Ethnic capital and intergenerational transmission of educational attainment

Agnieszka Postepska

Summary
This paper studies the role of ethnicity in the intergenerational transmission of educational attainment within the framework outlined by Borjas (Quarterly Journal of Economics, 1992, 107(1), 123–150). Relying on heteroskedasticity to identify parameters in the presence of endogenous regressors, I find evidence that the ordinary least squares estimates of the effect of ethnic capital on intergenerational transmission of education are biased upwards due to the transfer of unobserved ability. I also find that, while the role of parental capital has declined over time, ethnic capital has a relatively constant effect on intergenerational transmission of educational attainment.

1 INTRODUCTION

Borjas (1992) first pointed to the distinct feature of intergenerational transmission which he referred to as the transfer of ethnic capital. The overall human capital gained by the group as a whole is expected to have an effect on members of a group. The skills of the next generation depend on parental human capital and on the quality of ethnic environment in which parents make their investment decisions. Borjas finds a strong and significant effect of the ethnic capital on intergenerational transmission of education. Children’s educational attainment, occupational standing, and earnings are affected not only by parents’ education, occupational prestige, or earnings, but also by the average education or earnings of their corresponding ethnic group. However, Bauer and Riphahn (2007) found no evidence supporting Borjas’ hypothesis using 2000 Swiss census data. Similarly, Aydemir, Chen, and Corak (2013) did not confirm the importance of ethnic capital for earnings mobility among children of immigrants in Canada, and Nielsen, Rosholm, Smith, and Husted (2003) did not find convincing evidence in Denmark.

This study contributes to the literature in two ways: (i) I apply the framework developed in Borjas (1992) to a more recent data set, which allows for the analysis of the changes in the role of ethnic capital over time; (ii) I improve on the estimation strategy employed by Borjas by accounting for endogeneity of both parental and ethnic capital. I apply Klein and Vella’s (2010) constant correlation estimation procedure, which allows for estimation of the effect of parental and ethnic capital on educational attainment in the absence of exclusion restrictions.

The paper is organized as follows. The next section provides basic summary statistics. Section 3 explains the estimation method and identification. Section 4 follows with empirical results and discussion. Section 5 concludes.

1 This method has been successfully applied to estimate the intergenerational transmission of education in the USA (Farré, Klein, & Vella, 2013), to estimate returns to schooling in the USA (Farré, Klein, & Vella, 2012) and in Germany (Saniter, 2012), and also to estimate the occupational mobility in China (Emran & Sun, 2015; Holmlund, Lindahl, & Plug, 2011).
2 | DATA AND SUMMARY STATISTICS

I use the 1977–2014 General Social Survey data. The sample consists of 15,390 individuals aged 18–64 born in the USA. I exclude individuals born abroad as well as native Americans and African Americans. Individuals who did not grow up with both parents or for whom information about their own or their parents education attainment is not available are omitted from the sample. Also, only individuals for whom there are at least 30 other individuals in the same cohort of the same ethnic origin are included.2 Individuals in the sample were born between 1913 and 1992 and were divided into five cohorts. I measure parental capital with father’s education and ethnic capital as the average years of schooling of the fathers within the cohort in a given region.3

The final sample comprises individuals of 26 different origins. Descendants of German, English, Welsh, and Irish immigrants are most represented in the sample. Table 1 presents the summary statistics for all variables used in this analysis. Females represent 54% of the sample. An average individual is about 46 years old, has about 3 siblings and has completed 14 years of schooling. The average parental and ethnic capital are approximately the same at 11 years of schooling. Forty-one percent of all individuals lived in an urban setting at the age of 16 and 25% lived in the South at the age of 16. Only 10% of individuals have at least one parent born abroad. Average educational attainment as well as the average schooling of the ethnic groups increased by around 1 year between the earlier and more recent samples. For the sake of brevity, a more detailed description of the sample and key data characteristics are presented in the online Supporting Information Appendix (Section 1).

3 | MODEL AND IDENTIFICATION

I follow Farré et al. (2012, 2013) to describe the identification strategy and its interpretation in this framework. In the absence of exclusion restrictions, identification of the parameters relies on assumptions about the structure of the error term and heteroskedasticity in the model (see ; Klein & Vella, 2010, for details). Let edu denote the individual’s education, edup parental education (parental capital), and eduav the average education of the ethnic group (ethnic capital). The model consists of three equations:

\[
\begin{align*}
\text{edu}_i &= \gamma_1 \text{edup}_i + \gamma_2 \text{eduav}_i + \delta_0 X_i + u_i, \\
\text{edup}_i &= \delta_2 X_i + v^p_i, \\
\text{eduav}_i &= \delta_3 X_i + v^a_i.
\end{align*}
\]

(1)

I assume that all variables in \(X \) are exogenous and that there are no instruments available for the two endogenous regressors. Exogeneity of \(X \) implies that \(E(u_i | X_i) = E(v^p_i | X_i) = E(v^a_i | X_i) = 0 \). Since there are no variables that provide exogenous variation to identify the \(\gamma \)s, assume for simplicity that the same \(X \)s appear in all three equations.

Furthermore, assume that the errors are heteroskedastic and can be defined as

\[
\begin{align*}
u_i &= H_u(X_i) u^*_i, \\
v^p_i &= H^p_u(X_i) v^p_i \quad \text{and} \quad v^a_i = H^a_u(X_i) v^a_i,
\end{align*}
\]

(2)

where \(u^*_i, v^p_i, v^a_i \) are correlated homoskedastic error terms and \(H^2_u(X_i), H^p_u(X_i), \) and \(H^a_u(X_i) \) denote the conditional variance functions for \(u_i, v^p_i \) and \(v^a_i \), respectively. The homoskedastic part reflects the transfer of unobserved ability,

2This is an arbitrary threshold and a higher threshold would be desirable. However, higher thresholds resulted in significant sample size loss and, more importantly, fewer ethnic groups.

3Note that Farré et al. (2012) find that the high correlation between parents’ education makes it difficult to disentangle the effects of mothers’ and fathers’ schooling. Inclusion of mothers’ education does not change the main qualitative results.
\(u^*_i, v^*_{i}, v^*_{i | av}\), which is independent of the parent's and child's environment as implied by Equation 2. However, the heteroskedasticity implies that, once we condition on the vector of exogenous variables \(X_i\), the transfer of ability contributes differently to human capital accumulation depending on respective socioeconomic background. Identification in the model is achieved through this variation. Without this variation the mapping from \(u^*\) and \(v^*\) is identical to the mapping between \(u^*\) and \(v^*\) and therefore we cannot estimate the relationship between the \(u^*\) and \(v^*\) or \(v^*\). In addition to the assumption of heteroskedasticity, the following constant correlation conditions are necessary for identification:

\[
E[u^*_i v^*_{i | av} | X_i] = E[u^*_i v^*_{i | av} | X_i] = E[u^*_i v^*_{i | av} | X_i] = \rho^{av}.
\] (3)

This error structure implies that the unobservables affecting educational attainment are positively correlated with both parental and ethnic capital. This is consistent with ability being responsible for the confounding effect of parental education and average educational attainment within the ethnic group. However, there is also a possibility that this correlation is negative. It would be the case if there were other unobserved factors that are not captured by ability. It is possible to extend the error structure to accommodate this case without compromising any of the identification in the model (Farré et al., 2012; Klein & Vella, 2010). However, since I find positive correlations in this application, I will refer to the simple structure as defined in Equation 3. Note, however, that the identification fails if there are factors that are related to the exogenous variables in the model and to the correlations between the unobserved factors that are not controlled for. In the context of this paper, the conditional constant correlation assumption implies that, after controlling for all the exogenous variables in the model, the correlation between the unobserved factors affecting individuals' educational attainment and parental educational attainment or average educational attainment in the ethnic group remains constant. Therefore, the identification would fail if the correlation between the transfer of unobservables was affected by individuals' behavior or environment. The heteroskedasticity implies that the contribution of the unobservables to the formation of educational attainment differs depending on characteristics.

To summarize, both heteroskedasticity and constant correlation between the homoskedastic error term in the child's educational attainment equation and the parental schooling or the ethnic capital equation are necessary for identification. Consider the latter condition first. If unobserved ability is transferred genetically, than this assumption is clearly satisfied. This approach was successfully applied by Farré et al. (2012, 2013). Since systematic differences in the “quality” of cohorts of immigrants have been found (Borjas, 1987, 2006), individual unobserved ability is likely to be correlated with the average unobserved ability of the ethnic group. Moreover, ethnic features are passed on from the parents to the children in the form of cultural capital (Bourdieu, 2011), which comprises formal education attainment as well as norms, beliefs, attitudes, and skills that originate in culture that is shared by an ethnic group (Portes, 2000; Rosen, 1959). This form of capital is internalized during the socialization process through exposures to role models within the family and is enacted regardless of the presence of social interactions with other group members (Bourdieu, 2011; Portes, 2000). A relevant example of an expression of such capital is the above average performance of Asian students in the USA, which is often attributed to the heavy weight put on education as a vehicle for upward mobility in Confucian cultures (Kao & Thompson, 2003; Portes, 2000). Moreover, Borjas (1995) finds that neighborhood effects cannot account for the entire impact of ethnicity on intergenerational transmission of education, which can be interpreted as an existence of a constant element of the ethnic capital transmission.

Nevertheless, since parents can shape children's contacts with ethnic group members, and time and origin of migration correlate with the cohort quality, the effect of the transfer of the unobserved ability and cultural capital differs depending on observed characteristics—the second condition required for identification. Depending on when and which country the parents are migrating from, they will be either positively or negatively selected and therefore the \(H^av_{av}(X_i)\) and \(H^av_{av2}(X_i)\) will not be the same across individuals. In addition to peer effects, heteroskedasticity in the child's schooling equation is granted by the fact that parents will invest less effort in the child's education in a favorable ethnic environment and more in a less favorable one (Bisin & Verdier, 2001; Patacchini & Zénou, 2011). Also, since parents apply different ethnic socialization models to sons and daughters (Dion & Dion, 2001; Suárez-Orozco & Qin, 2006), gender introduces another source of heteroskedasticity. Moreover, heteroskedasticity in the child and parental educational attainment also arises as a result of regional differences in access to educational institutions (Farré et al., 2012), while place of birth of the parents can affect attachment to the ethnic community, which may influence the transfer of unobservables.5

4This is one of the possible error structures. Klein and Vella (2010) show that other structures are consistent with the constant correlation coefficient assumption.

5See the Supporting Information Appendix (Section 2) for an illustrative example of the interpretation of the error structure and underlying assumptions.
The above error structure allows construction of control functions inclusion of which in the main equation makes estimation of the unknown parameters \(\gamma = \{ \gamma_1, \gamma_2 \} \) feasible. This is obtained by including the consistent estimates of \(v_i^{\text{av}} \) and \(v_i^r \) in the child’s education equation. Let \(\lambda_1 = \frac{\text{cov}(u_i, v_i^r)}{\text{var}(v_i^r)} \) and \(\lambda_2 = \frac{\text{cov}(u_i, v_i^{\text{av}})}{\text{var}(v_i^{\text{av}})} \). We can then rewrite the error term \(u \) as \(u_i = \epsilon_i + \lambda_1 v_i^r + \lambda_2 v_i^{\text{av}} \), which explicitly shows why heteroskedasticity is necessary for identification. If all errors are homoskedastic, the control function has the same impact across all individuals; that is, \(\lambda_1 \) and \(\lambda_2 \) are constant. Let \(A_1(X_i) = \rho^r H_i(X_i) \) and \(A_2(X_i) = \rho^{av} H_i(X_i) \). Then, under the conditional correlation assumption in Equation 3, we can rewrite the above error term as \(u_i = \epsilon_i + A_1(X_i)v_i^r + A_2(X_i)v_i^{av} \). The fact that both \(A_1(X_i) \) and \(A_2(X_i) \) are nonlinear in \(X_i \) grants identification of the parameters of the child’s education equation:

\[
edu_i = \delta_0 X_i + \gamma_1 \text{edu}_i + \gamma_2 \text{eduav}_i + \rho^r \frac{H_d(X_i)}{H_i(X_i)} v_i^r + \rho^{av} \frac{H_d(X_i)}{H_i^{av}(X_i)} v_i^{av} + \epsilon_i.
\] (4)

4 | EMPIRICAL STRATEGY

Turning to implementation of the identification strategy outlined in the previous section, first consider the ordinary least squares (OLS) estimates of intergenerational transmission, which are presented in the first column of Table 3.\(^6\) In line with existing literature, I find that each additional year of average and parental schooling increases the child’s education by 0.138 and 0.237 years, respectively. Both coefficients are significant at the 1% level.

I follow closely Farré et al. (2012) in the estimation strategy.\(^7\) Since there are two endogenous regressors—parental education and ethnic capital—I first estimate these two equations using OLS. Next, the conditional variance in both equations is estimated using nonlinear least squares. I use the exponential function to model the conditional variance in all equations. The last step involves simultaneous estimation of the heteroskedastic index and the coefficients of the main equation. This is obtained by a standard iterative procedure.

4.1 | Parental and ethnic capital equations

All results are presented separately for the whole sample, as well as for the sample used in Borjas (1992)—the pre-1989 sample—and the post-1989 sample. This allows for comparison with the results of Borjas but also reveals trends over time. The sets of variables included in the parental and ethnic capital equations are almost the same. Since the age of the parent is not known directly, I include the age of the child (and age squared) in both of the equations, which, combined with the dummy variables indicating the cross-section, controls for the age of the parent. Dummy variables for regions control for geographic differences in educational attainment that might result from local labor market-specific needs or differential access to educational institutions. I also include dummy variables indicating whether the child was living in the South or in the city at the age of 16. Since this information is not available for the parents, I use the information for the children as proxies. In the ethnic capital equation, I also include a dummy indicating whether at least one parent is foreign born. Similarly, in the parental schooling equation, I include a dummy variable indicating whether the father is foreign born. As the results of the estimation of the conditional means are not of prime interest and they appear to be in line with the literature, I refer the reader to Table 6 in the Supporting Information Appendix (Section 4) for details.

As one of the identifying assumptions requires the presence of heteroskedasticity in either the children’s schooling or parental and ethnic capital equations, Table 2 presents the results of the White and Breush–Pagan tests. The null hypothesis of homoskedastic errors is strongly rejected, confirming the presence of heteroskedasticity in both equations.

\(^6\)All results are presented in Table 8 in the Supporting Information Appendix (Section 4).

\(^7\)Details of estimation are explained in the Supporting Information Appendix (Section 3).

TABLE 2 Heteroskedasticity in parental and ethnic capital equations

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Breush–Pagan test</td>
<td>544.42</td>
<td>5,030.34</td>
<td>1,242.04</td>
<td>2,028.23</td>
</tr>
<tr>
<td>White test</td>
<td>1,095.95</td>
<td>3,126.06</td>
<td>1,242.04</td>
<td>2,028.23</td>
</tr>
<tr>
<td>Number of observations</td>
<td>15,390</td>
<td>5,329</td>
<td>10,061</td>
<td>5,329</td>
</tr>
</tbody>
</table>

The above error structure allows construction of control functions inclusion of which in the main equation makes estimation of the unknown parameters \(\gamma = \{ \gamma_1, \gamma_2 \} \) feasible. This is obtained by including the consistent estimates of \(v_i^{av} \) and \(v_i^r \) in the child’s education equation. Let \(\lambda_1 = \frac{\text{cov}(u_i, v_i^r)}{\text{var}(v_i^r)} \) and \(\lambda_2 = \frac{\text{cov}(u_i, v_i^{av})}{\text{var}(v_i^{av})} \). We can then rewrite the error term \(u \) as \(u_i = \epsilon_i + \lambda_1 v_i^r + \lambda_2 v_i^{av} \), which explicitly shows why heteroskedasticity is necessary for identification. If all errors are homoskedastic, the control function has the same impact across all individuals; that is, \(\lambda_1 \) and \(\lambda_2 \) are constant. Let \(A_1(X_i) = \rho^r \frac{H_i(X_i)}{H_i^r(X_i)} \) and \(A_2(X_i) = \rho^{av} \frac{H_i(X_i)}{H_i^{av}(X_i)} \). Then, under the conditional correlation assumption in Equation 3, we can rewrite the above error term as \(u_i = \epsilon_i + A_1(X_i)v_i^r + A_2(X_i)v_i^{av} \). The fact that both \(A_1(X_i) \) and \(A_2(X_i) \) are nonlinear in \(X_i \) grants identification of the parameters of the child’s education equation:

\[
edu_i = \delta_0 X_i + \gamma_1 \text{edu}_i + \gamma_2 \text{eduav}_i + \rho^r \frac{H_d(X_i)}{H_i(X_i)} v_i^r + \rho^{av} \frac{H_d(X_i)}{H_i^{av}(X_i)} v_i^{av} + \epsilon_i.
\] (4)
TABLE 3 Relationship between parental and ethnic capital and children’s education

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OLS</td>
<td>CF</td>
<td>OLS</td>
</tr>
<tr>
<td>Parental capital</td>
<td>0.237 (0.006)</td>
<td>0.177 (0.006)</td>
<td>0.245 (0.009)</td>
</tr>
<tr>
<td>Ethnic capital</td>
<td>0.138 (0.015)</td>
<td>0.070 (0.017)</td>
<td>0.182 (0.026)</td>
</tr>
<tr>
<td>𝜌<sup>p</sup></td>
<td>0.099 (0.009)</td>
<td>0.068 (0.020)</td>
<td>0.099 (0.010)</td>
</tr>
<tr>
<td>𝜌<sup>av</sup></td>
<td>0.031 (0.006)</td>
<td>0.085 (0.014)</td>
<td>0.015 (0.004)</td>
</tr>
</tbody>
</table>

Note: Bootstrapped standard errors in parentheses.

4.2 Education transmission equation

Construction of the correction terms requires estimates of the heteroskedasticity indexes in all three equations. Table 7 in the Supporting Information Appendix (Section 4) presents the results for the heteroskedasticity indexes for parental and ethnic capital equations, as well as for the primary equation, noting that the latter is estimated simultaneously with the coefficients of the primary equation.

We turn now to the main results of this paper relating child’s human capital accumulation to parental and ethnic capital. The first two columns of Table 3 present the OLS and control function (CF) estimates of the primary equation for the entire sample. All results are presented in Table 8 in the Supporting Information Appendix (Section 4). I find that accounting for endogeneity reduces both the coefficient on parental education (from 0.24 to 0.18) and on ethnic capital (from 0.14 to 0.07). This confirms that OLS coefficients are confounded by the endogeneity of parental and ethnic capital. The coefficients on control functions are both statistically significant at the 1% significance level, confirming the importance of unobserved ability. Moreover, coefficients on both control functions are positive, which confirms the conjecture that the unobservables are positively correlated across generations and justifies the interpretation of the assumed error structure. The magnitude of the effect of unobserved ability is similar to that found by Farré et al. (2012).

To summarize, I find an important effect of parental education as well as evidence that ethnic capital plays a role in intergenerational transmission beyond the transfer of unobserved ability, even though not controlling for endogeneity results in a nontrivial upward bias on both parental and ethnic capital coefficients. The effect of the unobserved ability is stronger in the case of parental education. Moreover, even though the OLS estimates in Table 3 suggest that the role of ethnicity in intergenerational transmission of education has declined over the years, the CF estimates indicate that it remained relatively constant. The effect of parental capital decreased from 0.22 to 0.17. At the same time the role of unobserved ability in the transfer of parental capital increased, whereas its role in the transfer of ethnic capital decreased significantly.

5 CONCLUSIONS

This paper focuses on the role of ethnic capital in the intergenerational transmission of human capital. Its focus is on consistent estimates of the ethnicity effects. I find evidence that the OLS estimates of the effect of ethnic capital on intergenerational transmission of education are biased upwards. Unobserved ability has an important effect on educational choices, and not accounting for its confounding effect biases the estimates of parental and ethnic capital.

ACKNOWLEDGMENTS

I am grateful to Francis Vella and John Rust for comments and Jens Schmidt-Sceery for technical support to an earlier version of this paper. All remaining errors are my own.

4In the paper, results using the preferred specification are presented. Corresponding results with all variables entering the heteroskedasticity index can be obtained on request. The results are qualitatively unaffected by the choice of the form of heteroskedasticity. However, some small quantitative differences are present.
REFERENCES

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section at the end of the article.

How to cite this article: Postepska A. Ethnic capital and intergenerational transmission of educational attainment. *J Appl Econ*. 2019;1–6. https://doi.org/10.1002/jae.2682