Quantifying effects of radiotherapy-induced microvascular injury; review of established and emerging brain MRI techniques

Justyna Kłos*a*, Peter Jan van Laarb,c, Peter F. Sinnige*d, Roelien H. Enting*e, Miranda C.A. Kramerd, Hiske L. van der Weide*d, Mark A. van Buchemf, Rudi A.J.O. Dierckx*a, Ronald J.H. Borra*a, Anouk van der Hoornbh,g

aDepartment of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands

bDepartment of Radiology, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands

cDepartment of Radiology, Zorggroep Twente, Almelo and Hengelo, Zilvermeeuw 1, 7600 SZ Almelo, The Netherlands

dDepartment of Radiation Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands

eDepartment of Neurology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands

fDepartment of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands

gBrain Tumour Imaging Group, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge and Addenbrooke's Hospital, Cambridge, UK

*Corresponding author at: Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, EB50, Postbus 30.001, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands. E-mail address: j.klos@umcg.nl (J. Kłos).

FUNDING: None.
ABSTRACT

Microvascular changes are increasingly recognised not only as primary drivers of radiotherapy treatment response in brain tumours, but also as an important contributor to short- and long-term (cognitive) side effects arising from irradiation of otherwise healthy brain tissue. As overall survival of patients with brain tumours is increasing, monitoring long-term sequelae of radiotherapy-induced microvascular changes in the context of their potential predictive power for outcome, such as cognitive disability, has become increasingly relevant. Ideally, radiotherapy-induced significant microvascular changes in otherwise healthy brain tissue should be identified as early as possible to facilitate adaptive radiotherapy and to proactively start treatment to minimise the influence on these side-effects on the final outcome.

Although MRI is already known to be able to detect significant long-term radiotherapy induced microvascular effects, more recently advanced MR imaging biomarkers reflecting microvascular integrity and function have been reported and might provide a more accurate and earlier detection of microvascular changes. However, the use and validation of both established and new techniques in the context of monitoring early and late radiotherapy-induced microvascular changes in both target-tissue and healthy tissue currently are minimal at best.

This review aims to summarise the performance and limitations of existing methods and future opportunities for detection and quantification of radiotherapy-induced microvascular changes, as well as the relation of these findings with key clinical parameters.

KEYWORDS

Radiotherapy-induced injury; Radiotherapy; Magnetic Resonance Imaging; Susceptibility-Weighted Imaging; Quantitative Susceptibility Mapping; Cerebral microbleeds; Microvascular; White matter lesions; Brain tumours; Review.
ABBREVIATIONS

1. INTRODUCTION

Novel therapies combined with molecular and genetic tumour biomarkers have enabled personalised brain cancer treatment, aiming to improve survival [1–5]. However, in patients with low-grade brain tumours, with relatively long survival, initial positive treatment responses are often overshadowed by negative long-term side effects of the treatment [6,7]. In order to minimise these effects, the whole therapeutic approach has become more and more oriented towards optimising the quality of remaining life and not only on treating the brain tumour itself [1,8]. With radiotherapy being a key component of the therapeutic approach, monitoring early signs of radiotherapy-induced injury related to irreversible clinical outcomes, such as cognitive dysfunction, has therefore become increasingly relevant.

The adverse effects of radiotherapy are believed to be related to microvascular endothelial injury, glial cell destruction and inflammation, with the synergistic interaction of these processes contributing to an even larger overall effect [9–12]. The resulting effects of radiotherapy-induced microvascular injury can be monitored by clinical examination as well as by magnetic resonance imaging (MRI). To detect radiotherapy-induced changes, MRI is generally considered as the most sensitive non-invasive technique with good clinical availability. Routine MRI techniques, such as T1-weighted imaging (T1), T2-weighted imaging (T2), fluid attenuated inversion recovery (FLAIR), diffusion-weighted imaging (DWI), dynamic contrast-enhanced (DCE), T2*-weighted gradient echo (T2*) and susceptibility-weighted imaging (SWI) can show oedema, cerebral microbleeds (CMBs), telangiectasias, cavernomas, white matter lesions (WML), lacunar infarcts, cortical atrophy and necrosis [13–19]. In the last decades, advanced imaging biomarkers reflecting microvascular integrity and function, such as quantitative susceptibility mapping (QSM), DSC-based (Dynamic Susceptibility Contrast-Enhanced) vessel architectural imaging (VAI), arterial spin labelling (ASL), diffusion tensor imaging (DTI), intravoxel incoherent motion
(IVIM) have emerged [20–25]. It seems straightforward to assume that both routine and emerging MRI techniques, alone or in combination, have the potential to provide sensitive imaging biomarkers which - directly or indirectly - reflect radiotherapy induced microvascular injury. However, to the best of our knowledge no recent systematic overview of available techniques and comparison concerning sensitivity and specificity of the individual techniques exist. The current work aims to provide such an overview and comparison, including a summary of the evidence regarding the relation with key clinical parameters and the optimal post-radiotherapy time window for each technique, this in order to aid researchers in their choice of optimal (combinations of) MR techniques for their specific research aims.

2. HISTOPATHOPHYSIOLOGICAL PROCESSES UNDERLYING RADIATION-INDUCED MICROVASCULAR DAMAGE

Preclinical studies have shown that brain vessel endothelial hyperplasia and vessel wall thickening occur as early as 3 hours after irradiation with a dose of 100 Gy (gamma knife) [10]. Furthermore, a decrease in endothelial cell numbers was observed in rat brain after 5 - 200 Gy of local irradiation within the first 24 hours and was not dependent on the applied dose [12]. Although the exact pathophysiological mechanism and timecourse of events has not been fully established, it is expected that in addition to endothelial damage, also a significant loss of oligodendrocytes occurs, which are the most radiation-damage prone glial cells [26]. Necrosis and apoptosis of oligodendrocytes results in myelin decrease around neurons, in turn resulting in impaired nerve conduction and reduced white matter integrity [26]. Astrocyte activation also changes upon irradiation, with astrocytes no longer being able to properly support neurons and the impulse transmission processes [26]. In addition, impaired and later hyalinized endothelium no longer properly delivers nutrients to glial and neuronal cells, which additionally exacerbates the dysfunction of those cells [26]. Finally,
ischaemia and impaired microvascular oxygen extraction eventually can lead to radiation necrosis [26].

Radiotherapy-induced damage is classically divided into three timeframes [9,27,28], being acute, delayed and late-delayed injury. However, this classification is based primarily on clinical presentation and symptoms, and not on pathophysiological findings. Therefore, this classification is somewhat artificial with respect to the underlying pathophysiological processes. Acute injury presents from days to weeks following radiotherapy with headache, nausea, vomiting, fever, somnolence and more severe symptoms of brain herniation. Acute injury is believed to be caused especially by oedema and inflammation. The severity and commonness of this stage are usually less debilitating nowadays due to constant improvements in radiotherapy techniques. Early-delayed injury presents 1-6 months after radiotherapy and finds its roots in transient demyelination and neuroinflammation and clinically presents with mood fluctuations, cognitive deficits and somnolence in children, but also possibly in adults usually within the first 6 weeks following radiotherapy. Typically, symptoms related to this type of injury resolves within 1-3 months. Sometimes supplementary treatment with steroids is necessary. The most serious effect is late-delayed injury occurring > 6 months after radiotherapy, which is often irreversible and caused by amassed vascular abnormalities, demyelination, loss of oligodendrocytes and neuronal precursors, gliosis, neuroinflammation and white matter necrosis, probably impelling each other [9,27,28].

Unfortunately, late-delayed changes so far cannot be reliably predicted based on the earlier clinical stages of brain injury [9,29]. Therefore, further research regarding the correlation of early events on the course and occurrence of late-delayed adverse effects is urgently required. Particularly imaging methods depicting the dynamics of microvascular changes over time after radiotherapy have the potential to bring us closer to a better understanding of radiotherapy-induced injury in general.
3. QUANTIFICATION OF RADIOThERAPY-INDUCED MICROVASCULAR CHANGES WITH ROUTINE MRI TECHNIQUES

Oedema

Vasogenic brain oedema is an early radiotherapy side-effect resulting from an increased blood-brain barrier permeability [30]. Currently available advanced radiotherapy techniques applying limited and fractionated doses have decreased the risk of symptomatic and debilitating brain oedema, as well as the need for treatment [31]. The risk of developing oedema is higher with stereotactic radiosurgery (SRS) than with fractionated radiation therapy [32,33]. Because vasogenic brain oedema can be challenging to detect on MRI, its prevalence is not well known.

Conventional MRI often shows no oedema related changes but may demonstrate high T2/FLAIR signal and changes on diffusion weighted imaging [31]. With DCE-MRI the extravascular contrast leakage, representing oedema, was found to be the highest in the 6th week of radiotherapy and remained abnormal until 6 months after irradiation [34]. Additionally, early vascular injury visible on DCE-MRI seemed to predict late neurocognitive changes [34]. A similar correlation was found for changes within the hippocampal vasculature [35]. However, taking into consideration all the other possible factors able to cause and modulate oedema formation, such as chemotherapy, surgery and the presence of a necrotising or a recurring tumour, oedema itself is not a reliable indicator of radiotherapy-induced injury [13]. Therefore, the related problem of radiological differentiation of peritumoral oedema and necrosis from true tumour progression is being intensively investigated [36–39].

In conclusion, the uncertainties around the underlying cause of brain oedema on radiological images indicate that so far oedema cannot be considered a reliable follow-up marker of radiotherapy-induced microvascular complications.
Cerebral microbleeds

Cerebral microbleeds (CMBs) have important clinical implications. Associations have been found between the number of CMBs and increased risks of neurocognitive decline, stroke, intracranial haemorrhage and mortality [40]. Post-radiation CMBs seem to also affect neurocognition, including attention, executive functions, working memory and visual processing speed [41]. Notably, a higher number of CMBs in temporal lobes leads to a higher risk for cognitive decline [42].

Histopathologically, CMBs most typically represent perivascular hemosiderin-filled macrophages resulting from a minor bleeding [43,44].

On MRI CMBs present as round or ovoid, nonlinear black lesions with blooming effect on T2*-weighted MRI and SWI [14]. They are most readily detectable on SWI which is highly sensitive to susceptibility changes of hemosiderin, to a lesser extent on T2*-weighted MRI, and are even harder to visualise on T2-weighted MRI [45] (Figure 1). Lesions recognised as CMBs on MRI, histologically may represent other changes in up to 11-24% [46]. Lesions mimicking CMBs are small cavernomas, microaneurysms, microdissections, and microcalcifications [43,47–49]. Furthermore, using histology as the gold standard, up to half of the CMBs remain undetectable using 1.5 - 3T T2*-weighted MRI [43].

Radiotherapy-induced CMBs are common [7,41,50–52], but the prevalence depends on many factors including age of the study population, radiation doses and fields, types of MRI sequences and field strength used, and at which timepoint the follow-up took place. In a recent study deploying T2*-weighted and SWI sequences (1.5T or 3T), the prevalence was as high as 90% after a mean observational period of 13.5 years [52]. Using 7T MRI this number is much higher with CMBs being found in up to 100% of patients [53]. CMBs might be detected as soon as 3-4 months after radiotherapy onset, with a latency of up to 9 years (mean
33 months) [54], therefore representing both early-delayed and late-delayed injury. In the healthy general population the overall prevalence of CMBs increases with age; being 36% in the population >80 years, around 7% for 45-50 years and rare in children [55]. Although age at the time of receiving radiotherapy also seems to have an impact on the prevalence of CMBs, different studies provide conflicting information regarding the age dependency. This significantly complicates the use of CMBs as an imaging biomarker [41]. Furthermore, an apparent increase in the prevalence of CMBs is consistently seen in patients receiving higher radiation doses and/or volumes [41]. The prevalence of CMBs also increases each year following irradiation, expanding beyond the area of high-dose irradiation and crossing the hemisphere boundaries [50,56] (Figure 2). Furthermore, since the changes emerge with different speed and amount in different patients with comparable radiotherapy treatment, individual predisposition probably also plays a role [57].

Currently, there is not enough data on possible differences between CMBs occurrence after photon vs proton therapy. Based on two available studies, the pattern of CMBs occurrence on MRI seems to be similar for photon and proton radiation therapy for both whole brain radiotherapy (WBRT) and focal radiation fields [50,58]. The first CMBs appeared already 3 months after proton therapy onset, with an increasing prevalence over time, especially within the first few years. Furthermore, the number of CMBs was related to risk factors, such as younger age and higher maximum radiation therapy dose [58]. In the case of proton therapy the highest amount of CMBs was found within the dose fields over 30 Gy [58].

In conclusion, regardless of certain limitations, so far CMBs seem to be the earliest radiological marker available on routine clinical imaging that both reflects microvascular radiotherapy-induced injury and correlates to delayed radiotherapy complications.

Telangiectasias
Telangiectasias as solitary findings were described in up to 20% of patients who underwent radiotherapy and were more common in a younger population [59]. The number of telangiectasia increased with time, and no evident dose-dependency was found [59]. However, clinical implications of radiation-induced telangiectasias remain unclear.

Telangiectasias are histologically dilated capillaries with thin endothelium interspersed with brain parenchyma [60]. They are free of calcifications, gliosis, external haemorrhage and hemosiderin-laden macrophages [60].

On T2*-weighted or SWI MRI telangiectasias demonstrate a hypointense signal due to the slow flow of blood rich in deoxyhaemoglobin [60,61], and can appear somewhat similar to CMBs. However, telangiectasias generally tend to be significantly bigger than CMBs and demonstrate homogeneous contrast enhancement [60,62].

In conclusion, the amount of studies and the number of patients participating in studies regarding the relation of telangiectasias with radiotherapy are not sufficient for a definite statement, but overall the evidence seems to support that telangiectasias are of minor relevance.

Cavernous malformations

Cavernous malformations resulting from radiotherapy are more at risk of symptomatic bleeding than cavernous malformations of other origins [15], resulting in a lifelong uncertainty for patients.

The risk of bleeding can be histopathologically explained by the presence of venous or capillary caverns lined with an endothelial layer but lacking muscle and elastic components, which makes them fragile [63]. Additionally, cavernous malformations are not interspersed with normal brain parenchyma [63], in contrast with telangiectasias. Radiation-induced cavernous malformations are suggested to result from neoangiogenesis, following
vessel occlusion, with wall hyalinisation, necrosis and concomitant mutations by some [15,64]. However, some researchers have suggested that cavernous malformations evolve from organising haematomas rather than proliferate directly from destructed vasculature [65]. Telangiectasias and cavernous malformations have been suspected to be different developmental stages with the same origin and risk of microbleeds [60,66].

On T2-weighted, T2*-weighted and SWI MRI the early stage cavernous malformations present as punctate hypointensities [67]. When more advanced, they demonstrate irregular intensity, popcorn-like enhancement and an incomplete hemosiderin rim [65] (Figure 3).

The cumulative prevalence of cavernomas following brain irradiation after 10 years was found to be up to 43% [68]. The mean time from irradiation to the formation of typical multiple cavernomas varies from 3-12 years and cannot be considered homogenous [15,69]. Another study with T2*-weighted imaging also showed that higher radiation dose and a larger radiation field size led to a higher amount of cavernomas [70]. However, some evidence exist that lower radiation doses lead to cell instability with a low level of apoptosis, resulting in a higher risk of cavernoma formation, while high-dose radiation results in intense cell apoptosis without a chance of cavernoma formation [69,71].

In conclusion, cavernous malformations visible on radiological imaging in their readily evolved form are considered a late-delayed complication and therefore are not useful as a timely predictive marker for future cognitive complications before the underlying processes become irreversible.

White matter lesions

Presence of white matter lesions (WML) and reduction in white matter volume clinically may lead to lower intelligence quotient (IQ) and deterioration of cognition [8,72–
The loss of white matter volume and deterioration of IQ, attention and academic performance increase with time passing from the radiotherapy onset [75]. Higher white matter volume loss is correlated with the radiation dose and younger age at the time of radiotherapy [75]. Neurocognitive decline after radiotherapy linked to white matter hyperintensities on T2-weighted MRI sequences, so-called radiation-induced leukoencephalopathy, is mostly represented by executive functions and episodic memory decline (subcortical frontal mode with information recovery deficiency), without correlation with the type of radiotherapy (focal or WBRT) [17]. In one study comparing children with ependymoma treated with proton beam radiation therapy (PBRT) or photon-based intensity-modulated radiation therapy (IMRT), more changes were observed in the proton beam group and in younger patients, which seems to be an effect of differences in relative biological effectiveness (RBE) [76,77]. Furthermore, in the study with pencil beam scanning proton therapy the prevalence of symptomatic WML in treated patients was as low as 3% [78].

Histopathological findings of WML are heterogeneous [79,80], despite a similar appearance on MRI, which indicates the complexity of the underlying processes, mutual dependency and dynamic influences between all the entities forming WML.

WML may represent degeneration and loss of myelin, axons, oligodendroglial cells and ependymal cells, as well as astrogliosis, activated macrophages, fibrohyalinotic vessel changes and cerebral ischemia with associated demyelination [79,80]. Those findings are all within the spectrum of WML, interpreted by some researchers as remains of ischemic microvascular processes, and in some cases resulting in accomplished lacunar infarcts [79].

Radiotherapy-induced WML are generally symmetrical in patients with total brain irradiation [81], similar to other neurological diseases evolving from microvascular impairment [82]. In other cases, the asymmetry of the WML reflects the asymmetry of the radiotherapy field in focal brain irradiation [83] (Figure 4). Radiotherapy-induced WML
typically spare the subcortical U-fibres [84,85] (Figure 5), which may be helpful in distinguishing radiotherapy-induced white matter hyperintensities from tumour infiltrations, as both lead to T2-weighted and FLAIR-weighted hyperintensities. On conventional MRI sequences, WML become visible from a few months to several years after radiotherapy [30,86,87]. The prevalence of WML is unclear and differs significantly between studies [73,87,88]. However, novel localized radiotherapy techniques, such as SRS can reduce the risk for the occurrence of WML on MRI [89].

In conclusion, white matter lesions are an indirect marker of partial microvascular injury. They appear after radiotherapy with a highly varying delay and are mostly useful as additional radiological proof for readily apparent clinical symptoms.

Lacunar infarcts

Lacunar infarcts are commonly defined as fluid-filled cavities smaller than 15mm in diameter of presumed vascular origin and therefore are considered one of the indicators for small vessel disease [90]. Capillary dysfunction may lead to impaired tissue oxygenation by diminished blood delivery, but also by means of a reduced oxygen extraction capacity over the capillary wall [91]. Although lacunar infarcts may be accompanied by clinical symptoms, in brain radiotherapy patients, lacunar infarcts were found to be predominantly silent without significant differences in observed IQ between groups with and without lacunar infarcts [92].

On MRI final lacunar infarcts present as small round or ovoid entities with CSF signal on all sequences and are surrounded by a thin rim of high T2 signal; this rim can only be appreciated on FLAIR images [93] (Figure 6). In this context, they can look similar to wide perivascular spaces, especially at shared typical locations such as the level of the anterior commissure and basal ganglia, although perivascular spaces typically lack a rim of high signal.
intensity on FLAIR images [93]. Furthermore, newly appearing lesions favour a lacunar origin [90].

The incidence is higher for children younger than 5 years of age at the time of radiotherapy [92]. For the adult population, the incidence after receiving radiotherapy was found to be comparable to the incidence in the general population [16]. Lacunar infarcts seem to be late-delayed changes in most of the cases [92].

In conclusion, lacunar infarcts seem to only have a limited value in monitoring radiotherapy-induced microvascular damage, since they appear late, are infrequently present and are not correlated with cognitive decline. However, the topic of lacunar infarcts probably requires further research, as the current literature on lacunar infarcts after brain irradiation can be considered fairly limited [94].

Radiation necrosis

Radiation necrosis is an extreme stage of radiation damage and is often a severe and irreversible process of cell death, involving both endothelium and white matter [19]. The reported prevalence of radiation necrosis varies between 3% and 64% [26]. Among novel radiotherapy techniques the occurrence of radiation necrosis is especially expected with SRS, due to delivery of high dose radiation with hypofractionation [95]. In the case of SRS up to half of the patients develop radiation necrosis, which is quite often symptomatic [95]. Although there have been only few studies considering radiation necrosis patterns following particle treatment in patients with brain tumours, there is a concern for higher rates of radiation necrosis after proton therapy because of a higher relative RBE of protons [77,96,97]. However, a study using pencil beam scanning proton therapy revealed a relatively low incidence of symptomatic radiation necrosis (7%) [78]. Additionally, chemotherapy, especially when combining multiple chemotherapeutical agents, seems to be related to higher
radiation necrosis rates in paediatric patients who underwent proton therapy [78,97]. Radiation necrosis may develop from weeks to even more than a decade after irradiation and can be life-threatening with mass effect, focal neurological symptoms and cognitive decline [98,99].

Histologically, radiation necrosis corresponds with haemorrhagic coagulative necrosis with vascular hyalinisation and reactive gliosis [98,100]. The clinical diagnosis of radiation necrosis is challenging regarding the lack of a clear definition, as it is currently described as the appearance of new neurological symptoms as well as radiological findings [100,101]. On conventional MRI radiation necrosis presents as a ring-enhancing lesion accompanied by oedema [102]. Since the radiological appearance of radiation necrosis is similar to that of tumour progression, these entities cannot be clearly distinguished on conventional MRI [102]. DWI derived ADC maps can be of help, but a more accurate differentiation has been shown using other MRI techniques like DSC imaging, DCE imaging, ASL and magnetic resonance spectroscopy (MRS), with MRS providing the highest sensitivity and specificity [102,103].

In conclusion, challenges related to distinguishing radiation necrosis from tumour progression, as well as the severity of brain tissue destruction in the area of radiation necrosis limits the value of radiation necrosis as a marker of radiotherapy-induced microvascular changes that are predictive of long-term complications.

4. OPTIMAL CEREBRAL MICROBLEED DETECTION WITH ROUTINE IRON-SPECIFIC MRI TECHNIQUES

Because CMBs seem to be so far the most relevant clinically available potential early biomarker for radiotherapy-induced damage, having associations with delayed poorer cognitive function, we summarize below the rationale and approaches for optimal imaging of CMBs with conventional MRI.
T2*-weighted imaging and SWI are both susceptible to heme and non-heme iron, resulting in hypointensities on the SWI MRI image in area’s with increased iron concentrations [104,105]. More specifically, the iron-susceptibility effect results from deoxyhaemoglobin, ferritin and hemosiderin, which are blood elements carrying exposed iron [57,104]. Oxygen in haemoglobin decreases the iron exposure and therefore the susceptibility effect; as a result arteries and arterioles are not as negatively contrasted on SWI as venous structures [57,104]. In line with this, increasing hemosiderin concentrations over time increases the sensitivity of SWI for CMBs detection, especially in the chronic phase of bleeding [106].

For detection of iron-positive lesions, SWI is preferred over T2*-weighted imaging, because of the higher overall sensitivity of SWI [45,67,107–109]. SWI can detect microbleeds of approximately the size of a typical voxel (1 mm³) [106]. The superiority of SWI is based on combining both magnitude and phase information of the T2*-weighted gradient echo sequence [104]. SWI also provides a higher signal-to-noise ratio (SNR), and therefore can be acquired with higher spatial in-plane resolution and thinner sections compared to T2*-weighted imaging [108,110]. Also, SWI performed at 3T field strength still outperforms T2*-weighted imaging performed at a higher field strength of 7T [111]. In general, CMBs detection improves when using higher field strengths because of the increased sensitivity for detecting iron deposit induced susceptibility changes present in CMBs. This effect makes T2*-weighted and SWI at 3T and 7T MRI better tools for finding CMBs than similar sequences at 1.5T field strength [112,113]. However, the observed area with susceptibility changes overestimates the actual size of CMBs – the so-called blooming effect [111,112], which also scales with increasing field strength.

In one study no difference in detection of CMBs was found between 3T and 7T SWI MRI for the whole study group, but for some patients, 7T MRI showed more CMBs deeper in
the brain [111]. SWI was also found to be more reliable and sensitive for detecting cavernous malformations, exposing twice the number of lesions compared to T2*-weighted imaging, and also far more sensitive than T2-weighted imaging, within multifocal and familial cases [67].

In general, the presence of a suspected CMBs lesion detected with either T2*-weighted MRI or SWI correlates quite well with histopathological findings [44,45]. When it comes to CMBs being mimicked by calcifications, these ambiguities might be resolved by using SWI-filtered phase images in combination with dual-energy CT scans [104,114]. SWI filtered-phase data distinguishes intensities of paramagnetic CMBs as hypointense and diamagnetic calcifications as hyperintense [104]. For excluding other deoxyhaemoglobin filled structures, QSM seems to be more sensitive.

5. RECENT DEVELOPMENTS AND FUTURE PERSPECTIVES IN MRI

Quantitative susceptibility mapping (QSM)

QSM is a post-processing technique that utilizes T2*-weighted gradient echo phase data to reconstruct a susceptibility map [20,21]. Iron deposits, calcifications and venous oxygen saturation can be assessed in a quantitative fashion with such a susceptibility map [20], which is not possible using SWI. This difference not only makes QSM more reliable than SWI when it comes to quantifying the iron concentration in a voxel, but also allows for a more accurate definition of the lesion location. Furthermore, QSM allows for a better estimation of the actual size of an observed lesion, a limitation seen with SWI and T2*-weighted MRI which overestimate lesion size because of the pronounced blooming effect in these sequences [20,115–117]. QSM seems to be the most reliable technique for iron quantification in longitudinal studies as well as in multicentre studies performed with different protocols, due to its higher intrinsic reproducibility [116].
QSM has the potential to better distinguish CMBs from veins, based on the stronger susceptibility effect resulting from different iron forms in a CMB [106]. In turn, this potentially allows for better differentiation between several histopathological entities of iron accumulation. Another benefit from QSM is allowing for differentiation between CMBs and calcifications, which is not always possible with SWI due to aliasing [21]. Applying iron oxide nanoparticles based contrast agents together with quantitative T1, T2 and T2* relaxation time measurements and QSM, even seems to enable the assessment of cerebral blood volume, mean vessel size and microvascular angiogenesis [116,118–121]. However, the downsides of QSM are lengthy imaging postprocessing times and the need for manual detection and evaluation of all visible lesions, making it time-consuming and potentially vulnerable for interobserver variability [122]. Those issues are probably going to be solved by automatic quantification in the future [122]. Currently QSM images can also be influenced by the artefacts from the regions neighbouring the skull [122], similarly to SWI.

QSM has already been shown to be superior to SWI concerning detection of CMBs and diffuse axonal injury in traumatic brain injury patients [106], as well as superior in revealing CMBs from underlying unstable aneurysms [122,123] and cerebral cavernous malformations [124–126]. Those findings underscore the potential benefit of QSM for the detection of radiotherapy-induced microvascular complications, leading to an earlier and more exact assessment of risk for delayed complications in brain tumour patients.

In summary the major potential advantages of QSM are the ability to quantitatively assess CMBs over time and its robustness due to insensitivity to technical differences between different scanners [127]. However, to what extent these advantages hold true in clinical use should be further validated before routine clinical implementation can be considered.

Diffusion tensor imaging (DTI)
DTI derived fractional anisotropy (FA) is so far the best imaging biomarker for tracking early white matter disruptions [128], which as mentioned before, seem to indirectly reflect microvascular pathology. Although DTI shows no significant differences between regions with different radiation dose within the first month following radiochemotherapy treatment, the images become abnormal after 4-6 months [24]. Interestingly, FA was also reduced in the normal-appearing areas on T2-weighted MRI [128], as early as 3 months after irradiation and partially returned to normal within 14 months from irradiation in adults treated with adjuvant radiotherapy only [86]. Furthermore, it has been suggested that DTI changes also correlate with neurocognitive deterioration [128–134]. Dose-dependence and prevalence of white matter changes as assessed by DTI differ between studies, but they seem to occur even after low doses of radiotherapy (5-10 Gy) [24,135,136]. White matter disruptions seem to be mainly due to progressive dose-dependent demyelination, and within the first months occur mainly in high dose areas [136]. After 32 weeks from radiotherapy onset, the process becomes diffuse and is also concomitant with mild axonal fibre injury [136]. Another DTI based study found remarkable extracellular changes, suggesting that changed vascular permeability and neuroinflammation are both contributors to the white matter disruption [24].

A recent study employing DTI and resting state functional MRI demonstrated the existence of a dynamic multifocal process of overlapping vasculopathy and demyelination, in which vasculopathy dominates the early stages, followed by demyelination [137], in turn suggesting that the above described heterogeneous changes may resolve or progress, depending on the processes of neuroprotection and compensation.

That also implies that it will be essential to simultaneously assess both microvascular changes using MR microvascular perfusion techniques as well as white matter changes with diffusion sensitive MRI approaches in the context of radiotherapy monitoring, because of
observed delays in the onset of demyelination after radiotherapy induced microvascular changes [137].

Novel dynamic susceptibility-weighted contrast-enhanced imaging techniques

Single (gradient) echo dynamic susceptibility-weighted (DSC)-based acquisitions can be post-processed to generate a novel imaging biomarker reflecting microvascular flow heterogeneity, called capillary transit time heterogeneity (CTH) [138]. In a wide variety of pathological conditions CTH has been shown to increase significantly and with greater general sensitivity than other functional MR-derived imaging biomarkers [91,139–141]. Use of CTH in radiotherapy planning and response evaluation has been highly limited, but it holds great promise due to its expected sensitivity to early changes.

Dual echo (spin-echo/gradient-echo) variants of the DSC technique can be used to derive a similar, yet slightly different, imaging biomarker, reflecting more microvascular architectural changes than capillary flow heterogeneity alone, using the ratio of gradient echo versus spin echo relaxation rates over time [22]. This recently developed technique coined vessel architectural imaging (VAI) enables the visualisation of susceptibility effects induced by microvessels even <10µm radius, including capillaries [22]. VAI was primarily used for assessing glioblastoma vessels response to anti-angiogenic therapy by evaluating changes in tissue microvascular architecture and oxygenation in the tumour before and after treatment. Observed stabilisation of microvascular architecture and oxygen levels after treatment, meaning a decrease of microvessel leakage and hypoxia, local shunting or closed microvessels, indicates that this method can outperform all other commonly used MR sequences regarding prediction of overall survival [142]. Similar techniques based on spin-echo and gradient-echo imaging of vessel size, oxygen metabolism and neovascularisation, were also found useful in glioma grading [143,144]. Due to its high sensitivity to change, VAI
could potentially be used to assess early post-radiation dynamic changes in brain microvasculature before later changes emerge.

Arterial spin labelling (ASL)

ASL is a non-invasive flow imaging technique without the need for intravenous contrast medium administration, with the potential for estimating cerebral perfusion changes in capillaries after radiotherapy [145]. A study with ASL after focal brain radiation showed an early decrease in grey matter cerebral blood flow in primary brain tumour patients, more prominent in the areas receiving a higher radiation dose [146]. It is believed to be caused by early endothelial cell number depletion, in turn leading to capillary wall instability and occlusion [34,146,147]. ASL was also found to be useful for the differentiation between low and high-grade gliomas [148,149]. ASL-based brain tumour vascular density estimation seems to correlate with corresponding histopathological findings [150]. However, to the best of our knowledge, currently no clear evidence exists that ASL can provide detailed microvascular information beyond mean density, such as microvascular architecture which can be provided by DSC-MRI.

Intravoxel incoherent motion (IVIM)

IVIM quantifies microvascular perfusion information based on local voxel readouts, independent on arterial input function [25,151,152]. This method was found to be sensitive for perfusion changes of vasoconstriction and vasodilatation due to blood oxygenation level changes [25]. In comparison with DSC, IVIM possibly presents images with a higher resolution not being dependent on the contrast leakage as no i.v. contrast administration is needed for IVIM [152]. The difference should be especially prominent within area’s with pathological changes and impaired blood-brain barrier [152]. IVIM seems to be based on
chaotic blood flow in small vessels and capillaries, without signal contamination from large vessels as is the case in DSC [25,152].

IVIM has been applied with promising results for perfusion imaging in several organs and diseases [152], as well as in glioma grading [153] and tumour progression [37], as an addition to other techniques. However, it is not as attractive for the brain due to small cerebral perfusion fraction (5%) [154] and resulting low signal-to-noise ratio [25]. However, a study on cerebral small vessel disease aiming to assess the brain microvasculature and parenchymal microstructure with IVIM unexpectedly revealed increased perfusion volume fraction in relation to disease severity [155]. The latest study combining ASL and IVIM imaging has brought more insight into the complexity of IVIM measurements [154], showing the advantages of combining different methods.

6. FUTURE DIRECTIONS

Novel promising MRI techniques available for research are yet to be implemented for the purpose of (early) detection of radiotherapy complications. Studies using DTI not only have changed our perception of the timecourse of white matter integrity disturbances, with great advantages over traditional FLAIR and T2-weighted imaging for WML, but also gave more insight into the relation of WML to cognitive changes. The cerebral changes detected with conventional MRI all seem to be a result of a complex process, in which endothelium plays a key role. Radiologically detectable dynamics of microvascular changes under the influence of brain radiotherapy is still a missing piece of the puzzle, and this part is yet to be properly investigated. Following microvascular changes during radiotherapy treatment over time could not only improve decision-making regarding further radiation treatment planning (adaptive radiotherapy) but could also facilitate research on drugs reversing the early pathological process. Furthermore, comparing early microvascular damage in patients treated
with photon and proton therapy could accelerate the understanding of why proton therapy treatment for low-grade gliomas in adults may be advantageous regarding cognitive changes within the 5 year follow-up period after radiotherapy [156].

The outlined research should preferably be performed in low-grade brain tumour patient populations, for obtaining a better assessment of the correlations between early microvascular changes and delayed cognitive outcomes, as this group of mostly young adult patients is generally neurologically and neuro-cognitively intact at the time of diagnosis and has a relatively high survival and long lifespan.

Another highly interesting approach is to combine different MRI techniques and derived imaging biomarkers within the same patient, as this can lead to a better understanding of all facets of the radiation damage. Combining advanced perfusion techniques with DTI, QSM or IVIM have the potential to provide quantitative results that better reflect the multifactorial nature of the underlying processes.

7. **CONCLUSIONS**

The body of knowledge regarding the consequences of brain radiotherapy is expanding, as well as the range of emerging novel MRI techniques with a high potential to provide novel insights. However, using MR-derived imaging biomarkers for prediction and prevention of early and long-term radiotherapy side effects, such as microvascular-injury-related changes, remain highly challenging. Because of the advent of new oncological therapies, the overall survival of patients with brain tumours continues to increase, making early detection and prediction of side-effects also increasingly relevant and urgent. MRI techniques routinely available to clinicians often lack sensitivity and specificity for the detection of early changes, making the choice of the correct technique for specific research questions ever more important. The current situation poses a need for early MRI biomarkers
to predict long-term outcome after radiotherapy. That would allow early prevention of cognitive problems and could open the door for MRI-guided adaptive radiotherapy, using an optimized approach to minimise long-term effects of radiotherapy on healthy brain tissue and simultaneously pave the way for validation of potentially protective pharmaceutical interventions.

Finally, we conclude that a single current or future MRI technique will probably not be able to provide all answers needed, whereas integration of multi-technique/sequence derived imaging biomarkers could provide a workable path forward, overcoming several of the current limitations of individual biomarkers for the assessment of radiotherapy-induced microvascular injury.

CONFLICT OF INTEREST: The authors declare that there is no conflict of interest.

ACKNOWLEDGEMENTS: None.
REFERENCES

potential role of modern imaging and radiotherapy techniques. Lancet Oncol 2017;18:e91–100. doi:https://doi.org/10.1016/S1470-2045(17)30030-X.

[45] Shams S, Martola J, Cavallin L, Granberg T, Shams M, Aspelin P, et al. SWI or T2*:
doi:https://doi.org/10.3174/ajnr.A4248.

doi:https://doi.org/10.1148/radiol.2018170803.

doi:https://doi.org/10.1159/000331466.

doi:https://doi.org/10.1159/000139661.

doi:https://doi.org/10.1212/WNL.0000000000003631.

[66] Rigamonti D, Johnson PC, Spetzler RF, Hadley MN, Drayer BP. Cavernous malformations and capillary telangiectasia: A spectrum within a single pathological

[73] Fouladi M, Chintagumpala M, Laningham FH, Ashley D, Kellie SJ, Langston JW, et al. White matter lesions detected by magnetic resonance imaging after radiotherapy and

doi:https://doi.org/10.1002/pbc.24947.

doi:https://doi.org/10.1016/j.biopsych.2008.03.024.

doi:https://doi.org/10.1016/S1474-4422(10)70104-6.

doi:https://doi.org/10.1007/s00401-005-0023-y.

doi:https://doi.org/10.1161/STROKEAHA.117.017526.

doi:https://doi.org/10.3171/2018.2.JNS1884.

doi:https://doi.org/10.1177/0271678X15606723.

doi:https://doi.org/10.1177/0271678X17721666.

[149] Warmuth C, Günther M, Zimmer C. Quantification of Blood Flow in Brain Tumors:
doi:https://doi.org/10.1148/radiol.2282020409.

doi:https://doi.org/10.3174/ajnr.A0903.

doi:https://doi.org/10.1148/radiology.161.2.3763909.

