theories (Creemers & Kyriakides, 2008; Scheerens, 2013) but also on the results of empirical studies investigating the impact of school policy on student learning outcomes (e.g., Creemers & Kyriakides, 2010; Lüftenegger et al., 2012). Using this framework, a longitudinal study measuring school policy and teachers’ actions over time was conducted. Although the study is concerned with the potential impact of school policy on a specific group of stakeholders (i.e., teachers), the data emerging from this study can help us test two assumptions of this framework. Thus the main results of this study are presented, and suggestions for research to test additional elements of this framework and to investigate the impact of school policy on other groups of stakeholders (e.g., students and parents) are provided.

2. A theoretical framework to explore the impact of school policy and stakeholders’ actions on student achievement

In this section, we outline the main assumptions of a theoretical framework developed to explain how and under what conditions school policy may have an impact on student achievement. The first assumption, which is supported by various effectiveness studies (see Reynolds et al., 2014) posits that there are many factors associated with student achievement which operate at four different levels: the student, classroom, school, and system levels.

Second, the framework places emphasis on two overarching factors concerned with the school policy and the actions taken to improve: (a) teaching and (b) the school learning environment (SLE). The importance of these two overarching factors is emphasized by studies investigating the impact of school factors on student achievement (e.g., Creemers & Kyriakides, 2010; Reynolds et al., 2014). While organizational aspects of schools provide the necessary preconditions for effective teaching, it is the quality of teacher–student interactions that principally determines student progress (Fauth, Decristan, Rieser, Klime, & Büttner, 2014). Thus, school policy and stakeholders’ actions are expected to have mainly indirect effects on student learning outcomes through improving the quality of teaching at the classroom level and the SLE.

Third, the framework assumes that the impact of school policy depends on the extent to which stakeholders implement the policy guidelines. This is based on research suggesting that viewing implementation failure as a result of poor policy clarity neglects the complexity of human-sense making processes consequential to implementation (Spillane, 2005). For example, a school may develop a clear policy on partnership, which includes the involvement of parents in teaching. However, not all teachers may be persuaded to implement this policy, especially if they believe that parental involvement may jeopardize their professional autonomy (Fan & Chen, 2001). This implies that stakeholders’ actions may have a direct impact on improving the SLE and teaching practice, whereas school policy may have an indirect impact by changing stakeholders’ actions.

Fourth, it is assumed that there is a reciprocal relationship between school policy and school stakeholders’ actions. It is expected that changes in school policy may have an impact on changing the actions of school stakeholders. At the same time, it is also possible that the stakeholders’ actions might influence school policies by stressing the need for changing the policy to address current stakeholders’ needs (Knapp, 1997; Talbert, 2002). To illustrate this reciprocal relationship, consider student absenteeism. A new school leadership team appointed in a school with student absenteeism problems might develop a policy on student absenteeism to ensure that it is minimized. This move indicates the direct impact that a change in policy might have on changing stakeholders’ actions. In contrast, in schools where the majority of students regularly attend school, there is no need to develop such a policy. This illustrates the effect of the stakeholders’ actions on setting changing school policies. As a whole, this example suggests that cross-sectional studies cannot help identify such changes as those discussed above, either in school policies or in stakeholders’ actions. Longitudinal studies, in contrast, have the potential to empirically test this assumption because they enable tracing changes either in policy or in actions.

Finally, the framework assumes that school policy has a situational effect on student achievement implying that its impact may vary depending on the current situation of the school under investigation (Goodson, McGee, & Cashman, 1989). This situational character of school policy suggests that in developing the school policy, school leaders should take into account the abilities and readiness of those who are expected to implement it (Cohen & Hill, 2001). For example, take a school that originally had no immigrant students from a particular country and had to teach a Geography lesson on that country mainly by using secondary sources of information (e.g., books, internet). When immigrants from that country join the student population, the school can invite the parents of these students to talk about their country.

The proposed framework that encompasses these assumptions is illustrated in Figure 1. This figure demonstrates that the framework is multilevel in nature and refers to factors situated at the school, classroom, and student level. It also supports that quality of teaching at the classroom level has a direct impact on student achievement. Emphasis is placed on the role of school policy in influencing indirectly both teaching and the SLE. Therefore the framework is concerned with the impact that a change in school policy (over a period of time) may have on changing the actions of stakeholders and through that on improving the teaching and the SLE.

Three elements of school policy are considered. First, it is expected that school policy should clarify all stakeholders’ role in improving learning (Cohen & Hill, 2001). When the school policy is clear, the stakeholders are more likely to judge its recommendations and decide whether it is worth making the effort to change their actions (Land, 2002). Second, the framework assumes that in introducing a school policy, the skills and the willingness of school stakeholders should be taken into account (Bell & Stevenson, 2006). If a certain policy expects stakeholders to undertake roles they do not have the skills to perform or they strongly oppose to, it is unlikely that the policy will be implemented effectively. The third
element of school policy is concerned with the support that the school management team should provide for stakeholders to help them change their actions (Flessa, 2012; Spillane, 2005). Introducing a policy on teaching and/or the SLE that addresses these three elements is likely to influence stakeholders' actions.

3. School policy for improving teaching and the school learning environment: defining the study constructs

3.1. School policy for improving teaching

Meta-analyses of factors associated with student achievement show that concepts such as teaching quality, time on task, and opportunity to learn are key factors for explaining variation in student outcomes (Hattie, 2009; Scheerens et al., 2005). Recent theoretical models of educational effectiveness research (EER) (e.g., Creemers & Kyriakides, 2008; Scheerens, 2013; Reynolds et al., 2014) refer to factors related to these key concepts at all different levels (i.e., student, classroom, school, and system). Specifically, at the school level, the models of EER investigate aspects of school policy on teaching associated with: (a) the quantity of teaching, (b) the provision of learning opportunities, and (c) the quality of teaching.5.

School policy on quantity of teaching is mainly concerned with the attempt of the various school stakeholders to make sure that the time allocated for teaching is not lost for any group of students. The importance of this factor is stressed in early educational effectiveness models (e.g., Carroll, 1963; Creemers, 1994) and meta-analyses of studies demonstrating the impact of this factor on student learning outcomes (e.g., Hattie, 2009; Kyriakides et al., 2010; Scheerens et al., 2005). The second aspect of school policy for teaching is concerned with the learning opportunities that schools offer to their students beyond those included in the official curriculum. Early researchers see these two aspects of policy for teaching as closely related (e.g., Anderson, 1995; Oser & Baeriswyl, 2001) but in recent studies the factor concerned with the learning opportunities is not restricted to the opportunities offered to their students associated with formal teaching (e.g., Creemers & Kyriakides, 2010; Reynolds et al., 2014; Scheerens, 2013). These studies also show that there are schools which are effective in maximising the use of teaching time (quantity of teaching) but not in providing further learning opportunities than those offered by the official curriculum and the other way around. The third aspect of school policy for teaching is concerned with the attempt of schools to improve the teaching practice by supporting teachers to develop effective teaching skills (see Creemers & Kyriakides, 2012; Scheerens, 2013). Specifically, the following indicators of the school policy on the quantity of teaching are considered:

- school policy on managing teaching time (e.g., lessons starting and finishing on time; no interruption of lessons for staff meetings and/or other school events);
- policy on student and teacher absenteeism;
- policy on homework; and
- policy on lesson schedule and timetable.

School policy on providing learning opportunities is examined by looking at the extent to which teachers and other school...
stakeholders take actions to ensure that students are offered extra-curricular activities which promote student learning (Scheerens, 2013; Wang, 1998). For example, school trips are organised to enrich the learning opportunities offered to students during the school hours. Schools could also encourage teachers to offer extra-curricular activities during outside school hours (e.g., participating in projects and charity activities, preparing students for competitions). Schools may also provide further support to students with special needs (including gifted or talented children). Secondary analyses of international studies show that schools with effective policies on providing learning opportunities can better support student learning (Schleicher, 2014). In this way, we investigate the extent to which a school attempts to capitalize on excursions and other extra-curricular activities for teaching/learning purposes.

School policy on the quality of teaching is concerned with the extent to which the school stakeholders have a common understanding and guidelines for effective teaching practices. These practices are expected to refer to teacher behaviours in the classroom such as the degree to which the teacher provides orientation and/or structuring tasks, gives feedback, and poses appropriate questions. Therefore, the examination of school policy on teaching reveals that effective schools are able to make decisions to maximize the use of teaching time and the learning opportunities offered to their students. In addition, effective schools support their teachers in their attempts to help students learn by using effective teaching practices (Bruhwiler & Blatchford, 2011).

3.2. School policy for improving the SLE

Since learning does not take place only inside classrooms, we also need to explore the impact of the school policy for improving the SLE. Over the past four decades, the work on the SLE has rapidly expanded covering issues such as the interpersonal relationships between the school personnel and the management team, as well as the support provided to students (e.g., Lüftenegger et al., 2012; Mainhard, Brekelmans, & Wubbels, 2011). From this array of elements, here we focus on policy initiatives only if they aim to improve stakeholders’ learning, and through that student learning. This is accomplished by focussing on the following four aspects of school policy for improving SLE which were systematically found to be associated with student learning outcomes:

- student behaviour outside the classroom;
- collaboration and interaction between teachers;
- partnership policy (i.e., relationship between school and community, parents and advisors);
- provision of sufficient learning resources to students and teachers.

Apart from the first element which is directly related to student learning, the next two elements underscore how student learning can be facilitated through two main additional stakeholders: teachers and parents. For example, collaboration and interaction between teachers may not only contribute to their professional development (i.e., teacher learning), but may also have an effect on teaching practice and thereby may improve student learning (Goddard, Goddard, & Tschannen-Moran, 2007). Similarly, by involving parents in the functioning of schools and also providing them with opportunities for learning, the school facilitates learning at two fronts: through the classroom learning environment (e.g., when parents provide teachers with information regarding their children or bring human and other resources to the school) and the home learning environment (e.g., when parents are informed on how to support/supervise their children when doing their homework) (Fan & Chen, 2001; Kyriakides, 2005).

The fourth aspect refers to the policy on providing resources for learning. The availability of learning resources in schools may not only have an effect on student learning, but may also encourage teachers’ own learning (Hattie, 2009). For example, the availability of computers and software for teaching geometry may contribute to teacher professional development since it may encourage teachers to use the software in their teaching to become more effective.

3.3. Research aims

This paper aims to explore indirect effects of school policy related to improving teaching and the SLE on student achievement. Specifically, we examine whether the school policy has an impact on student achievement through changing the actions of teachers. Moreover, we investigate whether there is a reciprocal relationship between school policy and the actions of teachers. In this way, two main elements of the framework concerned with the impact of school policy on student achievement are tested.

4. Methods

4.1. Study design

A longitudinal study investigating the impact of school policy and stakeholders’ actions on student outcomes was undertaken. The longitudinal design allows searching for indirect effects of school policy but also for examining whether a reciprocal relation among policy and stakeholder actions exists. The study lasted for three school years. We collected data on student achievement at the beginning of the study and at the end of each consecutive school year. In each year, a questionnaire measuring school policy was also administered to all teachers of the school sample. In addition, all teachers had to complete a questionnaire measuring the actions they had taken to deal with challenges/problems that could have a direct or indirect impact on their teaching. The two questionnaires were administered toward the end of the school year (i.e., April), when the teachers could more accurately evaluate the school policy and their actions during the past year.

4.2. Participants

Stratified sampling was used to select 70 out of 191 Cypriot primary schools by taking into account the five educational districts in Cyprus and whether schools were situated in an urban or rural area. Complete datasets over the period of three school years were collected from 64 out of 70 participating schools (six schools were dropped from the analyses because of substantial changes in their teaching staff). Complete achievement data for each measurement period were available for 2936 out of the 3135 students of the 64 schools.

No statistically significant differences were identified between the final sample and the population in terms of students’ gender (X^2 = 0.85, d.f. = 1, p = 0.36) or class size (t = 0.98, d.f. = 132, p = 0.33). Hence, it can be claimed that a nationally representative sample of Cypriot Grade-4 students was drawn in terms of these two characteristics. It was not possible to examine whether the sample was nationally representative in terms of any other characteristics, such as students’ socio-economic status and their achievement, since no national data on these characteristics are available.

6 As we did with policy for teaching, in the methods section, we treat these four aspects as subscales of policy for improving SLE.
4.3. Variables

4.3.1. Output measure: achievement in mathematics

Data on student achievement in mathematics were collected by using author-developed tests administered to the student sample at the beginning of Grade 4 (September 2009) and at the end of Grades 4 (May 2010), 5 (May 2011) and 6 (May 2012). It was found that less than 5% of the students scored over 80% of the maximum and less than 13% of the students scored over 72% of the maximum. Therefore, the ceiling effect was less probable. The floor effect was also not a concern, because no student showed full zero performance. The Extended Logistic Model of Rasch (Andrich, 1988) was used to analyse data that emerged from each administration period separately. Reliability is calculated by the Item Separation Index and the Person Separation Index. Separation indices represent the proportion of the observed variance considered to be true. A value of 1 represents high separability in which errors are low and item difficulties and students’ measures are well separated along the scale (Wright & Masters, 1981). The indices of cases and item separation were found to be higher than 0.82 indicating that the separability of each scale was satisfactory (Wright, 1985). The model fit statistics are (a) infit (weighted) and (b) outfit (unweighted) mean square statistic. Fit statistics are used to assess whether a given person’s performance (or a given item) is consistent with other persons’ performances (or items) and are based on the differences between the expected and observed performances. Outfit statistics are based solely on the difference between observed and expected scores whereas in calculating infit statistics extreme persons or items are downweighted. It is customary for items to be considered to fit the Rasch model if they have item infit within the range of 0.77–1.30 (Adams & Khoo, 1996), although many researchers recommend a more restricted range of 0.83–1.20 (Keeves & Alagumalai, 1999). For each measurement period, all items had infit with the range 0.89–1.18, and outfit with the range of 0.79–1.38. The fit statistics can be approximately normalized using the Wilson–Hilferty transformation. The normalized statistics, infit t and outfit t, have a mean near zero and a standard deviation near one when the data conform to the measurement model (Bond & Fox, 2001). For each measurement period, the infit mean squares and the outfit mean squares were found to be near one (i.e., they were between 0.96 and 1.05) and the values of the infit t-scores and the outfit t-scores were approximately zero (i.e., they were between −0.04 and 0.05). In addition, each analysis revealed that all the values of infit t for both persons and items were greater than 2.00 and smaller than 2.00. Furthermore, for every item the LM-Q1-test was computed using the computer program OPLM (Verhelst, Glas, & Vertalen, 1995) and the test was not significant. That is, the differences between the observed and expected proportions of correct responses in the score groups were such that the hypothesis that the observed proportions were properly described by the Rasch model could be accepted. Therefore, the results of the various approaches used to test the fitting of Rasch model to our data revealed that there was a good fit to the model (Bond & Fox, 2001). Thus, parameter estimates were placed on a common scale using IRT equating methods (Hambleton & Swaminathan, 1985). Finally, the student latent achievement was expressed by using the so called weighted likelihood estimates (WLE) (Warm, 1989).

4.3.2. Student background factors

Information was collected on two student background factors: gender (0 = boys, 1 = girls), and socio-economic status (SES). Five SES variables were available: father’s and mother’s highest education level (i.e., graduate of primary school, graduate of secondary school or graduate of college/university), the social status of father’s and mother’s job and the financial situation of the family. Using structural equation modelling techniques, a first-order factor model was established using these five variables. This model was found to fit the data (i.e., $X^2 = 9.4$, d.f. = 5, $p = 0.094$; CFI = 0.961; RMSEA = 0.064). Based on the factor loadings of each indicator, a factor score measuring SES was calculated for each student.

4.3.3. School policy and teachers’ actions

The explanatory variables which refer to the school policy and teachers’ actions were measured by asking all participating teachers (n = 658) to complete two questionnaires. The overall response rate was very high (82.1%) and it ranged from 77.5% to 90.5% across schools. Moreover, from each school we had at least 7 teachers with complete data sets. Furthermore, the chi-square test did not reveal any statistically significant difference in the response rate across the 64 schools of our sample ($X^2 = 57.12$, d.f. = 63, $p = .38$). Hence, it can be claimed that our sample is representative of the whole population in terms of how the teachers are distributed in each of these 64 schools. Finally, the missing responses to each questionnaire item were very small (i.e. less than 5%).

The first questionnaire was designed to collect information on school policy from each teacher. To capture school policy, we did not restrict ourselves to investigating the formal school policy as defined in the school plan. Teachers were asked to provide information about a number of activities that take place in their school to clarify the expected outcomes/actions to teachers, parents, and students in relation to the aspects of policy for teaching and policy for school learning environment mentioned in the third section of the paper. The three aspects of policy for teaching comprised the three subscales considered for measuring this dimension and the four aspects of policy for improving SLE comprised the four respective subscales for measuring the latter dimension.

For example, to measure the aspect of school policy on quantity of teaching, we used items related to issues discussed during staff meetings (e.g., dealing with teacher and student absenteeism, amount and type of homework). Teachers were also asked to refer to the extent to which these issues were discussed in documents and other materials which are distributed by the school management team to school stakeholders (i.e., teachers, students, and parents). The three qualitative characteristics of school policy listed in the framework were systematically taken into account in designing the questionnaire. Specifically, to measure the extent to which the policy of each school is clear, teachers were not only asked whether the issues measuring policy on quantity of teaching were covered in the policy documents, but also whether the documents made explicit to the teachers what they are expected to do. Moreover, teachers were asked whether the school management team develops a policy that takes into account different stakeholders’ skills. Finally, the questionnaire included items measuring the extent to which the school management team provided support to the teachers in order to help them implement the school policy on quantity of teaching.

The items of this subscale and all the other subscales discussed above have been used in previous studies testing the validity of the dynamic model of educational effectiveness (Creemers & Kyriakides, 2008). Through these studies, support to the construct validity of the teacher questionnaire has been provided (see Creemers & Kyriakides, 2010). Although these subscales are presented in a book on the use of the knowledge base of educational effectiveness research for school improvement purposes (Creemers & Kyriakides, 2012), a representative item for each subscale is also given in Table 1.

Teachers’ actions were measured by administering a self-report questionnaire to each teacher. Specifically, a five-point Likert scale was used to measure teachers’ actions, ranging from 1 (never...
showing reliability coefficients to be very high (around .85). Using Mplus (Muthén & Muthén, 2001) the intra-class correlations of the subscales were also computed. The intra-class correlations, which indicate the amount of variance of the teacher questionnaire situated at the between-level (i.e., teachers within the same school), are also illustrated in Tables 2 and 3. We can observe that the percentages of variance at the school level were between 30% and 42%. These percentages are rather high compared to other instruments that measure perceptions in clustered or interdependent situations (Den Brok, Brekelmans, & Wubbels, 2004; Kunter, Baumert, & Koller, 2007).

For each scale, the Extended Logistic model of Rasch was used to examine whether the subscales comprising each scale formed one factor. This analysis was conducted four times for each of the following scales of the study [i.e., (i) the school policy for improving teaching, (ii) the school policy for improving SLE, (iii) teacher actions for improving teaching and (iv) teacher actions for improving SLE]. This set of analyses was then repeated three times for each of the three measurement periods, thus resulting in 12 outputs. To examine the validity of these scales, these outputs were considered along three criteria. First, for each scale, the infit mean squares and the outfit mean squares were found to be near one (i.e., they were between 0.95 and 1.04) and the values of the infit t-scores and the outfit t-scores were approximately zero (i.e., they were between −0.03 and 0.04). Looking at the actual values of the infit...
and offtut of each item, one can identify that all items had item inft with the range 0.86–1.17, and outft with the range of 0.81–1.39. In addition, each analysis revealed that all the values of the inft for both persons and items were greater than –2.00 and smaller than 2.00. Second, the indices of teachers and of items separation were higher than 0.85, indicating that the separability of each scale was very good. Third, all the thresholds of the items comprising each scale increased monotonically and their distance met acceptable criteria since thresholds increased by at least 1.4 logits (revealing distinction between categories) but no more than 3.5 logits (avoiding large gaps in the variable). All these findings reveal that there was a good fit to the model when teachers’ responses to each of the four scales were taken into account (see Bond & Fox, 2001). Therefore, for each measurement period, the Rasch person estimates were used to estimate four different scores corresponding to each of the four scales. Following the same approach as in generating the achievement scores of each student, the person estimates for school policy and teacher actions were expressed by using the WLE (Warm, 1989).

4.4. Data analysis

Classic multilevel regression analysis does not satisfy our needs to search for reciprocal relations between school policy and teacher actions and identify indirect effects of school policy on student achievement. In contrast, multilevel Structural Equation Modelling (SEM)\(^8\) allows for exploring reciprocal relationships while at the same time accounting for the nested nature of the data (e.g., Goldstein & McDonald, 1988; Muthén & Satorra, 1989). Since this study investigates the impact of school policy on student achievement and thereby its variables are situated at the student and school level, a two level model (students within schools) was employed by using the Mplus 7 software (Muthén & Muthén, 2001). Admittedly, the data of this study are based on a three level (students within classrooms within schools) and ignoring the class level may distort the school- and student-level variance component and may bias standard errors downwards (Martínez, 2012; Snijders & Bosker, 1999). The class level was, however, not taken into account since the study does not measure any class-level variables; thus, for practical and parsimonious reasons a two-level model was used. This can be considered a study limitation; however even so the study can provide evidence about the impact of school factors, which is rarely studied compared to the impact of quality of teaching (see Scheerens, 2013; Reynolds et al., 2014).

To search for the impact of school policy on teachers actions, two separate analyses for each aspect of policy (i.e., policy for teaching and policy for improving SLE) were conducted. In this way, we could find out which (if any) of the two aspects of school policy has an effect on student outcomes through changing teachers’ actions. For example, we could test the assumption that policy for teaching has a stronger effect on student learning outcomes since it is expected to have an impact on improving quality of teaching and learning.

In each analysis, the Rasch person estimates for policy and the Rasch person estimates for teacher actions were used to test the model referring to the impact of policy on student learning outcomes. Similarly, the Rasch person (i.e., student) estimates were used for the variables concerned with achievement in mathematics. Although these variables are not directly measured, they are shown in rectangles (see Figures 2 and 3 presented in the Results section) since they cannot be considered as latent variables. Latent variables in SEM are variables with a factor analytic measurement model (Kline, 2010). On the other hand, achievement variables at level 2 represent random intercepts and are treated as latent variables and are, thereby, shown in ellipses.

To evaluate the fitting of our models we considered the Root Mean Square Error of Approximation (RMSEA), the Tucker–Lewis Index (TLI), and the Comparative Fit Index (CFI). We also considered the robust \(X^2\) test statistic and parameter estimates. TLI and CFI values greater than .90 or .95 are typically interpreted to reflect an acceptable or excellent fit to the data, correspondingly. RMSEA values smaller than .05 or .08 are typically interpreted to reflect a close or a reasonable fit to the data, correspondingly (see Hu & Bentler, 1999). However, these indices reflect overall fit of the model and may not be able to detect the lack of fit at the higher level (Ryu & West, 2009). Thus, the SRMR for the within-model (SRMR-W) and the SRMR for the between model (SRMR-B), available in MPLUS, are reported and used to evaluate the fitting of each level. According to Hu and Bentler (1999), a value of SRMR less than .08 is considered to indicate good model fit and a value of .10 to indicate moderate fit.

Finally, to calculate the indirect effect of each aspect of school policy on student achievement, we used the multivariate delta method (see Olkin & Finn, 1995) which attempts to find the large sample standard error of the difference between a simple correlation and the same correlation partialled for a third variable. MacKinnon, Lockwood, Hoffman, West, and Sheets (2002)

Table 3

<table>
<thead>
<tr>
<th>Scale</th>
<th>Cronbach alpha</th>
<th>Multilevel Lambda</th>
<th>Intra-class corr. (ICC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scale 3: Teacher actions for improving teaching</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1) Quantity of teaching (n=16)</td>
<td>.91</td>
<td>.89</td>
<td>.89</td>
</tr>
<tr>
<td>2) Provision of learning opportunities (n=10)</td>
<td>.84</td>
<td>.86</td>
<td>.82</td>
</tr>
<tr>
<td>3) Quality of teaching (n=8)</td>
<td>.82</td>
<td>.83</td>
<td>.81</td>
</tr>
<tr>
<td>Scale 4: Teacher actions for improving the SLE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1) Student behavior outside the classroom (n=8)</td>
<td>.87</td>
<td>.86</td>
<td>.89</td>
</tr>
<tr>
<td>2) Teacher collaboration (n=10)</td>
<td>.85</td>
<td>.84</td>
<td>.82</td>
</tr>
<tr>
<td>3) Partnership: relation with the school community and parents (n=12)</td>
<td>.84</td>
<td>.86</td>
<td>.90</td>
</tr>
<tr>
<td>4) Provision of learning resources to students and teachers (n=8)</td>
<td>.82</td>
<td>.85</td>
<td>.84</td>
</tr>
</tbody>
</table>

Note. 1. Presented in parentheses is the number of items per subscale.
compared 14 methods to test the statistical significance of the indirect effect of a variable. It was shown that methods based on a two steps approach lead to low Type I error rates and low statistical power. On the other hand, methods based on the distribution of the product and the difference-in-coefficients had more accurate Type I error and greater statistical power.

5. Results

This section focuses on the impact of school policy on student achievement in mathematics. The first part investigates the impact that school policy on teaching can have on teachers’ actions to improve teaching and student outcomes; the second part is concerned with the policy and the actions taken to improve the SLE.

Based on the main assumptions of the proposed theoretical framework on the impact of school policy, the model that was tested assumes that there is a reciprocal relationship between the school policy on teaching and the actions that teachers take to improve teaching. This model also assumes that school policy has only an indirect effect on student outcomes. Figure 2 presents the multilevel SEM model that tests these two assumptions of the theoretical framework. The upper part of the figure (school level) demonstrates the relations among school policy and teacher actions and their impact on student achievement at school level. In the upper part of the model presented in Figure 2, there are two variables of interest, school policy and teacher actions, and each variable is regressed on both its own lagged score and the lagged score of the other variable at the previous measurement occasion. At the first wave of measurement (i.e., first school year), school policy and teacher actions are specified as exogenous and allowed to covary. The model also assumes that the disturbance terms for the same endogeneous variables over time are correlated. Similarly, the disturbance terms for the endogeneous variables measuring school policy and teacher actions are correlated at the same time point (in Figures 2 and 3, these associations are shown with dashed lines). Anderson and Williams (1992) argue that failing to consider these parameters can bias stability and cross-lagged estimates. In regard to the variables measuring student achievement at the school level, the model assumes that repeated measures of this variable can be expressed as a function of preceding value plus random disturbance. In addition, teacher actions have a direct effect on student achievement.

It was also examined whether background factors aggregated at the school level (i.e., average SES, percentage of girls) and school characteristics [i.e., size of the school, place of the school (rural versus urban)] have an effect on school policy, teacher actions, and student achievement. By running various analyses searching for effects of each background factor on policy, teacher actions and student achievement, no statistically significant effect was found. For example, the average SES was not found to have a direct effect on any of the measures of school policy (either by adding these paths together or one at each time). Similarly, average SES was not found to have a statistically significant effect on any of the measures of teacher actions. We also reviewed the modification indices of the best fitting model (presented in Figure 2) and ran several additional models (that included additional paths both in isolation and simultaneously) but none of these paths was found to be statistically significant (even at .10 level). Therefore, these variables are not
included in the upper level of Figure 2. Nevertheless, SES appears at the lower level since it was found to have direct and indirect effects on student achievement.

Model fit statistics revealed that the model presented in Figure 2 had acceptable fit to the data ($X^2 = 27.14$, d.f. = 27, $p = 0.41$; CFI = 0.99, TLI = 0.98; RMSEA = 0.03; SRMR(B) = 0.09 SRMR(W) = 0.02). This model supports our assumption about a reciprocal relationship between school policy and teacher actions. It also suggests that school policy has an indirect effect on student achievement. Since most cross-sectional studies search for direct effects of school policy, we also tested a model that assumes that school policy has both direct and indirect effects on student achievement. However, we identified no statistically significant direct effect of school policy at the end of year 1 on student achievement in any of the three end-of-year administration. Similarly, school policy at the end of year 2 and policy at the end of year 3 were not found to have a statistically significant direct effect on student achievement.

The following observations arise from the estimated standardized parameters of the model shown in Figure 2. First, at the lower level, SES was found to have a stronger direct effect on student achievement at the beginning of Grade 4 rather than at the end of Grades 4, 5, and 6. However, SES did not have only direct but also indirect effects on student achievement at the end of each school year. Prior achievement in Grade 4 had an effect on achievement in mathematics at the end of Grade 4. Similarly, achievement at the end of Grade 4 and achievement at the end of Grade 5 had direct effects on achievement at the end of Grade 5 and the end of Grade 6 respectively. Second, at the school level, the prior measure of policy for teaching predicted relatively well the policy for teaching during the second and third years of the study. Third, school policy in each year was found to have an impact on changing teachers’ actions during the following school year. At the same time, the teacher actions were found to have an effect on school policies. In conjunction, the last two findings support a reciprocal relationship between school policy and teacher actions. Fourth, the effect that policy had on teacher actions was found to be bigger than the impact that teachers’ actions had on improving school policy. Finally, the actions that teachers took to improve teaching had an impact on student achievement in mathematics, whereas the school policy had only indirect effects on student achievement.

In regard to the impact of policy for improving the SLE on student learning outcomes, the theoretical model was also supported since the best fitting model presented in Figure 3 was found to have the same structure as the model of Figure 2. Model fit statistics revealed that this model had acceptable fit ($X^2 = 26.91$, d.f. = 26, $p = 0.54$; CFI = 0.98, TLI = 0.96; RMSEA = 0.03 SRMR(B) = 0.10 SRMR(W) = 0.03). The only exception was the SRMR index for the between level which was however close to the acceptable threshold. The following observations arise from the estimated standardized parameters of the model shown in Figure 3.

First, as expected, the same observations made in Figure 2 also held for the student level. Second, the measure of school policy for improving SLE in Year 1 was found to have a relatively strong impact on school policy for SLE during Year 2 (0.60). Similarly, school policy for improving the SLE in Year 2 had equally strong impact on the policy for the SLE that schools had during the final
year of the study. Third, prior measures of teacher actions also had an impact on the measures of teacher actions during the next school year; however, this impact was smaller than that of prior measures of school policy on the policy that the schools developed in the next year. Fourth, school policy regarding the SLE in each year was found to have an impact on changing the actions of teachers during the next school year.

The parameter estimates shown in Figures 2 and 3 seem to reveal that the impact that the school policy for improving the SLE had on teachers’ actions during the next year is as strong as the impact that policy for teaching had on teachers’ actions for improving teaching. In both figures the sizes of the impact that policy had on changing teacher actions is around 0.35.

Using the multivariate delta method, the following statistically significant indirect effects of school policy for teaching on student achievement were identified. If we consider the indirect effect of school policy on student achievement during two adjacent years, we find similar results across the different years of the study. In particular, the indirect effect of school policy for teaching during the first year of the study on student achievement at the end of grade 5, which corresponds to the end of year 2 of the study (path: policy for teaching, year 1 → teacher actions, year 2 → achievement Grade 5) was equal to 0.12 (SE = 0.04). Similarly, the indirect effect of school policy for teaching during the second year of the study on student achievement at the end of Grade 6, which corresponds to the end of year 3 (path: policy for teaching, year 2 → teacher actions, year 3 → achievement Grade 6) was 0.11 (SE = 0.04). If, however, we take into consideration the impact of school policy on student achievement for the entire period of the study, the total effect of school policy for teaching on student achievement at the end of Grade 6 was 0.21 (i.e.; Path1: policy for teaching, year 1 → teacher actions, year 2 → achievement Grade 5 → achievement Grade 6: 0.06, SE = 0.01; Path2: policy for teaching year 2 → teacher actions, year 3 → achievement Grade 6: 0.11, SE = 0.01; Path3: policy for teaching, year 1 → teacher actions, year 2 → teacher actions, year 3 → achievement Grade 6: 0.04, SE = 0.02).

Similarly, the following statistically significant indirect effects of policy for improving the SLE on student achievement were identified. In regard to the indirect effect of the school policy for SLE on student achievement during two adjacent years, we found that the effect of school policy during the first year of the study on student achievement at the end of grade 5 was equal to 0.11 (SE = 0.02), whereas the effect of school policy during the second year of the study on student achievement at the end of Grade 6 was 0.13 (SE = 0.02). When considering the entire period of the study, the total effect of school policy for SLE on student achievement at the end of Grade 6 was 0.23 (i.e., 0.13 + 0.05 + 0.05). These findings imply that the sizes of the indirect effect of school policy for teaching on student achievement are similar to those of policy for improving SLE.

6. Discussion

This study presents and empirically validates two of the main assumptions of a framework developed to explore the effects of school policy on student achievement. Specifically, we examined whether school policy for teaching has an impact on changing teachers’ actions and, through that, on student learning outcomes. We also investigated the impact of policy for improving the SLE on teacher actions and, in turn, on student learning. In this way, the assumption that school policy has an indirect effect on student achievement was tested. The relationships shown in Figures 2 and 3 seem to support this assumption, especially since both school policy for teaching and school policy for the SLE were found to have a direct effect on changing teachers’ actions and, through that, an indirect effect on improving student learning outcomes. The use of longitudinal data allowed exploring for reciprocal relationships, as well. In particular, we found empirical evidence supporting that school policy had an impact on changing teacher actions, whereas at the same time, teacher actions had an impact on changing school policies. In conjunction, these findings provide empirical support to the main assumptions of the theoretical framework presented earlier in the paper. In what follows, we draw implications of the study findings for research, policy, and practice. The limitations of this study are also acknowledged and suggestions for further research are provided.

First, the study findings seem to reveal that cross-sectional studies investigating the impact of school policy on student outcomes may underestimate the total effect that school policy may have on student outcomes. In particular, like in cross-sectional studies (e.g., Land, 2002; Maslowski et al., 2007) the effect of school policy on student achievement was found to be small when taking into consideration just one year after the policy was implemented. However, when using the entire dataset that comprised three years of data, the total effect of school policy on student achievement at the end of the third year of the study was more than two times bigger as that found in cross-sectional studies. This difference in the reported effect sizes can be attributed to the fact that in longitudinal studies cumulative effects of school policies can be estimated. In addition, cross-sectional studies do not take into account that school policy may have situational effects on student achievement. Searching for correlations between school policy and student achievement is likely to underestimate the impact of school policy because it implies that effective schools should have a school policy for any issue associated with teaching and the SLE. However, the actual impact of school policy can only be examined if both its direct (i.e., changes in stakeholders’ action) and indirect (i.e., improvement in student learning) effects are examined. Thus, this paper argues for the importance of conducting longitudinal studies and measuring school policy and the actions of stakeholders over a period of time to identify the impact of school policy on student outcomes.

Second, the study results suggest that it is important to make a distinction between school policy and teachers’ actions. A reciprocal relationship between school policy and teachers’ actions was identified. Although some of these reciprocal relationships could be considered small, they are of similar magnitude to those identified in other studies exploring reciprocal relationships, such as those dealing with student motivation and learning outcomes (Marsh & Craven, 2006). This framework could be utilized in developing school policies to promote student learning. Specifically, it could be claimed that by introducing a school policy for improving teaching and the SLE, teachers’ actions could change and the SLE and/or teaching practices could be improved. Through the effect that school policy could have on teachers’ actions, improvement of SLE and the teaching practice and ultimately student learning could be achieved. However, it should be acknowledged that school policy was not found to have any direct effect on student learning outcomes and its role in promoting student learning outcomes should not be overstated. Teacher actions were found to have a direct effect and thereby changing school policy may not necessarily result in changing teacher actions and through that in promoting student learning outcomes.

At the same time, this study reveals a reciprocal relationship between school policy and teachers’ actions. Teachers’ actions of a previous year were found to have an impact on the development of school policy during the next year. This finding implies that the introduction of a new policy could be informed by data concerning the actions of teachers during the previous years. By collecting data...
on the quality of both the current policy and the actions of teachers, priorities for improving specific aspects of school policy could be identified and new policy targets could more accurately be defined (Creemers & Kyriakides, 2012).

Third, the fact that teachers’ actions for improving teaching and SLE were found to have direct effects on student learning outcomes implies that teachers should be supported to improve their teaching practice and the SLE. To figure out whether the new policy meets these requirements, the impact that the new policy may have on changing teachers’ actions and through that on improving teaching and learning should be investigated. It should however be acknowledged that in this longitudinal study it was not feasible to measure quality of teaching for a period of more than three years. Further research is, therefore, needed to find out whether school policy has an impact on changing teachers’ actions and through that on improving teaching practice and promoting student learning outcomes. In this way, the proposed framework for investigating the impact of school policy on student learning outcomes at not only the school but also the class level could be tested.

Fourth, additional suggestions for further research are pointed out especially since the study presented here refers only to a part of the proposed framework. The framework assumes that school policy only have an effect on improving not only teaching but also the school learning environment through changing teachers’ actions. Therefore, further research should measure not only the quality of teaching but also the school learning environment over time in order to see whether improvement of quality of teaching and SLE may take place due to the impact that school policy may have on changing teachers’ actions. In this way, we may also be able to investigate relations between policy for teaching and policy for improving SLE and whether they have joint effects on student achievement through improving SLE and quality of teaching.

Fifth, this study is limited to investigating the impact of policy and actions on student achievement in only one subject (Mathematics). Further research is needed to find out whether similar effects on student learning outcomes can be identified when achievement in other subjects as well as in other learning domains (e.g., affective, meta-cognitive) are taken into account (Kyriakides & Tsangaridou, 2008).

Sixth, there is a need for further studies to investigate relations between school policy and other stakeholders’ actions beyond teachers (e.g., parents, students). For example, a study investigating the relationship between partnership policy and parents’ actions could provide further support to the proposed framework and may have further implications for the role of school leaders in improving the SLE. At this point, it could be claimed that school policy may have a greater impact on changing the actions of stakeholders within school (e.g., teachers, school-management team) and less impact on stakeholders outside school (e.g., parents, members of the wider school community). Thus, further studies comparing the impact of school policy on changing the actions of stakeholders within the school and those of stakeholders outside the school may help us identify how far the establishment of school policy can promote learning and to search for other factors within the wider educational environment that affect the actions of stakeholders aiming toward improving learning. In this way, we will avoid overestimating the effect that school policy may have on student learning outcomes and more comprehensively analyse the complex situation between designing and implementing a policy at school level and improving the school learning environment and the teaching practice in order to promote student learning (Antoniou & Kyriakides, 2011).

Finally, the proposed framework could be used to investigate the impact of national policy on student achievement. Given that the distinction between school policy and actions of stakeholders helped us to start understanding the conditions under which school policy may have an impact on student learning, one might explore whether similar assumptions could be used to form the basis of understanding the impact of system policy (district or national) on student achievement. Such studies may contribute to further develop research on policy implementation. It should, however, be acknowledged that beyond the potential impact of national policy on stakeholders’ actions, the wider environment of an educational system may also influence these actions. This implies that understanding the impact of national policy is a more complicated task than searching for the impact of school policy on student achievement. Nevertheless, the proposed framework may help us explore whether similar mechanisms are needed to establish and evaluate policies at both the system and school levels in order to promote learning.

Appendix A. Supplementary data

Supplementary data related to this article can be found at http://dx.doi.org/10.1016/j.learninstruc.2015.01.004

References
