Observation of D0(+) -> K-S(0)π(0(+))\(\eta '\) and improved measurement of D-0 -> K-π(+)\(\eta '\)

BESIII Collaboration; Haddadi, Z.; Kalantar-Nayestanaki, N.; Kavatsyuk, Myroslav; Messchendorp, J. G.; Tiemens, M.

Published in:
Physical Review D

DOI:
10.1103/PhysRevD.98.092009

IMPORTANT NOTE: You are advised to consult the publisher’s version (publisher’s PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2018

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

Download date: 02-05-2021
Observation of $D^0(+) \rightarrow K^0_S \pi^0(+) \eta'$ and improved measurement of $D^0 \rightarrow K^- \pi^+ \pi^0$

Observation of $D^0(+) \rightarrow K^0_S \pi^0(+) \eta'$ and improved measurement of $D^0 \rightarrow K^- \pi^+ \pi^0$

PHYSICAL REVIEW D 98, 092009 (2018)

(BESIII Collaboration)

1 Institute of High Energy Physics, Beijing 100049, People’s Republic of China
2 Beihang University, Beijing 100191, People’s Republic of China
3 Beijing Institute of Petrochemical Technology, Beijing 102617, People’s Republic of China
4 Bochum Ruhr-University, D-44780 Bochum, Germany
5 Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
6 Central China Normal University, Wuhan 430079, People’s Republic of China
7 China Center of Advanced Science and Technology, Beijing 100190, People’s Republic of China
8 COMSATS Institute of Information Technology, Lahore, Defence Road, Off Raiwind Road, 54000 Lahore, Pakistan
9 Fudan University, Shanghai 200443, People’s Republic of China
10 G.I. Budker Institute of Nuclear Physics SB RAS (BINP), Novosibirsk 630090, Russia
11 GSI Helmholtzcentre for Heavy Ion Research GmbH, D-64291 Darmstadt, Germany
12 Guangxi Normal University, Guilin 541004, People’s Republic of China
13 Guangxi University, Nanning 530004, People’s Republic of China
14 Hangzhou Normal University, Hangzhou 310036, People’s Republic of China
15 Helmholtz Institute Mainz, Johann-Joachim-Becher-Weg 45, D-55099 Mainz, Germany
16 Henan Normal University, Xinxiang 453007, People’s Republic of China
17 Henan University of Science and Technology, Luoyang 471003, People’s Republic of China
18 Huangshan College, Huangshan 245000, People’s Republic of China
19 Hunan Normal University, Changsha 410081, People’s Republic of China
20 Hunan University, Changsha 410082, People’s Republic of China
21 Indian Institute of Technology Madras, Chennai 600036, India
22 Indiana University, Bloomington, Indiana 47405, USA
23 INFN Laboratori Nazionali di Frascati, I-00044, Frascati, Italy
24 INFN and University of Perugia, I-06100, Perugia, Italy
25 INFN Sezione di Ferrara, I-44122, Ferrara, Italy
26 University of Ferrara, I-44122, Ferrara, Italy
27 Institute of Physics and Technology, Peace Ave. 54B, Ulaanbaatar 13330, Mongolia
28 Johannes Gutenberg University of Mainz, Johann-Joachim-Becher-Weg 45, D-55099 Mainz, Germany
29 Joint Institute for Nuclear Research, 141980 Dubna, Moscow region, Russia
30 Justus-Liebig-Universitaet Giessen, H. Physikalisches Institut, Heinrich-Buff-Ring 16, D-35392 Giessen, Germany
31 KVI-CART, University of Groningen, NL-9747 AA Groningen, The Netherlands
32 Lanzhou University, Lanzhou 730000, People’s Republic of China
33 Liaoqing University, Shenyang 110036, People’s Republic of China
34 Nanjing Normal University, Nanjing 210023, People’s Republic of China
35 Nanjing University, Nanjing 210093, People’s Republic of China
36 Nankai University, Tianjin 300071, People’s Republic of China
37 Peking University, Beijing 100871, People’s Republic of China
38 Shandong University, Jinan 250100, People’s Republic of China
39 Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
40 Shanxi University, Taiyuan 030006, People’s Republic of China
41 Sichuan University, Chengdu 610064, People’s Republic of China
42 Soochow University, Suzhou 215006, People’s Republic of China
43 Southeast University, Nanjing 211100, People’s Republic of China
44 State Key Laboratory of Particle Detection and Electronics, Beijing 100049, Hefei 230026, People’s Republic of China
45 Sun Yat-Sen University, Guangzhou 510275, People’s Republic of China
46 Tsinghua University, Beijing 100084, People’s Republic of China
47 Ankara University, 06100 Tandogan, Ankara, Turkey
48 Istanbul Bilgi University, 34060 Eyup, Istanbul, Turkey
49 Uludag University, 16059 Bursa, Turkey
50 Near East University, Nicosia, North Cyprus, Mersin 10, Turkey
I. INTRODUCTION

Hadronic decays of D mesons provide important information to understand the weak and strong interactions in the charm sector. Various experiments have measured the branching fractions of hadronic decays of D mesons [1]. However, the measurement accuracy of the Cabibbo-favored (CF) decays $D \to K\pi\eta'$ is still very poor [1]. The Particle Data Group (PDG) gives a branching fraction of $(0.75 \pm 0.19)\%$ for $D^0 \to K^-\pi^+\eta'$, which was measured by the CLEO collaboration 25 years ago [1, 2]. There are no measurements for the isospin-related decay modes $D^0 \to K^0_S\pi^+\eta'$ and $D^+ \to K^0_S\pi^+\eta'$. The statistical isospin model (SIM) proposed in Refs. [3, 4] predicts a simple ratio of the branching fractions for the isospin multiplets: $\mathcal{B}(D^0 \to K^-\pi^+\eta') : \mathcal{B}(D^0 \to K^0_S\pi^+\eta') : \mathcal{B}(D^+ \to K^0_S\pi^+\eta') \approx 1 : \mathcal{R}^0 : \mathcal{R}^+ \equiv 1 : \frac{\mathcal{B}(D^0 \to K^-\pi^+\eta')}{\mathcal{B}(D^0 \to K^0_S\pi^+\eta')} : \frac{\mathcal{B}(D^+ \to K^0_S\pi^+\eta')}{\mathcal{B}(D^- \to K^-\pi^+\eta')} = 1 : 0.4 : 0.9. $

Precision measurements of the branching fractions of $D \to K\pi\eta'$ are crucial to test the SIM prediction.

In this paper, we report an improved measurement of the branching fraction for $D^0 \to K^-\pi^+\eta'$ and the first measurements of the branching fractions for $D^0 \to K^0_S\pi^+\eta'$ and $D^+ \to K^0_S\pi^+\eta'$. The analysis is performed using an e^+e^- annihilation data sample corresponding to an integrated luminosity of $2.93\fb^{-1}$ [5] collected with the BESIII detector [6] at $\sqrt{s} = 3.773\GeV$. At this energy, relatively clean D^0 and D^+ meson samples are obtained from the processes $e^+e^- \to \psi(3770) \to D^0\bar{D}^0$ or $D^+\bar{D}^-$. To improve statistics, we use a single-tag method, in which either a D or \bar{D} is reconstructed in an event. Throughout the

By analyzing an e^+e^- data sample corresponding to an integrated luminosity of $2.93\fb^{-1}$ taken at a center-of-mass energy of $3.773\GeV$ with the BESIII detector, we measure the branching fractions of the Cabibbo-favored hadronic decays $D^0 \to K^-\pi^+\eta'$, $D^0 \to K^0_S\pi^+\eta'$, and $D^+ \to K^0_S\pi^+\eta'$, which are determined to be $(6.43 \pm 0.15_{\text{stat}} \pm 0.31_{\text{syst}}) \times 10^{-3}$, $(2.52 \pm 0.22_{\text{stat}} \pm 0.15_{\text{syst}}) \times 10^{-3}$, and $(1.90 \pm 0.17_{\text{stat}} \pm 0.13_{\text{syst}}) \times 10^{-3}$, respectively. The precision of the branching fraction of $D^0 \to K^-\pi^+\eta'$ is significantly improved, and the processes $D^0 \to K^0_S\pi^+\eta'$ and $D^+ \to K^0_S\pi^+\eta'$ are observed for the first time.

DOI: 10.1103/PhysRevD.98.092009
text, charge conjugated modes are implied, and $\bar{D}\bar{D}$ refers to $D^0\bar{D}^0$ and D^+D^- unless stated explicitly.

II. BESIII DETECTOR AND MONTE CARLO SIMULATION

The BESIII detector is a magnetic spectrometer that operates at the BEPCII collider. It has a cylindrical geometry with a solid-angle coverage of 93% of 4π. It consists of several main components. A 43-layer main drift chamber (MDC) surrounding the beam pipe performs precise determinations of charged particle trajectories and measures the specific ionization energy loss (dE/dx) for charged particle identification (PID). An array of time-of-flight counters (TOF) is located outside the MDC and provides additional PID information. A CsI(Tl) electromagnetic calorimeter (EMC) surrounds the TOF and is used to measure the deposited energies of photons and electrons. A solenoidal superconducting magnet outside the EMC provides a 1 T magnetic field in the central tracking region of the detector. The iron flux return of the magnet is instrumented with the resistive plate muon counters arranged in nine layers in the barrel and eight layers in the endcaps for identification of muons with momenta greater than 0.5 GeV/c. More details about the BESIII detector are described in Ref. [6].

A Monte Carlo (MC) simulation software package, based on GEANT4 [7], includes the geometric description and response of the detector and is used to determine the detection efficiency and to estimate backgrounds for each decay mode. An inclusive MC sample, which includes the $D^0\bar{D}^0$, D^+D^- and non-$D\bar{D}$ decays of the $\psi(3770)$, initial-state-radiation (ISR) production of the $\psi(3686)$ and J/ψ, the continuum process $e^+e^- \rightarrow q\bar{q} \ (q = u, d, s)$, Bhabha scattering events, dimuon events, and ditau events, is produced at $\sqrt{s} = 3.773$ GeV. The equivalent luminosity of the inclusive MC sample is ten times that of the data sample. The $\psi(3770)$ decays are generated with the MC generator KKMC [8], which incorporates the effects of ISR [9]. Final-state-radiation (FSR) effects are simulated with the PHOTOS package [10]. The known decay modes are generated using EVTGEN [11] with branching fractions taken from the PDG [1], while the remaining unknown decays are generated using LUNDCHARM [12].

III. EVENT SELECTION

In this analysis, all charged tracks are required to be within $|\cos \theta| < 0.93$, where θ is the polar angle with respect to the positron beam. Good charged tracks, except those used to reconstruct K^0_S mesons, are required to originate from the interaction region defined by $V_{xy} < 1$ cm and $|V_z| < 10$ cm, where V_{xy} and V_z are the distances of the closest approach of the reconstructed tracks to the interaction point (IP), perpendicular to and along the beam direction, respectively.

Charged kaons and pions are identified using the dE/dx and TOF measurements. The combined confidence levels for the kaon and pion hypotheses (CL_K and CL_π) are calculated and the charged track is identified as kaon (pion) if $CL_{K(\pi)}$ is greater than $CL_{\pi(K)}$.

The neutral kaon is reconstructed via the $K^0_S \rightarrow \pi^+\pi^-$ decay mode. Two oppositely charged tracks with $|V_z| < 20$ cm are assumed to be a $\pi^+\pi^-$ pair without PID requirements and the $\pi^+\pi^-$ pair is constrained to originate from a common vertex. The $\pi^+\pi^-$ combination with an invariant mass $M_{\pi^+\pi^-}$ in the range $|M_{\pi^+\pi^-} - M_{K^0_s}| < 0.012$ GeV/c^2, where $M_{K^0_s}$ is the nominal K^0_S mass [1], and a measured flight distance from the IP greater than twice its resolution is accepted as a K^0_S candidate. Figure 1(a) shows the $\pi^+\pi^-$ invariant mass distribution, where the two solid arrows denote the K^0_S signal region.

Photon candidates are selected using the EMC information. The time of the candidate shower must be within 700 ns of the event start time and the shower energy should be greater than 25 (50) MeV if the crystal with the maximum deposited energy for the cluster of interest is in the barrel (endcap) region [6]. The opening angle between the candidate shower and any charged track is required to be greater than 10° to eliminate showers associated with charged tracks. Both η' and η mesons are reconstructed via the $\gamma\gamma$ decay mode. The $\gamma\gamma$ combination with an invariant mass within (0.115, 0.150) or (0.515, 0.570) GeV/c^2 is regarded as a η' or η candidate, respectively. To improve resolution, a one constraint (1-C) kinematic fit is applied to constrain the invariant mass of the photon pair to the nominal η' or η invariant mass [1].

The η' mesons are reconstructed through the decay $\eta' \rightarrow \pi^+\pi^-\eta$. The invariant mass of the $\pi^+\pi^-\eta$ combination $M_{\pi^+\pi^-\eta}$ is required to satisfy $|M_{\pi^+\pi^-\eta} - M_{\eta'}| < 0.015$ GeV/c^2, where $M_{\eta'}$ is the nominal η' mass [1]. The boundaries of the one dimensional (1D) η' signal region are illustrated by the two solid arrows shown in Fig. 1(b). The $D^{0(\bar{0})+} \rightarrow K^- (K^0_S)\pi^+\eta$ decay is selected from the $K^- (K^0_S)\pi^+\pi^-\eta$ combination. Since the two π^+s in the event have low momenta and are indistinguishable, the η' may be formed from either of the $\pi^+\pi^-\eta$ combinations, whose invariant masses are denoted as $M_{\pi^+\pi^-\eta}$ and $M_{\pi^+\pi^-\eta}$.

Figure 1(c) shows the scatter plot of $M_{\pi^+\pi^-\eta}$ versus $M_{\pi^+\pi^-\eta}$ for the $D^0 \rightarrow K^- \pi^+\eta'$ candidate events in the data sample. Events with at least one $\pi^+\pi^-\eta$ combination in the two dimensional (2D) η' signal region, shown by the solid lines in Fig. 1(c), are kept for further analysis.

To distinguish D mesons from backgrounds, we define two kinematic variables, the energy difference $\Delta E \equiv E_D - E_{beam}$ and the beam-constrained mass $M_{BC} \equiv \sqrt{E_{beam} - |\vec{p}_D|^2}$, where E_D and \vec{p}_D are the energy and momentum of the D candidate in the e^+e^- center-of-mass
FIG. 1. (a) Distribution of $M_{\pi^{+}\pi^{-}}$ for the K_{S}^{0} candidates from $D^{0} \rightarrow K_{S}^{0}\pi^{0}\eta'$ decays and (b) the combined $M_{\pi^{+}\pi^{-}\eta}$ and $M_{\pi^{+}\pi^{-}\eta}$ distribution for the η' candidates from $D^{0} \rightarrow K^{-}\pi^{+}\eta'$ decays, where the dots with error bars are data, the histograms are inclusive MC samples, and the pairs of red solid (blue dashed) arrows show the boundaries of the K_{S}^{0} or η' 1D signal (sideband) region. (c) Scatter plot of $M_{\pi^{+}\pi^{-}\eta}$ versus $M_{\pi^{+}\pi^{-}\eta}$ for the $D^{0} \rightarrow K^{-}\pi^{+}\eta'$ candidate events in the data sample, where the range surrounded by the red solid (blue dashed) lines denotes the η' 2D signal (sideband) region. In these figures, except for the K_{S}^{0} or η' mass requirement, all selection criteria and an additional requirement of $|M_{\text{BC}} - M_{D}| < 0.005$ GeV/c^{2} have been imposed. The signal and sideband regions, illustrated here, are applied for all decays of interest in the analysis.

TABLE I. ΔE requirements, input quantities and results for the determination of the branching fractions. The efficiencies do not include the branching fractions for the decays of the daughter particles of η', η, K_{S}^{0}, and π^{0} mesons. The uncertainties are statistical only.

<table>
<thead>
<tr>
<th>Decay mode</th>
<th>ΔE (MeV)</th>
<th>N_{tag}</th>
<th>ϵ (%)</th>
<th>$B \times 10^{-3}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$D^{0} \rightarrow K^{-}\pi^{+}\eta'$</td>
<td>$(−26, +28)$</td>
<td>2528 ± 59</td>
<td>10.97 ± 0.08</td>
<td>6.43 ± 0.15</td>
</tr>
<tr>
<td>$D^{0} \rightarrow K_{S}^{0}\pi^{0}\eta'$</td>
<td>$(−35, +38)$</td>
<td>289 ± 26</td>
<td>4.67 ± 0.04</td>
<td>2.52 ± 0.22</td>
</tr>
<tr>
<td>$D^{+} \rightarrow K_{S}^{0}\pi^{+}\eta'$</td>
<td>$(−27, +28)$</td>
<td>267 ± 24</td>
<td>7.23 ± 0.05</td>
<td>1.90 ± 0.17</td>
</tr>
</tbody>
</table>

system and E_{beam} is the beam energy. For each signal decay mode, only the combination with the minimum $|\Delta E|$ is kept if more than one candidate passes the selection requirements. Mode-dependent ΔE requirements, as listed in Table I, are applied to suppress combinatorial backgrounds. These requirements are about $\pm 3.5\sigma_{\Delta E}$ around the fitted ΔE peaks, where $\sigma_{\Delta E}$ is the resolution of the ΔE distribution obtained from fits to the data sample.

IV. DATA ANALYSIS

The M_{BC} distributions of the accepted candidate events for the decays of interest in the data sample are shown in Fig. 2. Unbinned maximum likelihood fits to these spectra are performed to obtain the D signal yields. In the fits, the D signal is modeled by an MC-simulated shape convolved with a Gaussian function with free parameters accounting for the difference between the detector resolution of the data and that of the MC simulation. The background shape is described by an ARGUS function [13]. The potential peaking backgrounds are investigated as follows. The combinatorial $\pi^{+}\pi^{-}$ (called BKGI) or $\pi^{+}\pi^{-}\eta$ (called BKGII) pairs in the K_{S}^{0} or η' signal region may survive the event selection criteria and form peaking backgrounds around the D mass in the M_{BC} distributions. These background components are validated by the data events in the $K_{S}^{0}(\eta')$ 1D signal region defined as $0.020(0.022) < |M_{\pi^{+}\pi^{-}}(\pi^{+}\pi^{-}\eta) - M_{\text{tag}}(\eta')| < 0.044(0.046)$ GeV/c^{2}, as indicated by the ranges between the adjacent pair of blue dashed arrows in Fig. 1(a). For $D^{0} \rightarrow K^{-}\pi^{+}\eta'$ and $D^{+} \rightarrow K_{S}^{0}\pi^{+}\eta'$ decays, the data events in the η' 2D signal region, enclosed by the blue dashed lines in Fig. 1(c), are examined. For these events, either $M_{\pi^{+}\pi^{-}\eta}$ or $M_{\pi^{+}\pi^{-}\eta}$ is in the η' 1D signal region, but both are outside the η' 1D sideband region. These two background components are normalized by the ratios of the magnitude of the backgrounds in the $K_{S}^{0}(\eta')$ signal and sideband regions. The background components from other processes (called BKGIII) are estimated by analyzing the inclusive MC sample. The scaled M_{BC} distributions of the surviving events for the BKGI, BKGII, and BKGIII components are...
shown as the dotted, dashed, and solid histograms in Fig. 2, respectively. In these spectra, no peaking backgrounds are found, which indicates that the background shape is well modeled by the ARGUS function. From each fit, we obtain the number of $D \to \bar{K}\pi\eta'$ signal events N_{tag}, as summarized in Table I. The statistical significances of these decays, which are estimated from the likelihood difference between the fits with and without the signal component, are all greater than 10σ.

Figure 3 shows the $M_{K\pi}$, $M_{\eta\pi}$, and $M_{K\eta'}$ distributions of $D \to \bar{K}\pi\eta'$ candidate events for data and MC simulations after requiring $|M_{BC} - M_D| < 0.005$ GeV/c^2. No obvious subresonances have been observed in these invariant mass distributions. Nevertheless, the phase space (PHSP) MC distributions are not in good agreement with the data distribution (see the blue dashed histograms and dots with errors in Fig. 3). To solve this problem, we modify the MC generator to produce the correct invariant mass distributions according to the Dalitz plot distributions in data. In the Dalitz plot, the background component is modeled by the inclusive MC simulation, while the signal component is generated according to efficiency-corrected PHSP MC simulation. In Fig. 4, we show the Dalitz plots of $D^0 \to K^-\pi^+\eta'$ candidate events for data and the modified MC sample. The invariant mass distributions $M_{K\pi}$, $M_{\eta\pi}$, and $M_{K\eta'}$ of the modified MC samples are in good agreement with the data distributions (see the red solid histograms and
V. BRANCHING FRACTIONS

The branching fraction of $D \to \bar{K}\pi\eta'$ is determined according to

$$B(D \to \bar{K}\pi\eta') = \frac{N_{\text{tag}}}{2 \cdot N_{DB} \cdot e \cdot B_{\eta'} \cdot B_{\eta}(B_{\text{inter}})},$$ \hspace{1cm} (1)$$

where N_{tag} is the number of $D \to \bar{K}\pi\eta'$ signal events, N_{DB} is the total number of DB pairs, e is the detection efficiency which has been corrected for the differences in the efficiencies for charged particle tracking and PID, as well as π and η reconstruction, between the data and MC simulation as discussed in Sec. IV, and summarized in Table I. In Eq. (1), B_{inter} is the product branching fraction $B_{\bar{K}^0} \cdot B_{\pi^0} \cdot B_{\eta}(B_{\text{inter}})$ for the decay $D^0 \to K_1^0 \pi^0 \eta'$ ($D^+ \to K^0 \pi^+ \eta'$), and $B_{\eta'}$, B_{η}, $B_{K_0^0}$ and B_{π^0} denote the branching fractions of the decays $\eta' \to \pi^+ \pi^- \eta$, $\eta \to \gamma \gamma$, $K_0^0 \to \pi^+ \pi^-$, and $\pi^0 \to \gamma \gamma$, respectively, taken from the PDG [1]. With the single-tag method, the CF decays $D^0(D^+) \to \bar{K}\pi\eta'$ are indistinguishable from the doubly Cabibbo-suppressed (DCS) decays $\bar{D}^0(D^+) \to \bar{K}(K)\eta\pi'$. However, the DCS contributions are expected to be small and negligible in the calculations of branching fractions, but will be taken into account as a systematic uncertainty.

Taking $N_{D^0\bar{D}^0} = (10597 \pm 28_{\text{stat}} \pm 98_{\text{syst}}) \times 10^3$ and $N_{D^+D^-} = (8296 \pm 31_{\text{stat}} \pm 65_{\text{syst}}) \times 10^3$ from Ref. [14], the branching fraction of each decay is determined with Eq. (1) and summarized in Table I.

VI. SYSTEMATIC UNCERTAINTIES

The systematic uncertainties in the measurements of the branching fractions and the branching ratios, $\mathcal{R}^0 \equiv \frac{B(D^0 \to K^0\pi\eta')}{B(D^0 \to K^0\pi\eta)}$ and $\mathcal{R}^+ \equiv \frac{B(D^+ \to K^0\pi\eta')}{B(D^+ \to K^0\pi\eta)}$, are summarized in Table II. Each contribution, estimated relative to the measured branching fraction, is discussed below.

(i) Number of DD pairs: The total numbers of $D^0\bar{D}^0$ and D^+D^- pairs produced in the data sample are cited from a previous measurement [14] that uses a combined analysis of both single-tag and double-tag events in the same data sample. The total uncertainty in the quoted number of $D^0\bar{D}^0(D^+D^-)$ pairs is 1.0% (0.9%), obtained by adding both the statistical and systematic uncertainties in quadrature.

(ii) Tracking and PID of $K^\pm(\pi^\pm)$: The tracking and PID efficiencies for $K^\pm(\pi^\pm)$ are investigated using double-tag DD hadronic events. A small difference between the efficiency in the data sample and that in MC simulation (called the data-MC difference)

<table>
<thead>
<tr>
<th>Source</th>
<th>$B(D^0 \to K^-\pi^+\eta')$</th>
<th>$B(D^0 \to K_0^0\pi^0\eta')$</th>
<th>$B(D^+ \to K^0\pi^+\eta')$</th>
<th>\mathcal{R}^0</th>
<th>\mathcal{R}^+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of DD pairs</td>
<td>1.0</td>
<td>1.0</td>
<td>0.9</td>
<td>-/-</td>
<td>1.0/0.9</td>
</tr>
<tr>
<td>Tracking of $K^\pm(\pi^\pm)$</td>
<td>3.0</td>
<td>2.0</td>
<td>2.5</td>
<td>1.0/-</td>
<td>1.0/-</td>
</tr>
<tr>
<td>PID of $K^\pm(\pi^\pm)$</td>
<td>2.0</td>
<td>1.0</td>
<td>1.5</td>
<td>1.0/-</td>
<td>0.5/-</td>
</tr>
<tr>
<td>K_0^0 reconstruction</td>
<td>...</td>
<td>1.5</td>
<td>1.5</td>
<td>-1.5/-</td>
<td>-1.5/-</td>
</tr>
<tr>
<td>$\pi^0(\eta)$ reconstruction</td>
<td>1.0</td>
<td>2.0</td>
<td>1.0</td>
<td>-1.0/-</td>
<td>-/-</td>
</tr>
<tr>
<td>M_{BC} fit</td>
<td>0.5</td>
<td>3.6</td>
<td>1.9</td>
<td>0.5/3.6</td>
<td>0.5/1.9</td>
</tr>
<tr>
<td>η' mass window</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>-/-</td>
<td>-/-</td>
</tr>
<tr>
<td>ΔE requirement</td>
<td>0.1</td>
<td>2.4</td>
<td>4.5</td>
<td>0.1/2.4</td>
<td>0.1/4.5</td>
</tr>
<tr>
<td>MC modeling</td>
<td>1.6</td>
<td>0.5</td>
<td>1.7</td>
<td>1.6/0.5</td>
<td>1.6/1.7</td>
</tr>
<tr>
<td>MC statistics</td>
<td>0.7</td>
<td>0.9</td>
<td>0.7</td>
<td>0.7/0.9</td>
<td>0.7/0.7</td>
</tr>
<tr>
<td>Quoted branching fractions</td>
<td>1.7</td>
<td>1.7</td>
<td>1.7</td>
<td>-0.1/-</td>
<td>-0.1/-</td>
</tr>
<tr>
<td>$D^0\bar{D}^0$ mixing</td>
<td>0.1</td>
<td>0.1</td>
<td>...</td>
<td>-/-</td>
<td>-/-</td>
</tr>
<tr>
<td>DCS contribution</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td>-/-</td>
<td>-/-</td>
</tr>
<tr>
<td>Total</td>
<td>4.8</td>
<td>6.0</td>
<td>6.6</td>
<td>5.3/6.0</td>
<td>6.0/6.0</td>
</tr>
</tbody>
</table>
is found. The momentum weighted data-MC differences in the tracking [PID] efficiencies are determined to be \((+2.4 \pm 0.4)\%, (+1.0 \pm 0.5)\%, and (+1.9 \pm 1.0)\% \{[(-0.2 \pm 0.1)]\%, (-0.1 \pm 0.1)\% and (-0.2 \pm 0.1)\%\} for \(K^\pm, \pi^\pm\) direct, and \(\pi^\pm\) in-direct, respectively. Here, the uncertainties are statistical and the subscript direct or in-direct indicates the \(\pi^\pm\) produced in \(D\) or \(\eta\)' decays, respectively. In this work, the MC efficiencies have been corrected by varying the fit range \([\Delta E]\) and the endpoint \((\Delta E)\) with different MC matching requirements of \(D^0 \rightarrow K^-\pi^+\eta\)' and \(D^+ \rightarrow K_S^0\pi^+\eta\)', respectively, which are assigned as systematic uncertainties.

(vii) \(\Delta E\) requirement: To investigate the systematic uncertainty due to the \(\Delta E\) requirement, we repeat the measurements with alternative \(\Delta E\) requirements of \(3.0\sigma_{\Delta E}\) and \(4.0\sigma_{\Delta E}\) around the fitted \(\Delta E\) peaks. The changes in the branching fractions, 0.1\%, 2.4\%, and 4.5\%, are taken as systematic uncertainties for \(D^0 \rightarrow K^-\pi^+\eta\)', \(D^0 \rightarrow K_S^0\pi^+\eta\)', and \(D^+ \rightarrow K_S^0\pi^+\eta\)', respectively.

(viii) MC modeling: The systematic uncertainty in the MC modeling is studied by varying MC-simulated background sizes for the input \(M_{K\pi}\) and \(M_{\pi\eta}\) distributions in the generator by \(\pm 20\%\). The largest changes in the detection efficiencies, 1.6\%, 0.5\%, and 1.7\%, are taken as systematic uncertainties for \(D^0 \rightarrow K^-\pi^+\eta\)', \(D^0 \rightarrow K_S^0\pi^+\eta\)', and \(D^+ \rightarrow K_S^0\pi^+\eta\)', respectively.

(ix) MC statistics: The uncertainties due to the limited MC statistics are 0.7\%, 0.9\%, and 0.7\% for \(D^0 \rightarrow K^-\pi^+\eta\)' and \(D^0 \rightarrow K_S^0\pi^+\eta\)' and \(D^+ \rightarrow K_S^0\pi^+\eta\)', respectively.

(x) Quoted branching fractions: The uncertainties of the quoted branching fractions for \(\eta \rightarrow \pi^+\pi^-\eta\) and \(\eta \rightarrow \gamma\gamma\) are taken from the world average and 1.6\%, 0.5\%, 0.07\%, and 0.03\% [1], respectively.

(xi) \(D^0\bar{D}^0\) mixing: Because \(D^0\bar{D}^0\) meson pair is coherently produced in \(\psi(3770)\) decay, the effect of \(D^0\bar{D}^0\) mixing on the branching fractions of neutral \(D\) meson decays is expected to be due to the next-to-leading-order of the \(D^0\bar{D}^0\) mixing parameters \(x\) and \(y\) [17,18]. With \(x = (0.32 \pm 0.14)\%\) and \(y = (0.69\pm0.06)\%\) from PDG [1], we conservatively assign 0.1\% as the systematic uncertainty.

(xii) DCS contribution: Based on the world-averaged values of the branching fractions, the branching fraction ratios between the known DCS decays and the corresponding CF decays are in the range of \((0.2-0.6)\%\). Therefore, we take the largest ratio 0.6\% as a conservative estimation of the systematic uncertainty of the DCS.

The above relative systematic uncertainties are added in quadrature, and a total of 4.9\%, 6.1\%, 6.6\%, 5.3\%, and 6.0\% for the measurements of \(B(D^0 \rightarrow K^-\pi^+\eta)'\), \(B(D^0 \rightarrow K_S^0\pi^+\eta)'\), \(B(D^+ \rightarrow K_S^0\pi^+\eta)'\), \(R^0\)', and \(R^+\)', respectively, is obtained.

VII. SUMMARY AND DISCUSSION

Based on an analysis of an \(e^+e^-\) data sample with an integrated luminosity of 2.93 fb\(^{-1}\) collected at \(\sqrt{s} = 3.773\) GeV with the BESIII detector, we measure the branching fractions of hadronic \(D\) meson decays to
the possibility of additional exclusive \(D^0 \rightarrow K^- \pi^+ \eta' \) is \((6.43 \pm 0.15_{\text{stat}} \pm 0.31_{\text{syst}}) \times 10^{-3} \), \(B(D^0 \rightarrow \bar{K}^0 \pi^0 \eta') = (2.52 \pm 0.22_{\text{stat}} \pm 0.15_{\text{syst}}) \times 10^{-3} \), and \(B(D^+ \rightarrow \bar{K}^0 \pi^+ \eta') = (1.90 \pm 0.17_{\text{stat}} \pm 0.13_{\text{syst}}) \times 10^{-3} \). The measured branching fraction of \(D^0 \rightarrow K^- \pi^+ \eta' \) is consistent with the previous result measured by CLEO [1,2], but improved with a factor of 4 in precision. The branching fractions of \(D^0 \rightarrow K^0 \eta \) and \(D^+ \rightarrow K^0 \pi^+ \eta' \) are determined for the first time.

Using the measured branching fractions, we determine the ratios of branching fractions to be \(\mathcal{B}_0^0 = 0.39 \pm 0.03_{\text{stat}} \pm 0.02_{\text{syst}} \) and \(\mathcal{B}_0^+ = 0.30 \pm 0.02_{\text{stat}} \pm 0.03_{\text{syst}} \). \(\mathcal{B}_0^0 \) agrees well with the value 0.4 predicted by the SIM, but \(\mathcal{B}_0^+ \) significantly deviates from the expected value 0.9. This deviation may arise from a possible phase difference between two isospin states in the SIM [19]. In our analysis, we do not find an obvious \(K^+ \) signal in the \(K \pi \) invariant mass distributions, which is consistent with the predictions of small \(D^0 \rightarrow K^0 \eta \) and \(D^+ \rightarrow K^+ \eta' \) contributions [20–22].

Summing over the branching fractions of \(D \rightarrow \bar{K} \pi \eta' \) decays and the other exclusive \(D \rightarrow \eta' \) decays in PDG [1], we obtain the sums of the branching fractions of all the exclusive \(D^0 \rightarrow \eta' \) and \(D^+ \rightarrow \eta' \) to be \((3.23 \pm 0.13)\% \) and \((1.06 \pm 0.07)\% \), respectively. They are consistent with the measured inclusive production \(B(D^0 \rightarrow \eta' X) = (2.48 \pm 0.27)\% \) and \(B(D^+ \rightarrow \eta' X) = (1.04 \pm 0.18)\% \) within 2.5\(\sigma \) and 0.1\(\sigma \), respectively. This excludes the possibility of additional exclusive \(D \rightarrow \eta' X \) decay modes with large branching fractions.

ACKNOWLEDGMENTS

The BESIII collaboration thanks the staff of BEPCII and the IHEP computing center for their strong support. The authors are grateful to Fu-Sheng Yu, Jonathan L. Rosner, and Zhizhong Xing for helpful discussions. This work is supported in part by National Key Basic Research Program of China under Contract No. 2015CB856700; National Natural Science Foundation of China (NSFC) under Contracts Nos. 11335008, 11425524, 11475123, 11625523, 11635010, 11675200, 11735014, 11775230; the Chinese Academy of Sciences (CAS) Large-Scale Scientific Facility Program; the CAS Center for Excellence in Particle Physics (CCEPP); Joint Large-Scale Scientific Facility Funds of the NSFC and CAS under Contracts Nos. U1532257, U1532258, U1532101; CAS Key Research Program of Frontier Sciences under Contracts Nos. QYZDJ-SSW-SLH003, QYZDJ-SSW-SLH040; 100 Talents Program of CAS; INPAC and Shanghai Key Laboratory for Particle Physics and Cosmology; German Research Foundation DFG under Contracts Nos. Collaborative Research Center CRC 1044, FOR 2359; Istituto Nazionale di Fisica Nucleare, Italy; Koninklijke Nederlandse Akademie van Wetenschappen (KNAW) under Contract No. 530-4CDP03; Ministry of Development of Turkey under Contract No. DPT2006K-120470; National Science and Technology fund; The Swedish Research Council; U.S. Department of Energy under Contracts Nos. DE-FG02-05ER41374, DE-SC-0010118, DE-SC-0010504, DE-SC-0012069; University of Groningen (RuG) and the Helmholtzzentrum fuer Schwerionenforschung GmbH (GSI), Darmstadt.
