van Gisbergen, S. J. A.; Snijders, J. G.; Baerends, E. J.

Published in:
Journal of Chemical Physics

DOI:
10.1063/1.479915

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
1999

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
S. J. A. van Gisbergen, J. G. Snijders, and E. J. Baerends

Citation: J. Chem. Phys. 111, 6652 (1999); doi: 10.1063/1.479915
View online: https://doi.org/10.1063/1.479915
View Table of Contents: http://aip.scitation.org/toc/jcp/111/14
Published by the American Institute of Physics

Articles you may be interested in
Calculating frequency-dependent hyperpolarizabilities using time-dependent density functional theory
The Journal of Chemical Physics 109, 10644 (1998); 10.1063/1.477762

Accurate density functional calculations on frequency-dependent hyperpolarizabilities of small molecules
The Journal of Chemical Physics 109, 10657 (1998); 10.1063/1.477763

Problems in the comparison of theoretical and experimental hyperpolarizabilities
The Journal of Chemical Physics 97, 7590 (1992); 10.1063/1.463479
Erratum: “Calculating frequency-dependent hyperpolarizabilities using time-dependent density functional theory”

S. J. A. van Gisbergen
Section Theoretical Chemistry, Vrije Universiteit, De Boelelaan 1083, 1081 HV, Amsterdam, The Netherlands

J. G. Snijders
Department of Chemical Physics, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands

E. J. Baerends
Section Theoretical Chemistry, Vrije Universiteit, De Boelelaan 1083, 1081 HV, Amsterdam, The Netherlands

[S0021-9606(99)00738-2]

The comparison in Table III of our density functional theory results to previous ab initio results for the hyperpolarizabilities of para-nitroaniline (PNA) is incorrect. As for the other systems discussed in our paper, we used a convention based on a Taylor series expansion of the dipole moment (this is convention T or AB in the terminology of Ref. 1). It was, however, overlooked that a different convention was used for the ab initio PNA results (convention B in Ref. 1) to which we compare. The present table replaces Table III.

Our previous LDA/ALDA and LB94/ALDA numbers have been divided by a factor of two for the \(b \)-values and a factor of six for the \(g \)-values, so that all numbers in the PNA table are now in convention B.

The \(\beta_{zzz}(0;0,0) \) value of \(-1959\) a.u. quoted in the text on p. 10655 should be replaced by \(+1959\) a.u. in convention AB (the sign should be positive because the hyperpolarizability is parallel to the dipole moment, not antiparallel), or 980 a.u. in convention B.

The lines “Both the \(\beta(-2\omega,\omega,\omega) \ldots \) than in those papers, which . . .” near the end of p. 10655 should be replaced by “The frequency dependence is substantially higher than in the ab initio results, which . . .”.

These corrections do not affect the theoretical discussion of calculating dynamic hyperpolarizabilities in density functional theory nor the discussion of the tests on the correctness of our implementation, which formed the central issues of the paper.

TABLE I. Static and frequency-dependent average hyperpolarizabilities of para-nitroaniline at \(\lambda = 1060 \) nm (\(\omega = 0.043 \) a.u.), using convention B of Ref. 1.

<table>
<thead>
<tr>
<th>Property</th>
<th>LDA/ALDA</th>
<th>LB94/ALDA</th>
<th>HF</th>
<th>MP2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\beta_{zzz}(0;0,0))</td>
<td>7.45</td>
<td>8.14</td>
<td>4.37</td>
<td>8.55</td>
</tr>
<tr>
<td>(\beta_{zzz}(-2\omega,\omega,\omega))</td>
<td>16.99</td>
<td>21.16</td>
<td>4.88</td>
<td>12.0</td>
</tr>
<tr>
<td>(\gamma(0;0,0,0))</td>
<td>1.22</td>
<td>0.44</td>
<td>1.48</td>
<td>3.21</td>
</tr>
<tr>
<td>(\gamma(-2\omega,\omega,\omega,0))</td>
<td>3.36</td>
<td>2.00</td>
<td>2.11</td>
<td>4.6</td>
</tr>
</tbody>
</table>

\(a \) This work, using ALDA for functional derivatives of \(\nu_{xc} \), and either LDA or LB94 for \(\nu_{xc} \) itself.

\(b \) Reference 3.

\(c \) Results obtained by Sim et al.,2 frequency dispersion was estimated from TDHF calculation.

\(d \) \(\beta_{zzz} = \beta = \frac{1}{3} \sum_{a} \beta_{aaz} + \beta_{aza} + \beta_{aza} \), given in units of \(10^{-30} \) esu, as in Refs. 3, 4, 2.

\(e \) \(\gamma = \frac{1}{15} \sum_{a} \gamma_{aab} \), in \(10^{-36} \) esu, as in Ref. 3.