ASYMMETRIC REDUCTIONS WITH A CHIRAL 1,4-DIHYDROPYRIDINE CROWN ETHER

DEVRIES, JG; KELLOGG, RM; Vries, J.G. de

Published in:
Journal of the American Chemical Society

DOI:
10.1021/ja00504a060

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
1979

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
tained with the desorbed material permits the radical species to be identified (Figure 2). The spectrum obtained with adsorbed H₂ (trace a) is attributed to the addition of H' to I; the hyperfine pattern consists of a 1:1:1 triplet due to ¹⁴N, further split into 1:2:1 triplets due to two equivalent β protons. With D₂ (trace b), the addition product of D' to I gives a triplet-doublet-triplet splitting pattern, with the smaller triplet due to the β deuteron.

Figure 2 (b) also shows small amounts of the hydrogen addition product and another unidentified radical which was not present if a non-hydrogen-containing solvent such as carbon tetrachloride was used. A sample of ZnO was exchanged with D₂O and then outgassed in the usual way. Adsorption of hydrogen on this sample gave a spectrum showing the hydrogen addition product with a very small contribution from the deuteron addition product.

Table I compares the hyperfine splitting constants that we have observed with those reported in the literature for the addition products of H and D'. Since the similarity of the adsorbed phase spectra to those from solution indicates that the addition products are formed on the ZnO surface by reaction of I with adsorbed hydrogen or deuterium.

It has been shown by infrared spectroscopy that adsorption of H₂ on ZnO at room temperature involves a reversible dissociative chemisorption to form Zn-H and O-H species.⁴⁻⁵ Our experiments indicate that hydrogen adsorbed on ZnO can be abstracted by PBN. Further experiments are needed to determine which hydrogen is abstracted and to determine the mechanism of abstraction. Trapping of the adsorbed hydrogen by PBN does not necessarily imply the presence of free hydrogen atoms on the ZnO surface, but does indicate that the reactivity of adsorbed hydrogen resembles that of hydrogen atoms produced in radiolysis or electrolysis experiments. The question of the extent of the radical character of hydrogen abstracted on ZnO has still to be answered. Nevertheless, PBN is clearly a valuable spin trap to use in studying surface species having residual character. We envisage many systems of catalytic importance in which the presence of radical intermediates may be investigated by this technique.

References and Notes

Taizo Uda, Akio Kazusaka
Russell F. Howe, George W. Keulks

Laboratory for Surface Studies, Department of Chemistry
University of Wisconsin—Milwaukee
Milwaukee, Wisconsin 53201
Received November 6, 1978

Asymmetric Reductions with a Chiral 1,4-Dihydropyridine Crown Ether¹

Sir:

We are interested in the catalytic cycle shown in eq 1. A 1,4-dihydropyridine (DHP) is contained in a segment (for example a crown ether) capable of complexing a metal ion, M⁺. The encapsulated M⁺ then complexes with a carbonyl compound, forming a ternary complex in which the carbonyl group is activated toward hydride acceptance through its complexation to M⁺.² The pyridinium salt (Pyr⁺) formed on reduction of the carbonyl group is reduced back to 1,4-DHP with Na₂S₂O₅.³ Such a cycle has attractive synthetic and biomimetic aspects,⁴ especially if the 1,4-DHP-crown combination is chiral and is capable of carrying out reductions with a significant degree of asymmetric induction.⁵ We report here the preliminary results of work intended toward the achievement of the above goals.⁶

The synthetic route to the desired 1,4-DHP-crown compounds is shown in Scheme I. Chiral starting materials were the tert-butyl esters of optically pure L-alanine (2a) and L-

Table I. Hyperfine Coupling Constants for PBN Adducts (in gauss)

<table>
<thead>
<tr>
<th>Compound</th>
<th>A_N</th>
<th>A_H</th>
<th>A_D</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂ or D₂ on ZnO</td>
<td>14.8</td>
<td>7.41</td>
<td>1.08</td>
</tr>
<tr>
<td>CO/H₂ irradiation</td>
<td>15.0</td>
<td>7.5</td>
<td></td>
</tr>
<tr>
<td>Irradiation of liquid alkanes</td>
<td>14.8</td>
<td>7.0</td>
<td></td>
</tr>
</tbody>
</table>

Reference 3. Reference 2.
Table I

<table>
<thead>
<tr>
<th>Substrate/Product</th>
<th>Conditions (reaction time, h)</th>
<th>Workup Procedure</th>
<th>NMR Yield, %</th>
<th>Alcohol Isolated Yield, %</th>
<th>[α]_D^25 (concn)</th>
<th>Optical Yield, %</th>
<th>Absolute Config of Excess Enantiomer</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_6H_5COCl</td>
<td>a, b (72)</td>
<td>65 (100)</td>
<td>58</td>
<td>[α]_D^22 + 9.7 (0.19)</td>
<td>[α]_D^24 + 14.2</td>
<td>68</td>
<td>S</td>
</tr>
<tr>
<td>C_6H_5COCl</td>
<td>c, e (72)</td>
<td>f, g</td>
<td>80 (100)</td>
<td>61</td>
<td>[α]_D^19 + 89.9 (0.76)</td>
<td>[α]_D^24 + 104</td>
<td>86</td>
</tr>
<tr>
<td>C_6H_5COCl</td>
<td>c, e (72)</td>
<td>f, g</td>
<td>80 (100)</td>
<td>69</td>
<td>[α]_D^20 + 47.8 (0.55)</td>
<td>[α]_D^20 + 74.7</td>
<td>64</td>
</tr>
<tr>
<td>C_6H_5COCl</td>
<td>c, e (72)</td>
<td>f, i</td>
<td>65 (100)</td>
<td>37</td>
<td>[α]_D^20 + 26.5 (0.58)</td>
<td>[α]_D^16 - 34.4</td>
<td>78</td>
</tr>
</tbody>
</table>

*NMR experiment. **155 °C, 0.14 M in 6, substrate, and Mg(ClO_4)_2·1H_2O in CH_3CN (CD_3CN). Reaction was carried out under N_2. **The reaction mixture was concentrated, ether was added, and the precipitated ClO_4 was filtered off. This procedure was repeated twice with the residue. Thereafter the combined ether extract was concentrated, filtered, and subjected to preparative TLC. (silica gel, C_6H_5). After Kugelrohr distillation the 1H NMR spectrum of the alcohol 10 still showed some residual impurities. A sample was subjected to LC (silica gel, 82-18 CH_2Cl_2/CH_3COCH_3) and distilled again before measuring rotation. No impurities were detectable by either 1H NMR spectroscopy or LC. **Room temperature. **Water was added to the reaction mixture. After 30 min the solvent was evaporated, and the residue was dissolved in dry CH_2Cl_2, filtered, and concentrated. **The residue was subjected to preparative TLC (silica gel, 91: C_6H_5Cl = C_2H_5ClO). Ethyl mandelate (12) was isolated and distilled in a Kugelrohr apparatus. No impurities in 12 could be detected either by 1H NMR or LC. **The alcohol was isolated by column chromatography (silica gel, 4:1 CH_2Cl_2/CH_3COCH_3) and further purified by LC (silica gel, 6:1 CH_2Cl_2/CH_3COCH_3). The compound was pure by LC and 1H NMR and melted at 118.3-118.5 °C (for the pure enantiomer). **The alcohol was isolated by column chromatography (silica gel, 9:1 CH_2Cl_2/C_2H_5OH). **Further purified by LC (silica gel, 9:1 CH_2Cl_2/CH_3COCH_3). **For optically pure material (S). **Reference 15. **Reference 16. **For optically pure material (S). **Reference 17. **Reference 18. **Corrected for recovered substrate.

Scheme I

Valine (2b). Reactions of these amino acid esters with 1 gave, respectively, 3a (80% yield, 137.3-138.6 °C, [α]_D^21D +26.8° (c 1.00, C_2H_5OH)) and 3b (88% yield, mp 170.1-170.4 °C, [α]_D^21D +37.7° (c 1.00, C_2H_5OH)). For the crucial ring-closure reaction 3a and 3b were first deblocked with trifluoroacetic acid (TFA) and were then converted to their dicesium salts and allowed to react with 1,5-dibromoethers and macrolides. There was obtained excellent yields of very pure product are obtained in 10-20 min. Analytical data for all new compounds are good and spectral data are in accord with the proposed structures. We believe that all pyridine compounds reported here are optically pure (note that inversion at one asymmetric center produces a meso diastereomer). As far as we are aware this is the first report of the synthesis of amino acid containing "crown ethers".

The results of several reductions with 6 are given in Table I. Reactions were carried out under nitrogen in acetonitrile with equimolar amounts of 6, substrate, and Mg(ClO_4)_2·1.5H_2O. In the presence of oxygen, 6 was completely oxidized to the perchlorate salt of 8 without detectable reduction of substrate. We observed a direct correlation between the sensitivity of 6 to oxidation and the ease of reduction of the substrate. In the absence of Mg(ClO_4)_2·1.5H_2O either with or without oxygen no significant oxidation of 6 or reduction of substrate occurred.

Reduction by 6 of 2-benzoylpyridine (7) to alcohol 8 proceeded only slowly (72 h) even at the relatively high temperature of 55 °C. Data for the maximum rotation of 8 as well as its absolute configuration have not been reported and therefore this reaction was not examined further. Optical data are, however, available for the alcohol 10 derived from trifluoroacetophenone (9), which is a popular substrate for reductions by 1,4-dihydropyridines. We found the reaction to be very sluggish, taking 5 days at 55 °C to go to completion. The degree of asymmetric induction in 10, 68%, is, however, quite satisfying. The reductions of the ethyl ester (11) and amide (13) of phenylglyoxylate proceeded exceptionally smoothly. The optical reductions of 12 and 14 of, respectively, 86 and 64% are also very good indeed considering that the chiral centers in 6 are five bonds removed from the site of hydride donation. The reduction of the N-ethylamide 15 to alcohol 16 has been attended thus far by experimental difficulties: the isolated chemical yield is poor but the optical induction is high with the same stereochemical result (S configuration; see below) as observed in other reductions.

In all cases care was taken to avoid optical fractionation of the alcohol during workup. The recovered perchlorate of pyridinium salt 5 could be reduced by dithionite back to 6 with undiminished rotation. This completes, albeit in two separate reactions, the catalytic cycle of eq 1.

These results represent some of the highest asymmetric in-
Communications to the Editor

Extraordinary Reactivity of the Prostaglandin Endoperoxide Nucleus. Nonpolar Rearrangement of 2,3-Dioxabicyclo[2.2.1]heptane and -[2.2.2]octane

Sir:

Occasionally Nature provides us with molecules which not only have unusual structures, but which also exhibit extraordinary chemical reactivity. Prostaglandin (PG) endoperoxides (e.g., 1) possess an unusual bicyclic peroxide nucleus. They are a branch point in the oxidative transformation of polyunsaturated fatty acids into a vast array of physiologically active metabolites. The biological role of 1 depends in large measure on enzymatic conversion into prostaglandins (e.g., 3, 4), thromboxane A2 (5), and prostacyclin (6).

For a basis of interpreting the complex biochemistry of 1, we are studying the chemistry of the model endoperoxide 2 and homologues. We now report that the abnormally large solvent effects found for thermal decompositions of 2 are not observed for decomposition of the less strained homologue, 2,3-dioxabicyclo[2.2.1]heptane (7).

Furthermore, activation enthalpies and entropies for thermal decomposition of 2, of the homologue 7, and of tert-butyl peroxide in cyclohexane are remarkably different. \(\Delta H^\circ \) increases with decreasing strain in the series.

Thermal decompositions of 2 and 7 were monitored by \(^1\)H NMR. Relative rates in various solvents are listed in Table I. Both reactions follow first-order kinetics. As reported previously, the rate of decomposition of 2 increases with solvent polarity and is exceptionally rapid in protic solvents owing primarily to an extraordinary dependence of the rate of rearrangement to leuvinaldehyde \(\delta \) on solvent polarity. \(^1\)H NMR data for deuterated 2 and 7 in cyclohexane are presented in Table II.

In contrast, the rate of decomposition of 7 varies only slightly and erratically with changes in solvent polarity. The modest acceleration found for decomposition of 7 in protic solvents is

References and Notes

(1) Dedicated to Professor E. Hovinga, University of Leiden, on the occasion of his 70th birthday.

(2) See for examples of this and other recent approaches (a) S. Shinkai and T. C. Bruice, Biochemistry, 12, 1750 (1973); (b) H. H. Sirrenberg, H. M. Peters, D. M. Feigl, and H. S. Mosher, J. Org. Chem., 33, 4245 (1968).

(4) For a review of the chemistry of the model endoperoxide \(\delta \) and homologues, see (a) T. C. Bruice, Biochemistry, 12, 1750 (1973); (b) H. M. Peters, D. M. Feigl, and H. S. Mosher, J. Org. Chem., 33, 4245 (1968).

J. G. de Vries, Richard M. Kellogg* Department of Organic Chemistry, University of Groningen, Nijenborgh, 7974 AG Groningen, The Netherlands

Received December 27, 1978

2761

for interpreting the complex biochemistry of 1, we are studying the chemistry of the model endoperoxide \(\delta \) and homologues. We now report that the abnormally large solvent effects found for thermal decompositions of 2 are not observed for decomposition of the less strained homologue, 2,3-dioxabicyclo[2.2.1]heptane (7). Furthermore, activation enthalpies and entropies for thermal decomposition of 2, of the homologue 7, and of tert-butyl peroxide in cyclohexane are remarkably different. \(\Delta H^\circ \) increases with decreasing strain in the series.

Thermal decompositions of 2 and 7 were monitored by \(^1\)H NMR. Relative rates in various solvents are listed in Table I. Both reactions follow first-order kinetics. As reported previously, the rate of decomposition of 2 increases with solvent polarity and is exceptionally rapid in protic solvents owing primarily to an extraordinary dependence of the rate of rearrangement to leuvinaldehyde \(\delta \) on solvent polarity. \(^1\)H NMR data for deuterated 2 and 7 in cyclohexane are presented in Table II.

In contrast, the rate of decomposition of 7 varies only slightly and erratically with changes in solvent polarity. The modest acceleration found for decomposition of 7 in protic solvents is