Cultural distance, innovation and export performance
Azar, Goudarz; Drogendijk, Rian

Published in:
European Business Review

DOI:
10.1108/EBR-06-2015-0065

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2016

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

Download date: 16-09-2023
Cultural distance, innovation and export performance
An examination of perceived and objective cultural distance

Goudarz Azar
College of Business, Arts and Social Sciences, Brunel Business School, Brunel University London, Uxbridge, UK, and

Rian Drogendijk
Department Global Economics and Management, University of Groningen, Groningen, The Netherlands

Abstract
Purpose – This paper aims to examine the relationship between cultural distance (both perceived and objective), innovation and firm export performance.
Design/methodology/approach – Hypotheses were tested here by structural equation modeling using data from 186 export ventures into 23 international markets by Swedish companies.
Findings – The results indicate that managers’ perceptions of substantial cultural differences as well as objective cultural differences (gauged using Hofstede’s (1980, 2001) scores for dimensions of national culture) and subsequent environmental uncertainty when expanding into culturally distant markets triggers strategies for interacting and integrating with the market environment. These include producing and adopting innovations to processes and products and to organizational strategy, structure and administrative procedures to cope with the new environment and overcome uncertainties. These innovations and the associated competitive advantages improve firm export performance.
Originality/value – Despite much research into the relationship between firm internationalization and innovation, little attention has been paid to the effect of the characteristics of the foreign markets (specifically cultural differences) on firm innovation strategies. Moreover, much research has been devoted to the effect of innovation on firm export performance, but such research has mainly focused on one type of innovation, i.e. technological innovation, while the influence of organizational innovation on firm export performance has been basically ignored. The present study validates the explanatory of cultural distance (both perceived and objective) in relation to innovation strategies (technological and organizational) and export performance.

Keywords Uncertainty, Innovation, Export performance, Cultural distance

Paper type Research paper

Introduction
Internationalization is a process of developing business opportunities outside the domestic market (Lu and Beamish, 2001), though it is a process characterized by a high degree of uncertainty (Miller, 1993; Johanson and Vahlne, 2009). Cultural distance is an

The data collection in this research project was funded by “Stiftelsen Olle Hakelius Stipendiefond”, grant no 1165001, which is gratefully acknowledged.
important source of uncertainty for firms during their internationalization process (Johanson and Vahlne, 1977; Ghemawat, 2001; Shenkar, 2001; Slangen and Van Tulder, 2009). Differences in norms, ideas, values and beliefs in culturally distant markets increase the liability of foreignness and uncertainty that makes the firm see itself as lacking sufficient market information to accurately predict the challenges facing it in the new foreign market (Harzing, 2003; Yamin and Sinkovics, 2006; López-Duarte and Vidal-Suárez, 2010).

Innovation is a crucial component of firms’ strategies (Gunday et al., 2011). Innovation is a means to facilitate an organization’s adaptive changes to the environment and cope with environmental uncertainties (Damanpour and Evan, 1984; Damanpour et al., 2009), and thus a source of competitive advantage in international markets (Pla-Barber and Alegre, 2007). Firms adopt innovations to gain first or early mover advantages that would lead to superior performance (Damanpour et al., 2009) or to eliminate a performance gap caused by uncertainties in the external environment (Damanpour and Evan, 1984).

Despite much research into the relationship between firm internationalization and innovation (Hitt et al., 1997; Kotabe et al., 2002; Kafouros et al., 2008), little attention has been paid to the effect of the characteristics of the foreign markets on firm innovation strategies (Alvarez and Robertson, 2004; Azar and Drogendijk, 2014). Through an empirical study, Alvarez and Robertson (2004) found that the extent of the foreign market’s development influences firms’ innovation activities. They revealed that firms which export to developing countries are more likely to have R&D units and to invest in product design, whereas firms which export to developed countries are more likely to invest in new products and production processes. It has been claimed that exporting to developed markets requires upgrading of production processes (technology) to meet the market’s specifications, while exporting to developing markets demands leadership in product design and research (Gereffi, 1999). In an empirical study of Swedish exporters, Azar and Drogendijk (2014) concluded that firms which export to psychically distant markets are more inclined to innovate, presumably to cope with the requirements of the foreign market environment and overcome uncertainties (Silva et al., 2010).

Furthermore, innovation has been presented as a crucial determinant of a firm’s export performance (Sousa et al., 2008). Accordingly, changes in the firm’s environment necessitate changes in the firm’s strategies to cope with the environment (Lawrence and Lorsch, 1967). Hence, a fit between firm innovation strategy (as a firm export marketing strategy) and foreign market environment would lead to enhanced firm export performance (Zeithaml and Zeithaml, 1988; Sousa et al., 2008). However, as Pla-Barber and Alegre (2007) argue, knowledge of internal determinants of export performance, specifically innovation, is contradictory and warrants further research.

Much research has devoted to the effect of innovation on firm export performance (Roper and Love, 2002; Lages et al., 2009; Hortinha et al., 2011, D’Angelo, 2012); yet, such research has mainly focused on one type of innovation, i.e. technological innovation, while the influence of organizational innovation on firm export performance has been basically ignored (Damanpour and Evan, 1984; Armbruster et al., 2008; Birkinshaw et al., 2008; Damanpour and Aravind, 2011). A possible explanation for this omission is that relative to organizational innovation, technological innovation is
generally perceived to have a more clear association with firm performance (Damanpour and Evan, 1984). However, according to Hamel (2006), organizational innovation can also provide sustained competitive advantages for the firm. Damanpour and Aravind (2011) argue that the adoption of a single type of innovation or even a set of only one type of innovation might not enable firms to fully realize the positive consequences of innovation on performance. Coping with changes and uncertainties in the environment and obtaining superior performance require a balanced introduction of a portfolio of different types of innovations, i.e. both technological and organizational innovations (Damanpour and Evan, 1984; Damanpour and Aravind, 2011). According to Camisón and Villar-López (2014), the complex interrelationships among technological and organizational innovations generate valuable, non-substitutable and inimitable strategic assets that create differentiation and lead to superior performance (Barney, 1991; Amit and Schoemaker, 1993).

The present study seeks to extend previous research on cultural distance, innovation and export performance by developing and testing empirically a framework that links these ideas. The main aim is to examine whether cultural distance between the host market and a foreign market stimulates the adoption of innovations, leading to enhanced firm export performance. Thus, the contribution of this study is as follows. First, we examined the importance of uncertainty as a result of cultural distance (perceived and objective) between home and foreign markets in explaining firm innovation strategies. Although much research has examined the effect of uncertainty on innovation, to our knowledge, no previous study has investigated the impact of uncertainty resulting from cultural differences in foreign markets on firm innovation strategies. This knowledge is important, as implementing appropriate innovation strategies enables firms to overcome uncertainties and reap the benefits of business opportunities in culturally distant markets (Evans and Mavondo, 2002). Furthermore, as recommended by previous research (Magnusson et al., 2008a; Ambos and Håkanson, 2014), we measured cultural distance using both objective and perceptual data. Although aggregated data from secondary sources have been the dominant source used in determining the cultural distance between countries, scholars point to the importance of using perceptual data in assessing cultural differences; managerial perceptions of the firm’s environment strongly influence the strategic decisions by which the firm responds to its environment (Child, 1972; Beyer et al., 1997). We then tested the influence of a cumulative adoption of innovation types (technological and organizational) – as suggested by previous studies – on firm export performance, to determine the effect of synergistic use of different types of innovation. According to Sousa et al. (2014, p. 501), understanding the determinants of export performance is a crucial area of research not only for academics but also for practitioners and policymakers; “successful export operations are crucial to both the firm and national prosperity”.

Cultural distance as a source of uncertainty

Culture is defined as “the collective programming of the mind that distinguishes the members of one group or category of people from another” (Hofstede, 2001, p. 9). According to Brown (1995, p. 8), culture consists of “basic human norms, ideas, values, and beliefs that develop continuously over time, helping to guide what would be
considered acceptable human behavior within a given society”. Therefore, cultural distance can be defined as the difference between countries in terms of norms, ideas, values and beliefs (Shenkar, 2001).

The concept of cultural distance is one of the most widely studied concepts in international business (IB) research (Shenkar, 2001; Magnusson et al., 2008a; Zaheer et al., 2012). Cultural distance has been shown to be an important source of uncertainty for firms during their internationalization process (Johanson and Vahlne, 1977; Ghemawat, 2001; Shenkar, 2001; Slangen and Van Tulder, 2009; López-Duarte and Vidal-Suárez, 2010). Differences in norms, ideas, values and beliefs in culturally distant markets increase the liability of foreignness and uncertainty in the new foreign market (Harzing, 2003; López-Duarte and Vidal-Suárez, 2010). Carlson (1974) argues that cultural distance between countries represents a barrier to the international transfer of information, influencing the collection and interpretation costs of critical management information. Cultural distance has therefore been used to explain a variety of strategic decisions made in a firm’s internationalization process, *inter alia*, foreign market selection (Dow, 2000; Dow and Karunaratna, 2006; Dow and Ferencikova, 2010; Tang, 2012), entry mode choice (Kogut and Singh, 1988; Harzing, 2003; Drogendijk and Slangen, 2006; Wang and Schaan, 2008; Slangen and Van Tulder, 2009; Chang et al., 2012; López-Duarte, 2013) and international marketing strategy (Singh, 1996; Calantone et al., 2004; Moon and Park, 2011; Shneor, 2012).

Perceived vs “Objective” cultural distance

Despite the dominance of aggregated measures of culture at a national level in determining the cultural distance between countries in IB research (Shenkar, 2001; Harzing, 2003; Drogendijk and Slangen, 2006), scholars suggest using perceptual data in assessing cultural differences (Johanson and Vahlne, 1977; O’Grady and Lane, 1996; Shenkar, 2001; Mezias et al., 2002; Harzing, 2003; Zhao et al., 2004; Håkanson and Ambos, 2010; Azar, 2014b).

A firm’s external environment contains a certain degree of uncertainty, i.e. environmental uncertainty (Anderson and Paine, 1975). The degree of this environmental uncertainty depends not only on the absolute characteristics of the environment but also, and perhaps more importantly, on managerial perceptions of the environment, i.e. subjective uncertainty. Based on their perceptions of environmental uncertainty, managers formulate strategies for responding to the environmental demands (Child, 1972; Anderson and Paine, 1975; Robbins, 1996; Starbuck and Mezias, 1996; Beyer et al., 1997; Evans et al., 2008; Giaglis and Fouskas, 2011). To do this, managers match their firm’s organizational properties to its external environment (Lawrence and Lorsch, 1967; Miles et al., 1974). Perceived cultural distance has therefore been applied to explain a variety of firm’s internationalization decisions, *inter alia*, foreign market selection (Håkanson and Dow, 2012; Azar, 2014a), entry mode choice (Kim and Hwang, 1992; Taylor et al., 1998; Drogendijk and Slangen, 2006) and international marketing strategy (Evans and Bridson, 2005; Evans et al., 2008; Azar, 2011; Moon and Park, 2011; Azar and Drogendijk, 2014).

Accordingly, Håkanson and Dow (2012) revealed that managers’ perception of cultural differences (along with geographical distance, etc.) negatively and significantly influenced trade flows between countries. The underlying argument referred to the difficulty in obtaining and interpreting information in culturally distant markets.
Drogendijk and Slangen (2006) found that perception of substantial differences in organizational and managerial practices, as well as in communication styles in culturally distant markets, causes multinational enterprise (MNEs) to choose greenfield investments rather than acquisitions as a means to facilitate integrating firms located in those markets into an MNE’s corporate network. Moreover, Evans and Bridson (2005) argue that perception of significant cultural differences between the firm’s home and export markets make the firm adapt its export marketing strategies to the target market, mainly to comply with the export country’s cultural values and preferences (Moon and Park, 2011).

Innovation as a response to uncertainty
Innovation is a multi-faceted construct encompassing generation, development and implementation of an idea or behavior new to the adopting organization (Damanpour, 1996). During the innovation process, ideas are transformed into new products or services, new process technologies, new organizational structures or new managerial approaches (Damanpour and Evan, 1984; Damanpour and Aravind, 2011).

A variety of typologies of innovation has been proposed (see Damanpour et al., 2009 for a review). The technological–organizational typology[1] is popular among management researchers and refers to a general distinction between the firm’s technological and administrative systems in which the former produces changes mainly in the firm’s operating system, whereas the latter mainly influences its management systems (Damanpour and Aravind, 2011). According to Damanpour and Evan (1984, p. 394), technological innovation refers to “the implementation of an idea for a new product or a new service or the introduction of new elements in an organization’s production process or service operation”. Investment in technological innovations may result in, inter alia, developing and licensing new technologies, adopting more efficient production techniques and introducing new products and processes (Hall and Mairesse, 1995; Kafouros et al., 2008), all of which can bring competitive advantages to the firm (Zahra and Covin, 1995). Organizational innovation refers to “new approaches in knowledge for performing the work of management and new processes that produce changes in the organization’s strategy, structure, administrative procedures, and systems” (Damanpour and Aravind, 2011, pp. 429-432) that enhance teamwork, information sharing, coordination, collaboration, learning and innovativeness in an organization (Gunday et al., 2011). While technological innovations tend to trickle up from professionals lower in the hierarchy, organizational innovations tend to trickle down from the top management (Damanpour and Evan, 1984).

Environmental uncertainties, threats and also opportunities motivate organizations to seek adaptive change (Damanpour et al., 2009). Previous research maintains that innovation is a crucial component of a firm’s strategies that facilitates adaptive change to the environment and coping with environmental uncertainties (Damanpour and Evan, 1984; Damanpour et al., 2009; Gunday et al., 2011). Damanpour et al. (2009) maintain that pressure from the external environment, such as competition, isomorphism and customer demand, is one of the main antecedents of the adoption of innovations to ensure a firm’s adaptive behavior. Innovativeness enables firms to respond quickly to market changes or to act on market offers before their competitors, and this quick adaptability is an additional basis of competitive advantage (Zahra and
The latter is of high importance, as quick changes in technologies and increasing competition in global markets erode the value added of existing products and services (Gunday et al., 2011).

In international markets, firms compete in a more demanding, heterogeneous and hence uncertain environment, which stimulates them to innovate to cope with environmental changes, overcome uncertainties and meet market conditions (Damanpour and Evan, 1984; Nassimbeni, 2001; López et al., 2003; Coronado et al., 2008; Silva et al., 2010; Giaglis and Fouskas, 2011). However, although international markets are generally related to more uncertainty than the domestic market, some international environments may present firms with more uncertainties than others. In particular, host markets with substantial cultural differences may constitute more uncertain environments than host markets with a more similar culture to the domestic market (Carlson, 1974; Johanson and Vahlne, 1977; Evans and Mavondo, 2002). O'Grady and Lane (1996, p. 330) argue that “cultural differences […] increase a firm’s degree of uncertainty, which presents barriers to learning about the market and operating there”.

Accordingly, the perception of a high degree of environmental uncertainty resulting from substantial differences in norms, ideas, values, beliefs, organizational and managerial practices along with communication styles (Carlson, 1974; Drogendijk and Slangen, 2006; Håkanson and Ambos, 2010) in culturally distant markets triggers strategies for interacting and integrating with the market environment, by producing and adopting innovations to processes and products and to the organization’s strategy, structure and administrative procedures to cope with the new environment and overcome uncertainties (Pierce and Delbecq, 1977; Damanpour and Evan, 1984; Russell and Russell, 1992; Armbruster et al., 2008; Damanpour et al., 2009). Therefore, we hypothesize the following:

H1. Cultural distance between the home market and a foreign market is positively associated with adopting innovations in that market.

Innovation and export performance

Cavusgil and Zou (1994, p. 4) define export performance as “the extent to which a firm’s objectives […] with respect to exporting a product into a foreign market, are achieved through planning and execution of export marketing strategy”. According to those authors, a firm uses export marketing strategy as the means to respond to the interplay of internal and external forces to meet the objectives of the export venture. Therefore, determinants of export performance can be classified into internal and external factors in which characteristics of the firm and management and export marketing strategy are among the internal factors, whereas characteristics of the foreign and domestic markets are considered as external factors (Sousa et al., 2008).

According to Lawrence and Lorsch (1967), changes in the firm’s environment necessitate changes in the firm’s strategies to cope with the environment. External determinants of export performance are contingency variables exogenous to the focal firm which represent situational characteristics. In most instances, the firm is not able to control or manipulate these variables. Internal determinants of export performance are, on the other hand, response variables which represent the organizational or managerial actions in response to contingency factors. A fit
between contingency and response variables is expected to enhance firm performance (Zeithaml and Zeithaml, 1988).

This research focuses on cultural differences in foreign markets as the contingency factor and innovation strategy as a firm export marketing strategy categorized as a response factor (Robertson and Chetty, 2000; Sousa et al., 2008; Damanpour et al., 2009; Damanpour and Aravind, 2011). Firms innovate to adjust the external and internal functions to respond to environmental demands, operate efficiently and effectively and improve the performance (Damanpour and Evan, 1984). Damanpour et al. (2009) argue that pressure from the external environment is one of the main antecedents of the adoption of innovations to ensure a firm’s adaptive behavior to maintain or improve its performance. Hence, an appropriate matching of a firm’s innovation strategy to fit the foreign market environment would enhance a firm’s export performance (Damanpour and Evan, 1984; Zeithaml and Zeithaml, 1988).

Past research has examined the effect of innovation on export performance; however, the focus has mainly been on technological innovations rather than organizational innovation (Roper and Love, 2002; Lages et al., 2009; Hortinha et al., 2011; D’Angelo, 2012). Scholars argue that having a balanced portfolio of both technological and organizational innovations is necessary for coping with changes and uncertainties in the environment and to ensure a full realization of the positive consequences of innovation on performance (Damanpour et al., 2009; Damanpour and Aravind, 2011). Accordingly, the synergic use of technological and managerial knowledge resources, as a firm’s internal resources, can lead to the introduction of different types of innovations (Damanpour and Aravind, 2011) and:

[…] the adoption of sets of innovations types [...] would [then] provide the organization with required capabilities and distinctive competencies to continually outperform other organizations in its population (Damanpour et al., 2009, p. 656).

The influence of technological innovation on export performance is motivated by competitive advantages firms obtain through introducing new technologies, more efficient production techniques and new products and processes resulting from those innovations (Hall and Mairesse, 1995; Zahra and Covin, 1995; Kafouros et al., 2008). According to Zahra and Covin (1995) and Gunday et al. (2011), technological innovations enable firms to respond quickly to swift changes in technologies and market environment in a highly competitive global market. The influence of organizational innovation on (export) performance has been largely neglected in past research (Damanpour and Evan, 1984; Han et al., 1998; Armbruster et al., 2008; Damanpour and Aravind, 2011). However, implementing organizational innovation as a response to environmental changes and uncertainties enables firms to enhance their performance (Armbruster et al., 2008). Changes in the organization’s strategy, structure, administrative procedures and systems as a result of organizational innovations improve the organization’s climate, communication, personal policies, teamwork, information sharing, coordination and collaboration in an organization (Damanpour and Evan, 1984; OECD, 2005; Damanpour and Aravind, 2011; Gunday et al., 2011), all of which can create sustained competitive advantages in the firm (Hamel, 2006). Moreover, the structural improvements brought about by organizational innovations can create an appropriate environment for the initiation and adoption of other types of innovation (Damanpour and Evan, 1984; Gunday
et al., 2011). In an empirical study of Spanish industrial firms, Camisón and Villar-López (2014) found that organizational innovation enhances a firm's performance. Thus, we hypothesize the following:

\[H2. \] The cumulative adoption of innovations (technological and organizational) in response to uncertainties resulting from cultural distance to a foreign market is positively associated with a firm's export performance.

Research methodology

Data profile and research setting

Our study sample consisted of 573 Swedish companies in the forestry, fishing, food products, beverages, garment and furniture industries that satisfied the following criteria:

- exported products for at least three years; and
- exported to at least two foreign markets.

The sample was selected randomly from a population of 963 companies using a stratified sampling method. This approach allowed us to be able to include respondents of all the above industrial sectors in the study and hence a more representative sample of the population (in comparison to, e.g., simple random sampling) (Robson, 2011).

Sweden is well suited to the subject of the study because it is a developed country with a very small domestic market, and its economy is extremely dependent on exporting into international markets. According to the World Bank's (2014) national accounts data, about 50% of Sweden’s gross domestic product (GDP) comes from the export of goods and services to international markets. The industries chosen for the study are also appropriate, as these industries contribute a significant share of total manufacturing exports and a high share of employment and have a proven ability to innovate, giving them a vital role specifically in the developed economies of Western countries (Hirsch-Kreinsen, 2008). Moreover, a clear trend toward a more internationalized structure (in terms of exporting) has been observed specifically in those industries in Sweden in the past decade (Statistics Sweden, 2012).

Data collection procedure

Data collection was conducted through TNS SIFO, a recognized marketing research agency in Sweden, from February to April, 2012. A formal structured questionnaire was designed for this study and used to collect data from senior managers as key informants. We assumed that this group would be most able to provide accurate responses for the purposes of this study, given their position, which allows them to review the entire organization (Glick et al., 1990).

We received 158 responses from a total of 573 companies in the sample (approximately 28 per cent), amounting potentially to 316 export ventures. Following Evans and Mavondo (2002) and Evans et al. (2008), the respondents were first asked to nominate two foreign markets to which their company had exported products during the previous three years. They were then asked to specify which of these foreign markets they perceived as “not so different” from their home market (Sweden) in terms of culture and business practices and which they perceived as “different” from Sweden. In the next stage, the respondents were asked to answer all questions for both nominated export ventures. The complete case approach (list-wise deletion; Hair et al., 2010) was
used to handle missing data. Accordingly, after removing the cases with missing data, the effective responses corresponded to 186 export ventures in 23 countries (see Appendix 1 for the list of export markets). Consistent with previous research (Lages et al., 2008; Lages et al., 2009), we assumed a single export venture as the unit of analysis in this study.

We tested for non-response bias by comparing early and late respondents (early respondents were defined as the first 75 per cent to return questionnaires and late as the last 25 per cent) for number of full-time employees, number of years of exporting and number of export markets. The lack of significant differences between the early and late respondents suggests that response bias was not a significant problem in the study (Armstrong and Overton, 1977).

In terms of characteristics of the sample, the majority of the respondents were CEOs of firms with fewer than 50 full-time employees. The majority of firms in the sample had significant international experience and had engaged in export operations for an average of 20 years (SD = 13.2, range = 2-55). The number of export markets for the firms averaged 8 (SD = 7.4, range = 2-37). Approximately 80 per cent of the export ventures targeted other European Union (EU) countries (including Norway), while the remainder targeted non-EU countries. Firms in the food product and furniture industries were over-represented in the sample (see Appendix 2 for more details about the sample characteristics).

Measures
We based our measures on the extant literature but modified them for the study context (Churchill, 1979). A list of all measured items is provided in Appendix 3.

Cultural distance. Culture is a complex, intangible and subtle phenomenon which is difficult to conceptualize (Shenkar, 2001). As Sullivan (1994) argues, using a single indicator to measure complex concepts (such as culture) inevitably entails methodological biases, for example, misrepresenting the construct, impossibility of determining the reliability, and not taking measurement error into account in analyses. According to Schwartz (2011, p. 314), “culture itself is a hypothetical, latent variable measurable only through its manifestations”. Furthermore, scholars state that relying on one measure of (cultural) distance alone is potentially misleading, and therefore, researchers should incorporate more than one (cultural) distance measure (Ambos and Håkanson, 2014). Shenkar (2001) suggests that national-level data should be supplemented by cognitive cultural distance measures. Magnusson et al. (2008a) maintain that incorporating individual and national-level measures of cultural distance enhance our understanding of these concepts.

The measures of the dimensions of perceived cultural distance used here were adapted from Evans and Mavondo (2002) and Evans et al. (2008). These dimensions were measured based on Hofstede’s (1980, 2001) definitions and descriptions of the four dimensions of national culture: power distance (PDI), individualism (IND), masculinity (MAS) and uncertainty avoidance (UAI) (Appendix 3). Following Evans and Mavondo (2002) and Evans et al. (2008), we asked respondents to indicate the degree to which the foreign market was similar to the home market (Sweden) on a seven-point scale (1 = totally the same; 7 = totally different). The index for each dimension of perceived cultural distance for each country was then calculated as sum of the scores for the measurement items (indicators) for each dimension (Appendix 3).
Previous research has developed a number of frameworks as basis for operationalizing the construct cultural distance (Hofstede, 1980; Schwartz, 1994; House et al., 2004). Kogut and Singh’s (1988) index, which is based on Hofstede’s (1980) dimensions of national culture is among the most popular methods of calculating cultural differences between countries (Drogendijk and Slangen, 2006). According to Hofstede (1980), national cultures differ substantially along four dimensions, PDI, IND, MAS and UAI. Based on standardized factor analysis of questionnaires from more than 117,000 national employees in more than 40 overseas subsidiaries of IBM (1967-1973), Hofstede created ordinal scales for countries for each dimension.

Despite increasing criticism regarding theoretical and methodological issues (Spector et al., 2001; Mcsweeney, 2002), Hofstede’s framework is still among the most influential (Oyserman et al., 2002; Kirkman et al., 2006). Kogut and Singh (1988) argue that Hofstede’s study has appealing attributes in terms of, for example, sample size, codification of cultural traits along a numerical index and an emphasis on attitudes in the workplace. Moreover, extensive evidence attests to the applicability of Hofstede’s (1980, 2001) national cultural scores (Kogut and Singh, 1988; Shane, 1992; Morosini et al., 1998; Hofstede, 2001; Drogendijk and Slangen, 2006; Burchell and Gilden, 2008; Kim and Gray, 2009; Brock et al., 2011; Minkov and Hofstede, 2011; Taylor and Wilson, 2012; Dikova and Rao Sahib, 2013; Lee et al., 2013). By investigating different operationalizations of cultural distance, Magnusson et al. (2008b) found that the cultural distance construct based on Hofstede’s scores had strong convergent validity. According to Tung and Verbeke (2010, p. 1259), Hofstede’s seminal work, “Culture’s Consequences: International Differences in Work-Related Values (1980), succeeded in putting cross-cultural analysis at the forefront of international business research”.

Consistent with previous studies (Brock et al., 2011; Moon and Park, 2011; Azar, 2014b), we used Hofstede’s (1980, 2001) scores for the four above-mentioned dimensions of national culture as the basis for calculating “objective” measures of cultural distance. We applied Hofstede’s framework, owing to – in addition to its appealing attributes – its comparability to the perceived measures of cultural distance in the present study and also its large scope that cover all the foreign markets [3] nominated by the respondents in this study.

To calculate the cultural distance to the foreign markets, the deviation between the index for each dimension of each country (I_{ij}) and the corresponding index for Sweden (i.e. the home country) (I_{is}) was calculated [4]. The deviations were then corrected for differences in the variance of each dimension (V_i) (Kogut and Singh, 1988; Evans et al., 2008). Algebraically, the following formula was used:

$$D_j = \frac{(I_{ij} - I_{is})^2}{V_i}$$

where D_j is the difference (distance) in the ith cultural dimension of the jth foreign market from Sweden, I_{ij} represents the index of the ith cultural dimension and the jth market, s indicates Sweden, and V_i is the variance of the index of the ith dimension. To calculate a composite index of both perceived and “objective” cultural distance, the average of all values of D_j was calculated (Kogut and Singh, 1988). Algebraically, the following formula was used:

$$CD_j = \frac{\sum (I_{ij} - I_{is})^2/V_{ij}}{4}$$

where CD_j is the composite index of cultural distance for the jth foreign market, I_{ij} represents the index of the ith cultural dimension and the jth market, s indicates Sweden, and V_{ij} is the variance of the index of the ith dimension.
This approach has been frequently used in IB research (Yeganeh, 2014). However, recently, several scholars criticized treating cultural distance as an aggregated construct (Shenkar, 2001). The main concern is the “assumption of equivalence” in the Kogut and Singh’s (1988) formula, i.e. the four Hofstede dimensions are assumed to be of equal importance, whereas scholars argue that different dimensions include different values and hence might have a variety of effects and implications (Shenkar, 2001; Yeganeh, 2014). To address this issue, we also conceptualized the cultural distance constructs (both perceived and objective) as reflective constructs comprising the distances in each cultural dimension of the foreign markets from Sweden [i.e. D_{ij} in equation (1)] that are the manifestations of the overall construct (Jarvis et al., 2003) (Figure 1). Using this approach allowed us to take into account the differences among the indicators (dimensions).

Innovation. Previous research on innovation has often relied on secondary data (e.g. patents) or other proxy measures (e.g. R&D intensity) to operationalize innovation (Archibugi and Planta, 1996; Nam et al., 2014). However, recent research emphasizes the need for more direct measures of innovative outputs (Powell and Grodal, 2005; Freeman and Soete, 2009; Hervas-Oliver et al., 2011; Nam et al., 2014), not only because of shortcomings in patents and R&D intensity as measures of innovations (Freeman and Soete, 2009) but also because of sectoral differences causing bias in the use of these indicators for measuring innovation (Galizzi and Venturini, 2008; Hervas-Oliver et al., 2011).

The scales used for measuring innovation in the present study were based on those developed by Weerawardena (2003b, a). We asked respondents to indicate the intensity of innovation in the foreign market that the firm had undertaken in the previous three-year period on two seven-point scales, one ranging from 1 = limited to 7 = extensive, the other from 1 = incremental to 7 = radical, respectively. We conceptualized the innovation construct as a reflective construct (O’Cass and Weerawardena, 2009) comprising technological (product and process) and organizational (managerial and marketing) dimensions that are the manifestations of the overall construct (Jarvis et al., 2003). We operationalized innovation in terms of type (product, process, managerial and marketing) and degree (limited-extensive; incremental-radical) to rate the intensity of a firm’s innovation (O’Cass and Weerawardena, 2009) (Appendix 3). This method enabled us to use primary sources of data related to innovation within firms and explore their actual innovation activities. According to Nam et al. (2014), relying on primary data related to innovation facilitates a more accurate study of the phenomenon. Furthermore, compared with proxy measures for innovation (e.g. R&D intensity), this method is more appropriate for measuring innovation activities adopted by the study sample.
where R&D expenditure is low, and hence R&D intensity would provide a misleading view (Hirsch-Kreinsen, 2008).

Export performance. According to Cavusgil and Zou (1994), the extent to which an export venture’s economic and strategic objectives are attained would determine its performance. Therefore, export performance in this study was measured through six items within two dimensions: financial performance and strategic effectiveness (Evans and Mavondo, 2002; Evans et al., 2008). Regarding financial performance, the respondents were asked to indicate the degree to which several financial indicators (return on assets, return on investment, return on sales and sales) had changed in the previous three-year period in the foreign market on a seven-point scale (1 = “decrease of more than 20 per cent”; 7 = “increase of more than 20 per cent”). We measured strategic effectiveness by two indicators (achievement of strategic objectives and satisfaction with overall performance) using a seven-point scale (1 = very unsuccessful; 7 = very successful) (Evans and Mavondo, 2002; Evans et al., 2008) (Appendix 3).

Control variables We used the number of full-time employees as a proxy for firm size, and together with industry type, the geographical distance as well as legal and political and economic distance between the home country and foreign markets entered them as control variables in the models. We also controlled for the natural logarithm of per capita GDP of foreign markets (measured in current US dollars) (World Bank, 2014). Furthermore, to control for the effects of the introduction of free trade areas, a dummy variable was used in which the value “1” indicates that both the exporting and the foreign country belonged to the same free trade area, and “0” otherwise (Håkanson and Dow, 2012). The free trade areas included were the European Economic Community, the European Free Trade Association and the European Economic Area.

As a proxy for the extent of a firm’s access to knowledge assets and critical resources for the innovation process, size may increase the firm’s propensity to invest in innovations (Acs and Audretsch, 1988). On the other hand, factors such as flexibility and fluidity of communication may bring advantages for small firms in conducting innovations (Rogers, 2004; Shefer and Frenkel, 2005). The relationship between firm size and innovation may also depend on the specific technological conditions of the industry (Rogers, 2004; Shefer and Frenkel, 2005). Previous studies (Audretsch and Acs, 1991; Pla-Barber and Alegre, 2007) found a positive relationship between low-tech firm size and the generation of innovative activities, while they found no evidence of such an association among high-tech firms. Kafouros et al. (2008), on the other hand, suggest that returns on innovation are not related to either firm size or industry characteristics. The size of a firm is also suggested to enhance its export performance. Using economies of scale, access to specialized executives, own marketing department and sales force, possibility of financing to a lower cost and higher capacity to develop new products all can provide advantages for larger exporting firms to enhance their performance (Wagner, 1995, 2001). On the other hand, some scholars have found no significant relationship between firm size and export performance (Wolff and Pett, 2000; Contractor et al., 2005). Sousa et al. (2008) argue that these inconsistencies may be due to non-uniformly used measures for firm size and variations in the meaning of the terms SME and large firm among the countries.

Geographical distance is associated with the increased transportation and communication costs in cross-border business (Ghemawat, 2001). Carlson (1974)
suggests that geographical distance influences the transmission costs of critical
management information that requires face-to-face relations. Håkanson and Ambos
(2010) revealed that geographical distance influences managers’ perceptions of cultural
and other differences in foreign markets. They argue that geographical distance creates
significant barriers to international interaction, which leads to reduced international
trade and information flows. Therefore, greater geographical distance to the target
market increases managerial perceptions of cultural distance in that market. The
geographical distance and target market’s GDP variables are consistent with the classic
gravity approach (Rauch, 1999).

Finally, previous research revealed that entering foreign markets with substantial
differences in legal and political and economic environment entails high level of
uncertainties for the firms that influence their performance (Evans and Mavondo, 2002).
To capture such distances, we adopted three indicators for legal and political distance
and three indicators for economic distance from Evans and Mavondo (2002). We asked
respondents to indicate the degree to which the foreign market was similar to the home
market (Sweden) on a seven-point scale (1 = totally the same; 7 = totally different)
(Appendix 3).

We assessed the measurement model properties and analyzed the structural models
using maximum likelihood estimation with LISREL 8.8 (Jöreskog and Sörbom, 2006).
We assessed all measures for convergent validity by performing a confirmatory factor
analysis and calculating average variance extracted (AVE) (Fornell and Larcker, 1981)
for all constructs (Appendix 3). All the AVE values were greater than 0.5, indicating
convergent validity. We evaluated the second-order models for their psychometric
properties and model fit and assessed the second-order constructs for internal
consistency by calculating composite reliability (CR) (Bagozzi, 1980). All second-order
constructs met the suggested minimum value for CR (i.e. 0.7) (Nunnally, 1978). We
assessed individual item reliability by examining the standardized loadings of items on
their corresponding construct. All items had loadings of 0.7 or more (0.5 is the minimum
accepted value), which implies that all items converged on the common construct
(Gerbing and Anderson, 1988). We determined the corresponding Cronbach’s alpha
values for all of the constructs, as shown in Appendix 3. All values were greater than 0.8,
indicating high reliability and consistency of the entire scale (0.6 is the lower limit for
Cronbach’s alpha) (Hair et al., 2010).

Following previous research (Selnes and Sallis, 2003; Evans et al., 2008; Lages et al.,
2009) for hypothesis testing, we aggregated the innovation, firm performance, legal
and political distance and economic distance constructs by summing the measurement
items. Statistical properties of the variables are reported in Table 1.

To test for discriminant validity, we compared the AVE for the indicators of each
latent construct and the square of the correlation estimate of the latent constructs
(Fornell and Larcker, 1981). The AVE should be greater than the squared correlation
estimate, i.e. the latent construct should explain more of the variance in its item
measures that it shares with another construct (Hair et al., 2010). We conducted this test
for all latent constructs in the same conceptual domains. In all cases, the AVE values
were greater than the squared correlation estimate (Table 1).

Because all the main variables (except “objective” cultural distance) in this study
were collected from the same respondents, we used procedural and statistical remedies
<table>
<thead>
<tr>
<th>No.</th>
<th>Constructs/variables</th>
<th>Internal consistency</th>
<th>Mean</th>
<th>SD</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Perceived cultural distance</td>
<td>0.984</td>
<td>3.79</td>
<td>3.64</td>
<td>0.970</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Objective cultural distance</td>
<td>N/A</td>
<td>1.79</td>
<td>2.19</td>
<td>0.565**</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Product innovation</td>
<td>0.805</td>
<td>6.38</td>
<td>3.01</td>
<td>0.077</td>
<td>0.002</td>
<td>0.826</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Process innovation</td>
<td>0.866</td>
<td>5.14</td>
<td>3.06</td>
<td>0.150**</td>
<td>0.125</td>
<td>0.361**</td>
<td>0.883</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Managerial innovation</td>
<td>0.916</td>
<td>4.98</td>
<td>2.92</td>
<td>0.187</td>
<td>0.045</td>
<td>0.655**</td>
<td>0.547**</td>
<td>0.928</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Marketing innovation</td>
<td>0.908</td>
<td>5.31</td>
<td>2.99</td>
<td>0.131</td>
<td>0.083</td>
<td>0.568**</td>
<td>0.588**</td>
<td>0.913</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Financial performance</td>
<td>0.924</td>
<td>10.27</td>
<td>4.86</td>
<td>-0.067</td>
<td>0.006</td>
<td>0.365</td>
<td>0.484**</td>
<td>0.882</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Strategic effectiveness</td>
<td>0.909</td>
<td>7.29</td>
<td>3.00</td>
<td>-0.010</td>
<td>-0.022</td>
<td>0.341**</td>
<td>0.345**</td>
<td>0.263**</td>
<td>0.382**</td>
<td>0.636</td>
<td>0.090</td>
<td>0.907</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Legal and political distance</td>
<td>0.932</td>
<td>8.7</td>
<td>0.270</td>
<td>0.631**</td>
<td>0.624**</td>
<td>0.055</td>
<td>0.134</td>
<td>0.160**</td>
<td>0.143</td>
<td>-0.020</td>
<td>0.038</td>
<td>0.907</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Economic distance</td>
<td>0.880</td>
<td>8.80</td>
<td>4.66</td>
<td>0.733**</td>
<td>0.484**</td>
<td>0.059</td>
<td>0.119</td>
<td>0.119</td>
<td>0.170**</td>
<td>0.018</td>
<td>0.157**</td>
<td>0.776**</td>
<td>0.938</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Firm size<sup>a</sup></td>
<td>N/A</td>
<td>1.42</td>
<td>0.790</td>
<td>0.018</td>
<td>0.002</td>
<td>0.001</td>
<td>-0.27</td>
<td>0.033</td>
<td>0.031</td>
<td>0.031</td>
<td>0.131</td>
<td>-0.018</td>
<td>-0.013</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Industry type<sup>b</sup></td>
<td>N/A</td>
<td>4.34</td>
<td>1.56</td>
<td>-0.050</td>
<td>-0.000</td>
<td>0.032</td>
<td>-0.008</td>
<td>-0.004</td>
<td>-0.013</td>
<td>-0.200**</td>
<td>-0.155**</td>
<td>-0.064</td>
<td>-0.032</td>
<td>-0.198**</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>GDP per capita (in)</td>
<td>N/A</td>
<td>10.71</td>
<td>0.964</td>
<td>-0.421**</td>
<td>-0.615**</td>
<td>-0.014</td>
<td>-0.042</td>
<td>0.023</td>
<td>-0.044</td>
<td>-0.043</td>
<td>-0.030</td>
<td>-0.531**</td>
<td>-0.420**</td>
<td>-0.023</td>
<td>0.090</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Geographical distance (in)</td>
<td>N/A</td>
<td>6.75</td>
<td>0.992</td>
<td>0.477**</td>
<td>0.731**</td>
<td>-0.034</td>
<td>0.056</td>
<td>-0.012</td>
<td>-0.033</td>
<td>0.052</td>
<td>-0.016</td>
<td>0.523**</td>
<td>0.366**</td>
<td>-0.071</td>
<td>-0.119</td>
<td>-0.478**</td>
<td>N/A</td>
</tr>
<tr>
<td>15</td>
<td>Free trade area (dummy)</td>
<td>N/A</td>
<td>0.80</td>
<td>0.040</td>
<td>-0.552**</td>
<td>-0.774**</td>
<td>-0.081</td>
<td>-0.140</td>
<td>-0.021</td>
<td>-0.070</td>
<td>-0.044</td>
<td>-0.005</td>
<td>-0.694**</td>
<td>-0.431**</td>
<td>0.029</td>
<td>0.076</td>
<td>0.482**</td>
<td>-0.834**</td>
</tr>
</tbody>
</table>

Notes: *Correlation is significant at the 0.05 level (2-tailed); **correlation is significant at the 0.01 level (two-tailed); diagonal figures (in bold) are square root of the average variance extracted; a firms were grouped into four/six size/industry categories (Appendix 2)
as suggested by Podsakoff et al. (2003) to safeguard the findings against common method variance (CMV) (Fiske, 1982). In terms of procedural remedies:

- we used paper and pencil-administered questionnaires instead of face-to-face interviews as the medium to gather data;
- we protected respondent anonymity to reduce evaluation apprehension; and
- we improved scale items by defining terms used in the questionnaires and provided examples to clarify the concepts.

In terms of statistical remedies, we conducted Harman’s one-factor model test (Podsakoff et al., 2003), in which a worse fit for the one-factor model would suggest that CMV does not pose a serious problem. The rationale of this test is that if CMV poses a serious threat to the analysis, a single latent factor could account for all manifest variables (Podsakoff et al., 2003). The one-factor model fit statistics [$\chi^2 = 913.28\ (90\ df, \ p = 0)$; RMSEA = 0.222; NFI = 0.62; CFI = 0.65; IFI = 0.65; RFI = 0.56; SRMR = 0.17; GFI = 0.60 and AGFI = 0.47] indicated that this model did not fit the data, suggesting that CMV is not likely to be a problem threatening the findings.

Research findings
Initially, we used two path models, one with the construct perceived cultural distance (Model 1, Figure 2) and one with objective cultural distance (Model 2, Figure 2), to test the hypotheses. In both models, we controlled for firm size, industry type, free trade area, GDP of the foreign market and geographical, legal, political and economic distance to the foreign market. All indices indicated that the hypothesized models had adequate fit to the data (Figure 2).

The path coefficient between perceived cultural distance and innovation was positive and significant ($t = 2.44, p < 0.05$) (see Model 1, Figure 2). Likewise, the path coefficient between objective cultural distance and innovation was positive and significant ($t = 2.07, p < 0.05$) (see Model 2, Figure 2). These findings confirm H1. The positive and significant path coefficient ($t = 2.01/2.02, p < 0.05$) between innovation and export performance in both models confirmed H2, i.e. adopting cumulative innovations as response to uncertainties resulting from cultural distance to a foreign market is positively associated with a firm’s export performance. The results also showed that the effects of control variables on innovation or firm performance were not statistically significant.

In the next step, we replaced the cultural distance constructs in Models 1 and 2 (Figure 2) with reflective constructs comprising the distances in each cultural dimension of the foreign markets from Sweden (Figure 1). By controlling for the effect of firm size, industry type and geographical distance to the foreign markets, we (re)examined the influence of cultural distance (as reflective constructs) on innovation and export performance. We used this approach to overcome criticisms of cultural distance when treated as an aggregated construct (Shenkar, 2001). In general, the results appeared to be alike the aggregated models. The path coefficient between the reflective perceived and objective cultural distance constructs and innovation were positive and significant ($t = 2.51/2.53, p < 0.05$). Moreover, the path coefficient between innovation and export performance remained as well positive and significant ($t = 1.98/2.08, p < 0.05$).
As scholars maintain, despite the globalization of markets, national borders still matter, and differences between national cultures, along with other differences, contribute to the distinctiveness of national markets. This distinctiveness in turn provides not only challenges for firms to confront but also business opportunities to exploit using appropriate strategies (Ghemawat, 2001; Magnusson et al., 2008a).

This study examined the relationship between cultural distance, innovation and firm export performance. The results showed that cultural distance (both perceived and objective) has a positive effect on innovation, i.e. substantial differences and the subsequent liability of foreignness and uncertainty in culturally distant markets increase the intensity of a firm’s efforts toward innovation (both technological and organizational innovations), presumably to cope with the requirements of the foreign market environment and overcome uncertainties (Damanpour and Evan, 1984; Silva et al., 2010). Previous studies also cite uncertainty as a cause of innovation (Pierce and Delbecq, 1977; Hrebiniai and Snow, 1980; Ettlie, 1983; Huber et al., 1993; Ozsomer et al., 1997; Garg et al., 2003; Freel, 2005) and a driver of an organization’s adaptive changes to the environment (Damanpour and Evan, 1984; Damanpour et al., 2009).
The present study also showed that the combined adoption of technological and organizational innovations enhanced firms’ export performance, confirming previous findings (Damanpour et al., 1989, 2009; Damanpour and Aravind, 2011). Introducing new technologies, more efficient production techniques and new products and processes resulting from technological innovations enables firms to respond quickly to changes in a highly competitive global market (Hall and Mairesse, 1995; Zahra and Covin, 1995; Kafouros et al., 2008; Gunday et al., 2011). Introducing organizational innovations improve, for example, communication, information sharing, coordination, learning and innovativeness (Damanpour and Evan, 1984; Damanpour and Aravind, 2011; Gunday et al., 2011).

In the present study, we controlled for a number of variables. The results indicated that the effects of those control variables on innovation and firm performance were not statistically significant. This indicates that for instance regardless of size and industry type, firms innovate when expanding into culturally distant markets in which they perceive a high level of uncertainty, and their innovations in response to the uncertain environment of a culturally distant market result in increased performance. These results are consistent with those of Shefer and Frenkel (2005) and Kafouros et al. (2008), who also found no association between firm size, industry type, propensity to innovation and returns on innovation.

Concluding remarks

The findings of this study have theoretical and managerial implications. The present study produced results that enrich the literature on IB and innovation by:

- empirically validating the explanatory power of cultural distance (both perceived and objective) in relation to innovation strategies and firm performance and
- confirming that the synergistic use of both technological and organizational innovations in response to uncertainties resulting from expansion into culturally distant markets generate strategic assets that lead to superior performance.

The sample analyzed comprised Swedish firms from the forestry, fishing, food products, beverages, garment and furniture industries, which are highly important in developed economies, contributing a significant share of exports, employment and innovation ability. Adopting technological and organizational innovations is highly important in these industries because their products are generally strongly associated with customer tastes, habits and customs, which differ from market to market, and implementing product innovations allows these firms to meet the conditions and requirements of the new foreign market. Furthermore, the products of firms in these industries are often manufactured at a high level of automation using integrated process technologies originally developed in other industries, so the improvements in intra-organizational coordination and cooperation mechanisms obtained by adopting organizational innovations facilitate the adoption of technological innovations in these sectors.

From a methodological perspective, as recommended by previous research, we measured cultural distance using both individual and national-level data. To mitigate the methodological biases, we used multi-dimensional measures to assess the cultural differences between countries. The results attest to the applicability of perceived measures of cultural distance as well as Hofstede’s (1980, 2001) national cultural scores.
as “objective” measures for calculating cultural distance; as Drogendijk and Slangen (2006, p. 376) state “It may thus be premature to dismiss Hofstede’s work as outdated or as misrepresenting national cultures”. Furthermore, to address the concern regarding the “assumption of equivalence” in the Kogut and Singh’s (1988) formula of cultural distance, we also conceptualized the cultural distance constructs as reflective constructs and examined their explanatory power in relation to innovation and export performance. Moreover, we operationalized innovation as a multi-faceted construct encompassing both technological and organizational innovations to determine the synergistic effects of combining innovation types on export performance and to compensate for the lack of previous research examining the influence of organizational innovation on firm export performance.

The findings of this study have some implications for international marketing managers. Entering markets that are similar to the home market often appears to be the easier choice for an expanding firm. However, the challenges related with internationalizing into culturally distant markets may be compensated for by business opportunities arising through a firm’s greater ability to differentiate itself from the competition and to access unexploited market environments. This study showed that to reap the benefits of those market opportunities, the firm must make innovations not only to processes and products but also to its organizational strategy, structure and administrative procedures. Moreover, the benefits of organizational innovations can assist in adopting other technological innovations (e.g. integrated process technologies).

Limitations and further research
This study provided some insights into cultural distance, innovation and export performance research, but there were several limitations to the approach used. We assumed that uncertainty as a consequence of cultural distance would stimulate innovation, but it would be beneficial to measure uncertainty directly and add it as an additional variable in the conceptual model of the relationships between cultural distance and innovation. Furthermore, we used Hofstede’s country scores as “objective” measures for cultural distance in this study. It can be argued that those scores are also based on the perceptions of individuals. Yet, the validity and reliability of Hofstede’s national cultural scores (Kogut and Singh, 1988, Magnusson et al., 2008b) may allow researchers to use them as “objective” or “hard” data in assessing cultural differences between countries. Brock et al. (2011) developed a cultural distance measure based on the Hofstede’s framework as a proxy for “objective” assessment of cultural distance. Future studies may replicate this investigation using other frameworks to conceptualize cultural distance. In this study, we measured cultural distance constructs based on Hofstede’s four original dimensions. We used those dimensions due to comparability with dimensions of perceived cultural distance and also availability of scores for the foreign markets covered by the study. However, we encourage future research incorporating other dimensions (e.g. long-/short-term orientation and indulgence/restriction) where appropriate. We used scales developed by Weerawardena (2003b, 2003a) to measure firms’ innovation activity. Although these scales have advantages in, e.g. multi-dimensionality, capturing direct innovation activities fitting the low-tech sector, future studies should perhaps apply more comprehensive measures of both technological and organizational innovations. Moreover, the cross-sectional
method applied in this study could not capture the dynamic aspects of strategy formulation in international markets and causality among constructs. Future studies should address the relationships proposed in the hypothesized models using longitudinal data to overcome such limitations and to allow for a more accurate evaluation of the causality in the relationship among cultural distance, innovation and export performance. An especially important consideration is the empirical possibility that the innovative capacity of the firm allows them to enter culturally distant markets. Previous research states that uncertainties in the external environment prompt innovations, but longitudinal research on this issue is still necessary and is a fruitful direction for further research following our findings. Finally, the composition of the sample may limit the generalizability of our findings, as we restricted our study to Swedish companies in fishing, food products, beverages, garment and furniture industries. Future studies should replicate this research in other regional and industrial contexts.

Notes
1. Technological innovation is also called “Technical” innovation. Organizational innovation has been referred to as administrative, managerial, management and non-technological innovation (Damanpour and Evan, 1984; O’Cass and Weerawardena, 2009; Damanpour and Aravind, 2011).
2. Norway is a member of European Free Trade Association (EFTA).
3. The scores on Schwartz’s (1994) dimensions are not available for Sweden (the home market in this study). Likewise, the scores on the Globe’s (House et al., 2004) dimensions are not available for Norway (the main nominated close market to Sweden in this study).
4. In calculating the deviations in the perceptual model, the indices for all cultural dimensions (\(I_\alpha\)) for Sweden were considered to be equal to 1 (Evans et al., 2008).
5. Geographical distance was calculated in terms of the natural logarithm of actual distance in kilometers between the capitals of the home country (Sweden) and the foreign country \(j\). The distance in kilometers was obtained from the Geobytes Databases (2014). This approach is consistent with previous research (Malhotra et al., 2009; Brock et al., 2011).

References
Perceived and objective cultural distance

195

Appendix 1

The following are the export markets covered by the study:

- Belgium;
- Bosnia and Herzegovina;
- China;
- Denmark;
- Estonia;
- Finland;
- France;
- Germany;
- Ghana;
- Japan;
- Kuwait;
- Latvia;
- Lithuania;
- The Netherlands;
- Norway;
- Poland;
- Qatar;
- Russia;
- South Korea;
- Spain;
- UK;
- USA; and
- Venezuela.
Appendix 2

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position of respondents</td>
<td></td>
</tr>
<tr>
<td>CEO</td>
<td>59.1</td>
</tr>
<tr>
<td>Owner</td>
<td>15.6</td>
</tr>
<tr>
<td>Marketing director</td>
<td>4.3</td>
</tr>
<tr>
<td>Finance director</td>
<td>5.4</td>
</tr>
<tr>
<td>Export manager</td>
<td>2.7</td>
</tr>
<tr>
<td>Others</td>
<td>12.9</td>
</tr>
<tr>
<td>Number of employees</td>
<td></td>
</tr>
<tr>
<td>1-49</td>
<td>71.5</td>
</tr>
<tr>
<td>50-249</td>
<td>19.4</td>
</tr>
<tr>
<td>250-499</td>
<td>4.3</td>
</tr>
<tr>
<td>≥500</td>
<td>4.8</td>
</tr>
<tr>
<td>Number of years exporting</td>
<td></td>
</tr>
<tr>
<td><5</td>
<td>8.1</td>
</tr>
<tr>
<td>5-9</td>
<td>10.8</td>
</tr>
<tr>
<td>10-14</td>
<td>18.3</td>
</tr>
<tr>
<td>15-19</td>
<td>9.7</td>
</tr>
<tr>
<td>≥20</td>
<td>53.1</td>
</tr>
<tr>
<td>Number of foreign markets to which the firm exports</td>
<td></td>
</tr>
<tr>
<td><5</td>
<td>6.5</td>
</tr>
<tr>
<td>5-9</td>
<td>29.6</td>
</tr>
<tr>
<td>10-14</td>
<td>28.5</td>
</tr>
<tr>
<td>≥15</td>
<td>35.5</td>
</tr>
<tr>
<td>Main export market</td>
<td></td>
</tr>
<tr>
<td>Norway</td>
<td>28.5</td>
</tr>
<tr>
<td>Denmark</td>
<td>13.4</td>
</tr>
<tr>
<td>Finland</td>
<td>14.0</td>
</tr>
<tr>
<td>Germany</td>
<td>7.5</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>5.9</td>
</tr>
<tr>
<td>USA</td>
<td>4.3</td>
</tr>
<tr>
<td>Russia</td>
<td>3.8</td>
</tr>
<tr>
<td>Industry type</td>
<td></td>
</tr>
<tr>
<td>Forestry</td>
<td>5.4</td>
</tr>
<tr>
<td>Fishing</td>
<td>2.7</td>
</tr>
<tr>
<td>Food products</td>
<td>32.8</td>
</tr>
<tr>
<td>Beverages</td>
<td>7.0</td>
</tr>
</tbody>
</table>

Table AI.

<table>
<thead>
<tr>
<th>Sample characteristics</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Garment</td>
<td>15.6</td>
</tr>
<tr>
<td>Furniture</td>
<td>36.6</td>
</tr>
</tbody>
</table>
Appendix 3

(Perceived) Cultural distance (adapted from Evans and Mavondo, 2002; Evans et al., 2008) (second-order) (AVE = 0.941/CR = 0.984)
($\chi^2 = 110.80$ (50 df, $p = 0$); RMSEA = 0.080; NFI = 0.98; CFI = 0.99; IFI = 0.99; RFI = 0.97; SRMR = 0.037; GFI = 0.91; and AGFI = 0.86)

Question: To what extent do you perceive that Sweden (the home market) is similar to the nominated markets regarding each of the following statements?
(Scale: 1 = totally the same; 7 = totally different)

Power distance (PDI) (AVE = 0.698/$\alpha = 0.865$
CD_PDI1 Degree of inequality among the people 0.90
CD_PDI2 Salary range between the highest and lowest paid in organizations 0.85
CD_PDI3 Importance of social status symbols 0.75

Individualism (IND) (AVE = 0.602/$\alpha = 0.806$
CD_IND1 Importance of loyalty to family and friends 0.63
CD_IND2 Recognition of the right to privacy 0.83
CD_IND3 Freedom of the press 0.85

Masculinity (MAS) (AVE = 0.678/$\alpha = 0.857$
CD_MAS1 Importance of caring for others 0.84
CD_MAS2 Importance of material success 0.78
CD_MAS3 Degree to which women are expected to be assertive and ambitious 0.85

Uncertainty avoidance (UAI) (AVE = 0.640/$\alpha = 0.843$
CD_UAI1 Openness to change and innovation 0.78
CD_UAI2 Tolerance of differences (i.e., religious, political and ideological) 0.82
CD_UAI3 Reliance on rules to govern behavior 0.80

Innovation (adapted from Weerawardena, 2003a, 2003b) (second-order)
(AVE = 0.625/CR = 0.893)
($\chi^2 = 53.08$ (16 df, $p = 0.00001$); RMSEA = 0.112; NFI = 0.96; CFI = 0.97; IFI = 0.97; RFI = 0.94; SRMR = 0.037; GFI = 0.93; and AGFI = 0.85)

Question 1: How extensive have been the following innovation activities your firm has undertaken in relation to the nominated markets during the past three years?
(Scale: 1 = limited; 7 = extensive)

Question 2: How radical have been the following innovation activities your firm has undertaken in relation to the nominated markets during the past three years?
(Scale: 1 = incremental; 7 = radical)

Table AII. Items, reliability and convergent validity (continued)
Product innovation (e.g. improving existing products and creating new products)
(AVE = 0.683/α = 0.805)
INN_P1 Product innovations introduced by our firm during the past three years have been . . . (Scale: 1 = limited; 7 = extensive) 0.77
INN_P2 Product innovations have mainly been . . . (Scale: 1 = incremental; 7 = radical) 0.88

Process innovation (e.g. introducing computer-based production application, automated material handling and introducing manufacturing information systems) (AVE = 0.780/α = 0.866)
INN_R1 Process innovations introduced by our firm during the past three years have been . . . (Scale: 1 = limited and 7 = extensive) 0.80
INN_R2 Process innovations have mainly been . . . (Scale: 1 = incremental; 7 = radical) 0.96

Managerial innovation (e.g. introducing computer-based administrative applications, developing new employee rewarding schemes, obtaining new financing sources and introducing new departments or project teams) (AVE = 0.862/α = 0.916)
INN_M1 Managerial innovations introduced by our firm during the last three years have been . . . (Scale: 1 = limited and 7 = extensive) 0.84
INN_M2 Managerial innovations have mainly been . . . (Scale: 1 = incremental; 7 = radical) 1.0

Marketing innovation (e.g. introducing new pricing methods, new distribution methods, new sales approaches or leasing arrangements) (AVE = 0.837/α = 0.908)
INN_K1 Marketing innovations introduced by our firm during the past three years have been . . . (Scale: 1 = limited; 7 = extensive) 0.90
INN_K2 Marketing innovations have mainly been . . . (Scale: 1 = incremental; 7 = radical) 0.93

Export performance (adapted from Evans and Mavondo, 2002; Evans et al., 2008) (second-order)
(AVE = 0.724/CR = 0.835)
χ² = 37.41 (7 df, p = 0); RMSEA = 0.153; NFI = 0.97; CFI = 0.98; IFI = 0.98; RFI = 0.94; SRMR = 0.074; GFI = 0.94; and AGFI = 0.81)

Financial performance (AVE = 0.778/α = 0.924)
Question: To what extent have the following financial indicators changed for your company in the past three years in the nominated markets?
(Scale: 1 = decrease of more than 20 per cent; 7 = increase of more than 20 per cent)
PE_F1 Return on assets 0.91
PE_F2 Return on investment 0.92
PE_F3 Return on sales 0.92
PE_F4 Sales 0.77

Strategic effectiveness (AVE = 0.828/α = 0.909)
Question: How successful has your company been regarding the following in relation to the nominated markets in the past three years?
(Scale: 1 = very unsuccessful; 7 = very successful)
PE_S1 Achievement of strategic objectives 0.91
PE_S2 Satisfaction with overall performance 0.91

Table AII. (continued)
Control variables

Legal and political distance (AVE = 0.824/α = 0.932)
- BD_L1 Stability of political structure 0.84
- BD_L2 Consumer protection legislation 0.94
- BD_L3 Competitive practices legislation 0.94

Economic distance (AVE = 0.718/α = 0.880)
- BD_E1 Gross domestic product (GDP) per capita 0.85
- BD_E2 Capacity of the banking sector 0.89
- BD_E3 Level of demands for goods and service 0.80
- Firm size (number of full-time employees) N/A
- Industry type N/A
- GDP per capita (in current US$) (export market) N/A
- Geographical distance (in km) N/A
- Free trade area (dummy) N/A

Notes: AVE = average variance extracted (Fornell and Larcker, 1981); CR = construct reliability (Bagozzi, 1980); α = Cronbach’s coefficient alpha; RMSEA = root mean square of approximation; NFI = normed fit index; CFI = comparative fit index; IFI = incremental fit index; RFI = relative fit index; SRMR = standardized root mean residual; GFI = goodness-of-fit index; and AGFI = adjusted goodness-of-fit index. The values next to each item are standardized loadings; the original questionnaire was in Swedish.

<table>
<thead>
<tr>
<th>Table AII.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perceived and objective cultural distance</td>
</tr>
</tbody>
</table>

207

About the authors

Dr Goudarz Azar is a Lecturer in International Business at the college of Business, Arts & Social Sciences at the Brunel University London. His main research interest includes the effect of cultural and other business differences between countries on firm internationalization strategy, e.g., innovation strategy and foreign market selection. Goudarz Azar is the corresponding author and can be contacted at: goudarz.azar@brunel.ac.uk

Dr Rian Drogendijk is an Associate Professor at the Department Global Economics and Management at Groningen University and an Associated Researcher at the Department of Business Studies at Uppsala University. Her research interests include internationalization processes of multinational companies, communication processes in multinational companies and the effect of cultural and other differences between countries on international management.

For instructions on how to order reprints of this article, please visit our website: www.emeraldgrouppublishing.com/licensing/reprints.htm
Or contact us for further details: permissions@emeraldinsight.com
This article has been cited by:

1. Radicic, Dragana Radicic, Djalilov Khurshid, Khurshid Djalilov. The impact of technological and non-technological innovations on export intensity in SMEs. *Journal of Small Business and Enterprise Development*, ahead of print. [Abstract] [Full Text] [PDF]

3. Goudarz Azar, Rian Drogendijk. How Do Managers’ Deviant Perceptions of “Cultural Distance” Relate to the Performance of International SMEs? 91-106. [Abstract] [Full Text] [PDF] [PDF]

8. Pedro Miguel Freitas da Silva, António Moreira. National Culture and Its Relationship With Innovation and Corruption 201-225. [Crossref]