Precise Model-Free Spline-Based Approach for Magnetic Field Mapping

Federico Ongaro1,\textdaggerdbl, Christoff Martinus Heunis1,\textdaggerdbl, and Sarthak Misra1,2,\textdaggerdbl

1Department of Biomechanical Engineering, University of Twente, Enschede 7522, NB, The Netherlands
2Department of Biomedical Engineering, University Medical Centre Groningen, University of Groningen, 9713 AV Groningen, The Netherlands

Abstract—Untethered magnetic manipulation has found applications in a rapidly increasing number of fields, ranging from minimally invasive surgery to assembly of industrial microelectromechanical systems. Despite this relevance, present-day literature on precise magnetic mapping is sparse, especially for magnetic fields affected by external disturbances. In this letter, we address this deficiency by introducing a model-free mapping technique. Remarkably, the presented spline-based approach is capable of addressing the presence of inhomogeneous static disturbances and the mapping of nonazimuthally symmetric electromagnets. This work is validated with the mapping of nine metal-core electromagnets in the presence of inhomogeneous static disturbances. A grid of 5120 measurements is collected by a custom-programed robotic arm and used for mapping. The values predicted by the approach are compared against 3430 independent field measurements with an R^2 value of 0.9884 and maximum relative errors of 7\%. Overall, this spline-based approach provides a flexible technique for the precise mapping of electromagnetic fields and gradients even when, for reasons regarding coil shape or disturbances, the electromagnetic field does not present any axial symmetry.

Index Terms—Electromagnetics, magnetic actuators, magnetic levitation, numerical methods.

I. INTRODUCTION

In recent years, electromagnetic manipulation has gained tremendous relevance for wireless actuation. The flexible and untethered nature of electromagnetic waves has made them a recurrent choice for the manipulation of a plethora of devices ranging from tethered to untethered, from active to passive, and from nanoscale to macroscale, with applications in medical, chemical, biological, and industrial environments [Banerjee 2011, Martel 2013, Chowdhury 2015, Ongaro 2016b, 2016c, Ceylan 2017, Ryan 2017, Yan 2017, Rahmer 2018, Rus 2018].

In particular, homogeneous magnetic fields are often used in these applications, allowing to control devices with up to 8 degrees of freedom (DOF) [Petruska 2015]. However, such fields are often generated by air-core electromagnets. Hence, they are subject to strong power constraints, as the required workspace or field strength increases. Alternatively, researchers have proposed the use of inhomogeneous fields, as they offer both more DOFs and represent a more power-efficient solution [Denasi 2018].

Yet, inhomogeneous fields come at the cost of a higher complexity and lower adherence to simple models. Consequently, commonly used mapping techniques—based on simple interpolations or first-order approximations—fail to provide an accurate estimation of the fields and gradients used for inhomogeneous magnetic manipulation.

Notwithstanding the importance of precise mapping techniques, present-day literature on the subject is sparse. Remarkably, Petruska [2017] recently presented a model-based approach for precise electromagnetic mapping. Despite the considerable significance of such work, their approach can only be used with azimuthally symmetric electromagnets, has a lower bound on the number of measurements, and is not able to address the presence of external inhomogeneous static disturbances.

In this letter, we investigate the development of a model-free mapping technique. This novel approach is inspired by tensor-product basis splines (B-splines), which, due to their properties, are the cornerstone of several engineering and computer graphics techniques [Rogers 2000, Martin 2009, Wang 2012, Biagiotti 2016]. The developed technique offers a model-free approach capable of precise mapping of electromagnetic fields and gradients, even when these are affected by static disturbances or are generated by nonsymmetric electromagnets. Additionally, the algorithm, enforces Maxwell’s equation and presents no lower or upper bound on the number of measurements. Moreover, the effectiveness of the technique is validated using an electromagnetic testbed (see Fig. 1).

II. B-SPLINES

The presented letter is based on the theory of B-splines. While the basic theory of B-splines is well known, we choose to give a brief summary of the used concepts and notations to ensure thorough understanding; for further details, we refer the reader to relevant literature [Cohen 2001, Piegl 2012].

A. Parametric B-Splines

A B-Spline (f) of nonnegative degree $d \in \mathbb{N}$ is a parametric curve in an n-dimensional space constructed from $n \in \mathbb{N}$ control points $(c_i)_{i=1}^{n} \in \mathbb{R}^n$ and a nondecreasing sequence of $n + d + 1$ knots $(t_i)_{i=1}^{d+1} \in \mathbb{R}$ according to

$$f(x) = \sum_{i=1}^{n} c_i N_{i,d}(x)$$ \hspace{1cm} (1)
For instance, assume two positive integers \((d_1, d_2)\) and two knot vectors \((\sigma_1, \sigma_2)\) yielding basis function spaces \((S_k, k = 1, 2)\) \[
S_1 = \mathbb{S}_{d_1, \sigma_1} = \text{span}\{N_1, \ldots, N_{d_1}\}
\]
\[
S_2 = \mathbb{S}_{d_2, \sigma_2} = \text{span}\{M_1, \ldots, M_{d_2}\}.
\] (4)
The tensor product \((S_1 \otimes S_2)\) of these spaces can be expressed as [Piegl 2012]
\[
f(x, y) = \sum_{i=1}^{n_1} \sum_{j=1}^{n_2} c_{i,j} N_i(x)M_j(y)
\] (5)
where \((c_{i,j})_{i,j=1}^{n_1,n_2}\) is the set of control points. Using such formulation, (5) allows to have a B-Spline behavior with a multidimensional domain. Clearly, this procedure can be iterated to obtain multivariable B-splines of any degree or dimension.

III. TENSOR-PRODUCT B-SPLINES FOR MAGNETIC THREE-DIMENSIONAL MAPPING

Specifically, in this letter, we will be using tricubic B-splines (three-variable tensor-product B-splines with \(d = 3\)) to calibrate the electromagnetic field. The general formulation of such functions is as follows:
\[
B(x, y, z) = \sum_{i=1}^{n} \sum_{j=1}^{m} \sum_{u=1}^{p} c_{i,j,u} N_i(x)M_j(y)P_u(z)
\] (6)
where \(B(x, y, z) \in \mathbb{R}^3\) is the magnetic field, \(x, y, z \in \mathbb{R}\) are the parameterization variables, which we choose to be the Cartesian coordinates (see Fig. 1). Further, \((c_{i,j,u})_{i,j,u=1}^{n,m,p} \in \mathbb{R}^3\) is the set of control points, and \(N_i(x), M_j(y)\) and \(P_u(z)\) are the basis functions of the B-splines.

Furthermore, we assume—as is often the case in the literature [Ongaro 2016a, Petruska 2017, Sikorski 2017]—to have field measurements from a grid of \(x \times y \times z\) points. Consequently, it is possible to rearrange such measurements to obtain a matrix \((D' \in \mathbb{R}^{m \times n \times p})\) such that
\[
D' = \begin{bmatrix}
D_{x}^{1,1,1} & D_{x}^{1,1,1} & D_{x}^{1,1,1} \\
& & \\
D_{y}^{1,1,1} & D_{y}^{1,1,1} & D_{y}^{1,1,1} \\
& & \\
D_{z}^{1,2,1} & D_{z}^{1,2,1} & D_{z}^{1,2,1} \\
& & \\
D_{x}^{2,1,1} & D_{x}^{2,1,1} & D_{x}^{2,1,1} \\
& & \\
D_{y}^{2,1,2} & D_{y}^{2,1,2} & D_{y}^{2,1,2} \\
& & \\
D_{z}^{2,1,2} & D_{z}^{2,1,2} & D_{z}^{2,1,2} \\
& & \\
D_{x}^{2,2,1} & D_{x}^{2,2,1} & D_{x}^{2,2,1} \\
& & \\
D_{y}^{2,2,1} & D_{y}^{2,2,1} & D_{y}^{2,2,1} \\
& & \\
D_{z}^{2,2,1} & D_{z}^{2,2,1} & D_{z}^{2,2,1} \\
& & \\
D_{x}^{2,2,2} & D_{x}^{2,2,2} & D_{x}^{2,2,2} \\
& & \\
D_{y}^{2,2,2} & D_{y}^{2,2,2} & D_{y}^{2,2,2} \\
& & \\
D_{z}^{2,2,2} & D_{z}^{2,2,2} & D_{z}^{2,2,2}
\end{bmatrix}
\] (7)
where \(D_{x,y,z}^{i,j,k}\) is the \(x, y,\) or \(z\) component of the field for the measurement at \((i, j, k)\). Moreover, we define \(D\) as the matrix containing the value of the B-Spline at the coordinates of the measured points. If \(D\) is arranged as \(D'\), it follows from (6) that
\[
D = ZC
\] (8)
with

\[
Z = \begin{bmatrix}
N_1^{\ell} M_1^1 P_1^1 & \cdots & N_m^{\ell} M_m^1 P_m^1 \\
\vdots & \ddots & \vdots \\
N_1^{\ell} M_1^{x_1} P_1^{x_1} & \cdots & N_m^{\ell} M_m^{x_1} P_m^{x_1} \\
N_1^{\ell} M_1^{y_1} P_1^{y_1} & \cdots & N_m^{\ell} M_m^{y_1} P_m^{y_1} \\
\vdots & \ddots & \vdots \\
N_1^{\ell} M_1^{z_1} P_1^{z_1} & \cdots & N_m^{\ell} M_m^{z_1} P_m^{z_1}
\end{bmatrix}
\]

(9)

\[
C = \begin{bmatrix}
c_1^{1,1,1} & c_1^{1,1,1} & c_1^{1,1,1} \\
\vdots & \vdots & \vdots \\
c_1^{\ell,1,1} & c_1^{\ell,1,1} & c_1^{\ell,1,1} \\
c_1^{1,2,1} & c_1^{1,2,1} & c_1^{1,2,1} \\
\vdots & \vdots & \vdots \\
c_1^{\ell,m,p} & c_1^{\ell,m,p} & c_1^{\ell,m,p}
\end{bmatrix}
\]

(10)

where \((x_i, y_j, z_k)\) are the parameterized coordinates of the measured point, \(C \in \mathbb{R}^{n \times m \times p \times 3}\) is the matrix of control points associated to the \(n \times m \times p\) basis functions of the tensor-product B-Spline, and \(N^p = N^p(\alpha)\). Therefore, \(Z \in \mathbb{R}^{(nr \times n \times m \times p)}\) maps the control points to the values of the function in the selected points.

Further, it is necessary to enforce Maxwell’s equation for a quasi-static field measured outside of the electromagnet with no electrical disturbance [Petruska 2017]

\[
\nabla \times \mathbf{B} = \frac{\partial \mathbf{B}_y}{\partial x} + \frac{\partial \mathbf{B}_z}{\partial y} + \frac{\partial \mathbf{B}_x}{\partial z} = 0 \tag{11}
\]

\[
\nabla \cdot \mathbf{B} = \frac{\partial \mathbf{B}_x}{\partial x} + \frac{\partial \mathbf{B}_y}{\partial y} + \frac{\partial \mathbf{B}_z}{\partial z} = 0 \tag{12}
\]

where \(\mathbf{B} = \mathbf{B}(x, y, z)\) for brevity and \(\nabla\) is the gradient operator.

For this purpose, it is necessary to obtain the partial derivatives of the tricubic spline using a formal derivation of (6)

\[
\frac{\partial \mathbf{B}(x, y, z)}{\partial x} = \sum_{i=1}^{n} \sum_{j=1}^{m} \sum_{w=1}^{p} c_{i,j,w} \frac{\partial N_i(x) M_j(y) P_u(z)}{\partial x} \tag{13}
\]

\[
\frac{\partial \mathbf{B}(x, y, z)}{\partial y} = \sum_{i=1}^{n} \sum_{j=1}^{m} \sum_{w=1}^{p} c_{i,j,w} \frac{\partial N_i(x) M_j(y) P_u(z)}{\partial y} \tag{14}
\]

\[
\frac{\partial \mathbf{B}(x, y, z)}{\partial z} = \sum_{i=1}^{n} \sum_{j=1}^{m} \sum_{w=1}^{p} c_{i,j,w} \frac{\partial N_i(x) M_j(y) P_u(z)}{\partial z} \tag{15}
\]

where \(\tilde{N}_i(x) = \frac{\partial N_i(x)}{\partial x}, M_j(y) = \frac{\partial M_j(y)}{\partial y}, \text{ and } \tilde{P}_u(z) = \frac{\partial P_u(z)}{\partial z}\). Finally, (13) can be substituted in (11) and (12) to obtain the analytical constraints of the tensor B-Spline.

IV. MULTICOIL MAPPING WITH STATIC DISTURBANCE

The procedure presented in the previous section can be iterated to obtain a magnetic map for multicoil systems affected by homogeneous or inhomogeneous disturbances. In point of fact, if the electromagnets have not reached magnetic saturation, the overall field in such systems can be computed as [Ongaro 2017, Petruska 2017]

\[
\mathbf{B}(p) = \sum_{i=1}^{n_r} \mathbf{B}_i(p) + \mathbf{B}_d(p) = \sum_{i=1}^{n_r} \tilde{\mathbf{B}}_i(p) \tilde{I}_i + \mathbf{B}_d(p) \tag{14}
\]

where \(n_r\) is the number of electromagnets, \(p \in \mathbb{R}^3\) is the position in which the field is evaluated, and \(\mathbf{B}_i \in \mathbb{R}^3\) is the field generated by the \(i\)th electromagnet. Moreover, \(\mathbf{B}_d \in \mathbb{R}^3\) is the field sourced from the disturbance, \(\tilde{\mathbf{B}}_i \in \mathbb{R}^3\) is the vector mapping currents to field of the \(i\)th electromagnet, and \(I_i\) is the current fed to such electromagnet.

In order to calibrate the overall field, we have to compute the tensor-product B-splines of the \(\tilde{\mathbf{B}}_i\) and of \(\mathbf{B}_d\). First, we measure the field when all the magnetic sources are fed with no current. It is clear from (14) that this will correspond to a measurement of \(\mathbf{B}_d\). Further, we iteratively measure the field, as only one electromagnet is powered on. In such condition, the current-to-field map can be computed as

\[
\tilde{\mathbf{B}}_i(p) = \frac{\mathbf{B}_m(p) - \mathbf{B}_d(p)}{I_i} \quad I_j = 0 \quad \forall j \neq i \tag{15}
\]

where \(\mathbf{B}_m(p)\) is the field measured at point \(p \in \mathbb{R}^3\). Furthermore, it is worth noting that the measurements do not have to be collected in the same points, nor in the same number. In point of fact, after the first measurement, the tensor-product B-Spline map of \(\mathbf{B}_d\) can be used in (15).

V. MAPPING AND EXPERIMENTAL RESULTS

The first step in the construction of a tensor-product B-Spline for magnetic mapping consists in the choice of knots and degrees. However, no combination of these variables is a priori superior for magnetic mapping. Given the vast literature regarding the selection of B-Spline knots and degrees, we will limit the discussion to a few considerations, which are as follows [Braibant 1984, Ruppert 2002, Park 2007, Yuan 2013].

A. Knots Selection

Every point in the B-Spline will belong to the convex hull of the control points associated with the \(d + 1\) neighboring knots (see Section II). Consequently, selecting a number of knots that is significantly smaller than the number of measured points leads to a poor quality fit. Conversely, using significantly more knots than measured points may result in a map that is overfitted to the training data.

B. Degree of the B-Spline

An increase in the B-Spline degree generally offers a closer fit to the training data. However, high-degree curves often result in overfitting and/or increase in the value of high-order derivatives, resulting in issues, such as ringing. On the other hand, a B-Spline degree of at least two is necessary to ensure continuous gradients. We found third- and fifth-order B-splines to yield the lowest errors. Nonetheless, the
Table 1. Summary of the experimental results.

<table>
<thead>
<tr>
<th>d</th>
<th># of Knots</th>
<th>(R^2)</th>
<th>Adj. (R^2)</th>
<th>Max. Error</th>
<th>Max. Curl</th>
<th>Max. Div.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>14x14x14</td>
<td>0.9884</td>
<td>0.9883</td>
<td>7.00%</td>
<td>15.24</td>
<td>21.74</td>
</tr>
<tr>
<td>3</td>
<td>19x19x19</td>
<td>0.9587</td>
<td>0.9585</td>
<td>13.11%</td>
<td>8.11</td>
<td>5.54</td>
</tr>
<tr>
<td>5</td>
<td>14x14x14</td>
<td>0.9712</td>
<td>0.9710</td>
<td>8.85%</td>
<td>1.88</td>
<td>0.7</td>
</tr>
</tbody>
</table>

Nonuniform static disturbance with average value 1.1 mT is introduced positioning a 30 \(\times\) 10 mm diameter cylindrical N45 permanent magnet at a distance of 10 cm, along the gravitational axis, from the center of the workspace. Open uniform knots vectors are used. Further, the boundary conditions are respected by defining a \(d+1\) multiplicity for the first and last knots. The quadratic programs are solved using \textit{fmincon} (MatLab, MathWorks, Natick, MA, USA). Abbreviations are as follows: Number (#), coefficient of determination \((R^2)\), adjusted (adj.), maximum (max.), divergence (div.).

fifth-order B-Spline did present higher elongation and ringing than third-order B-splines, with an average increase of 83% in the Frobenius norm of the Hessian matrices [Thacker 1989].

1) Fitting to Data: Given the knots and degrees of the B-splines, \(Z\) —the Moore–Penrose pseudoinverse of \(Z\)—can be used to obtain a least square fit of the tensor-product B-Spline to the measurements using \(C = Z^\dagger D\ast\) while enforcing (11) and (12).

However, as the number of knots increases, solving (11) and (12) analytically requires significant computational power. Alternatively, we use the following convex linearly constrained quadratic approximation:

\[
\begin{align*}
\text{Input:} & \quad D^\ast \in \mathbb{R}^{e \times f \times g}, \ Z \in \mathbb{R}^{e \times f \times g}, \ z^\ast \in \mathbb{R}^e, \ y^\ast \in \mathbb{R}^f, \ z^\ast \in \mathbb{R}^g. \\
\text{Result:} & \quad C \in \mathbb{R}^{e \times f \times g} \\
\text{Objective function:} & \quad \min_{C} ||D^\ast - ZC|| \\
\text{subject to:} & \quad \nabla \cdot B(x^j, y^j, z^k) = 0 \\
& \quad \nabla \times B(x^j, y^j, z^k) = 0 \\
& \quad i = 1, \ldots, e + 1; \quad j = 1, \ldots, f + 1; \quad k = 1, \ldots, g.
\end{align*}
\]

with \(i = 1, \ldots, e + 1; \quad j = 1, \ldots, f + 1; \quad k = 1, \ldots, g.\) In this approximation, Maxwell’s equations are only enforced on the grid of \(e \times f \times g\) points. Nonetheless, as reported in Table 1, these can be selected to have arbitrary small curl and divergence values in any point of the mapping function.

The presented technique is validated with the mapping of an electromagnetic testbed (see Fig. 1) equipped with nine metal-core electromagnets affected by a static disturbance (see Table 1). A 3-D grid of \(8 \times 8 \times 8\) points is used as a training set, whereas a grid of \(7 \times 7 \times 7\) points is used for validation (see Fig. 2). For improved accuracy, the data were collected using a calibrated three-axis teslameter (SE-NIS, Zurich, Switzerland) positioned by a 6 DOF robotic arm (UR5, Universal Robots, Odense, Denmark).

2) Special Cases: It should be noted that the current validation is performed on a cube of uniformly spaced measurements. Notwithstanding, this technique can also be applied to irregularly shaped workspaces using nonuniformly spaced measurements. For these purposes, the following should be observed.

1) Nonuniform measurements: The technique as presented is already suitable for magnetic mapping using nonuniform measurements. However, the use of a nonuniform knots distribution with higher knot density in volumes having higher density of measurement could yield an improved fit in such scenario.

2) Irregularly shaped workspaces: In such a scenario, a lattice big enough to inscribe the irregular workspace has to be selected. It will be sufficient to then assign a multiplicity of \(d+1\) to the knots on the edge of the irregular workspace. Any value can then be assigned to the control points outside of the area of interest.

VI. CONCLUSION

We present a novel technique for precise model-free mapping of electromagnetic systems. Such spline-based technique is able to accurately map the generated field. Moreover, this technique is capable of addressing the presence of inhomogeneous static electromagnetic disturbances or asymmetric electromagnets, and has no lower or upper bound on the number of required measurements. Furthermore, a time-effective numerical approximation of the mapping procedure is also presented. The theoretical work is validated with the mapping of an electromagnetic system with nine metal-core electromagnets in the presence of a static electromagnetic disturbance. Overall, the presented letter provides a flexible technique for the precise mapping of electromagnetic fields and gradients even in the presence of axial asymmetry or disturbances.

In future work, we will analyze the performance of this technique when mapping other electromagnetic setups. Furthermore, a quantitative comparison of time efficiency of techniques for the mapping of electromagnetic fields will be performed. Finally, we will investigate techniques aimed at increasing the time effectiveness of the presented procedure.
ACKNOWLEDGMENT

The authors thank F. Califano (Department of Electrical, Electronic and Information Engineering, University of Bologna, Bologna, Italy) for the numerous insightful discussions and helpful suggestions that have led to the presented letter.

This work was supported by the European Research Council under the European Union’s Horizon 2020 Research and Innovation programme (Grant 638428—Project ROBOTAR: Robot-Assisted Flexible Needle Steering for Targeted Delivery of Magnetic Agents).

REFERENCES

