Recombinant Supercharged Polypeptides Restore and Improve Biolubrication

Deepak H. Veeregowda, Anke Kolbe, Henny C. van der Mei, Henk J. Busscher, Andreas Herrmann, and Prashant K. Sharma*

Biomacromolecules do not only fulfill complex functions inside the cell or within membranes, but proteinaceous materials may also play a very critical role at interfaces. One such example is biolubrication, where sliding surfaces coated with synthetic polymers and biological building blocks have been intensively investigated.1) Biolubrication is an essential feature of health and can become impaired in the elderly or diseased.2) Sjögren’s syndrome, for instance, is a disease causing a variety of symptoms like dry eyes,3) dry mouth,4) vaginal dryness5) and excessive friction and wear at the knee and hip joints.6) Biolubrication is mediated by glandular secretions containing (glyco-) proteins that adsorb at the sliding interface and form a conditioning film. Although water forms the basis of all biolubrication phenomena, it is easily removed from in between sliding surfaces during physiological activities associated with high contact pressures. To counter this, conditioning films providing biolubrication contain different glycoproteins that retain water molecules to generate repulsive hydration forces at the interface of the sliding surfaces.7,8) Oral lubrication by adsorbed salivary conditioning films (SCFs)9) is essential to facilitate speaking and mastication and protect against wear due to erosion10) and abrasion.11) Maintenance of adequate biolubrication in the oral cavity is not only challenged by disease and aging, but also by high contact pressures. Contact pressures on molar surfaces during mastication can be as high as 86 MPa12) which is one order of magnitude higher than the pressures experienced in hip and knee joints.13) This load makes the maintenance and restoration of lubrication more challenging in the oral cavity than in other parts of the human body where articulating surfaces are involved.

Often, oral dryness is due to insufficient retention of water molecules in adsorbed SCFs due to low salivary flow rates (< 1 mL min−1) or dysfunction of a particular salivary gland.14) Patients suffering from oral dryness symptoms are treated with artificial salivas, often containing lubricants like pig gastric mucins, polyacrylic acid and carboxymethyl cellulose.14,15) However, artificial salivas only yield temporary relief in patients, as the adsorbed conditioning films are unable to sufficiently retain water due to lack of structural integrity.

Intrigued by the facts that cationic polyelectrolytes are able to improve the mechanical strength of polysaccharide multilayers16) and can form polymer–brush like structures,17) we tested their ability to act as an additive to improve oral lubrication. Among the existing polyelectrolytes, recombinant supercharged, unfolded polypeptides (SUPs) containing the elastin motif constitute an attractive group of proteinaceous materials that may assist in restoring biolubrication. Not only can cationic SUPs interact with the negatively charged, naturally occurring mucins, they also possess significantly lower cytotoxicity than other cationic polyelectrolytes commonly used in biomedical applications.18) Moreover, they are well-defined with respect to their length, composition and charge density and are broken down into non-toxic, naturally occurring amino-acids upon digestion. However, the potential of SUPs to improve biolubrication and mechanical strength of naturally occurring conditioning films has never been investigated.

In this study, we evaluated the role of SUPs with 36 (K36) and 72 (K72) positive charges in modifying the lubrication of adsorbed SCFs. A quartz crystal microbalance with dissipation monitoring (QCM-D) was used to examine changes in SCF structure after K36 and K72 adsorption and renewed exposure to saliva i.e. secondary SCF or S-SCF. Colloidal probe atomic force microscopy (AFM) was applied to determine friction and repulsive force characteristics and topography of the S-SCFs. Finally, X-ray photoelectron spectroscopy (XPS) was used to determine their degree of glycosylation. Cationic recombinant SUPs as additives recruited lubricious proteins, increased the degree of glycosylation and strength in the S-SCFs to restore and improve the lubrication under conditions of reduced availability of naturally occurring proteins.

Cationic SUPs based on elastin-like polypeptides consist of repeats of five amino acids, containing the aliphatic residues glycine (G), valine (V), proline (P), and positively charged lysine (K). Two variants with the amino acid sequences GAGP[(GVGVP)(GKGVP)9]8GWPH6 (K36) and GAGP[(GVGVP)(GKGVP)9]8GWPH6 (K72) were fabricated by recombinant protein expression in Escherichia coli. The gene sequence and respective amino acid sequence of the monomer are shown in Figure S1 of Supporting Information. The gene length was characterized using gel electrophoresis (Supporting Information, Figure S2). Typical yields were 45 mg (K36) and

*Present address: University of Groningen, Zernike Institute for Advanced Materials, Department of Polymer Chemistry, PO Box 407, 9700 AV Groningen, The Netherlands.

DOI: 10.1002/adma.201300188
40 mg (K72) of purified protein per liter of culture. Purified polypeptides were separated on a SDS-PAGE gel (Supporting Information, Figure S3a). Mass spectra yielded sharp peaks for both variants i.e. K36 and K72 (Supporting Information, Figure S3b and S3c) and their masses were 18,932 ± 20 Da for K36 and 36,330 ± 30 Da for K72.

The formation of SCFs on gold (Au) coated quartz crystals and the effects of their exposure to recombinant K36 and K72 or buffer, followed by renewed adsorption of salivary proteins, were observed real-time in the QCM-D, as presented in Figure 1a-c. Exposure of an existing SCF to buffer (Figure 1a) yielded a small change in the oscillating sensor frequency (Δf3) and dissipation (ΔD3), whereas exposure to K36 (Figure 1b) and K72 (Figure 1c) solutions caused significant decreases in Δf3 and ΔD3 that were largest for K72. Subsequent removal of the protein solution by perfusing the QCM-D chamber with buffer indicated a structural decrease in the softness of the SCFs, expressed as the ratio (ΔD3/Δf3). Again, this effect was larger after exposure to K72 solution than after exposure to K36 solution (Figure 1d). Renewed salivary exposure over the SCFs was initiated immediately after treatment with buffer or recombinant protein solutions to form S-SCFs (Figure 1a-c) because such experimental conditions reflect best the in vivo situation of immediate reflow of saliva in the oral cavity. Renewed perfusion of the QCM-D chamber with saliva did not affect the structural softness of the S-SCF with only buffer without recombinant SUPs (Figure 1d), but S-SCF with K36 solution became softer again to a level comparable to S-SCF without recombinant SUPs. The S-SCFs with K72, however, were significantly (p < 0.05, two tailed Student t-test) softer than S-SCFs with K36. Bare Au-coated QCM crystals have a smooth surface (Figure S4a), presenting uneven, globular structures upon adsorption of salivary proteins (Figure S4b), with maximal heights of around 22 nm. Similar structures are observed on S-SCFs with K36 or K72, but their heights differ considerably, from 16 nm for films comprising K36 to 32 nm when K72 is involved (Figures S4c,d).

In a next step, the lubrication properties of the SUP-modified films were investigated by colloidal probe AFM. Friction forces on bare Au-coated crystals increased linearly (R2 = 0.95) with normal force up to 35 nN, corresponding to a coefficient of friction (COF) of 0.28 (Figure 2a). Upon adsorption of a SCF, friction forces appeared almost two times lower than on Au-coated crystals with a COF of 0.19, and linearity broke down at normal forces above 14 nN. Note that the negative friction forces at a normal force of 1.5 nN represent the known limitation of AFM to measure very low friction forces.29 However, measurements on S-SCFs with recombinant SUPs clearly showed lower friction forces (Figure 2b). Linearity corresponding to a COF of 0.08 persisted up to a normal force of 20 nN for K36, while linearity (R2 = 0.94) corresponding to an extremely low COF of 0.06 existed over the entire range of normal forces applied for K72-modified films, indicative of a high structural integrity. Contact of the AFM colloidal probe with the Au-coated quartz crystal (Figure 2c) shows a hard material compared with the softer S-SCFs due to long-range repulsive forces between S-SCFs and the approaching colloidal probe. The repulsive force range arising from the S-SCFs with recombinant cationic SUPs (Figure 2d) shows a hard material compared with the softer S-SCFs due to long-range repulsive forces between S-SCFs and the approaching colloidal probe. The repulsive force range arising from the S-SCFs with recombinant cationic SUPs increased with the number of positive charges after adsorption of recombinant cationic SUPs (Figure 2c). To gain more insight into the structural composition of the S-SCFs, XPS was applied to measure the degree of glycosylation, which is related to the water content of the surface (Figure 2d and Supporting Information, Figure S1a,b).
molecular aspect ratio of up to 1/1000) and thereby provide a scaffold to hold and retain water molecules at the surface, while adsorbed smaller proteins like proline-rich proteins, histatins, lysozymes, and amylases may be found underneath the loops and between the trains (Figure 3a). Based on the measurements presented above, we suggest a model for the interaction of cationic SUPs with an existing SCF and for how the adsorbed cationic proteins may be further involved in the recruitment of salivary proteins during renewed exposure to saliva. K36 and K72 bind to the negatively charged mucins leading to elimination of electrostatic stabilization of the adsorbed film and its subsequent collapse, forming a rigid structure (Figure 3b). K72 is a polypeptide consisting of more than 400 amino acids with 72 positively charged groups evenly distributed along the polymer backbone. The higher number of positive charges in K72 compared with K36 neutralizes negative charges in the SCF, but importantly not all positive charges of K72 are engaged in interaction with negative charges in the SCF and positive charges of adsorbed K72 remain available for further interaction with negatively charged glycosylated mucins during renewed exposure to saliva (Figure 3b; Information Table S1). Glycosylation in the S-SCFs with no adsorbed SUPs amounts to 5.8 ± 0.8% and increases with the molecular weight of the adsorbed SUPs to 6.9 ± 0.3% and 7.2 ± 0.6% in SCFs with K36 and K72, respectively.

From the measurements described above one can conclude that cationic recombinant SUPs adsorb on SCFs and decrease their structural softness, i.e. increase their rigidity. SUPs carrying more positive charges create more rigid films, and more efficiently recruit salivary proteins to form a SCF with a thicker globular structure and higher degree of glycosylation, generating a longer repulsive force range and more stable, low friction. Patients with oral dryness symptoms have reduced salivary flow rates, but naturally occurring salivary proteins are always present. This study is the first in which naturally occurring salivary proteins are recruited through the adsorption of recombinant, cationic SUPs to improve several parameters crucial for effective biolubrication. Our approach represents a groundbreaking strategy for artificial biolubrication, where additives act in concert with and enhance the natural lubricants rather than simply replacing them. A proof of principle was obtained for oral lubrication the most challenging environment for biolubrication, but similar recruitment mechanisms may be applied in other parts of the human body as well.

SCF is composed of glycosylated, high-molecular weight mucins (0.25 to 20 MDa) that adsorb in loops and trains (with a molecular aspect ratio of up to 1/1000) and thereby provide a scaffold to hold and retain water molecules at the surface, while adsorbed smaller proteins like proline-rich proteins, histatins, lysozymes, and amylases may be found underneath the loops and between the trains (Figure 3a). Based on the measurements presented above, we suggest a model for the interaction of cationic SUPs with an existing SCF and for how the adsorbed cationic proteins may be further involved in the recruitment of salivary proteins during renewed exposure to saliva. K36 and K72 bind to the negatively charged mucins leading to elimination of electrostatic stabilization of the adsorbed film and its subsequent collapse, forming a rigid structure (Figure 3b). K72 is a polypeptide consisting of more than 400 amino acids with 72 positively charged groups evenly distributed along the polymer backbone. The higher number of positive charges in K72 compared with K36 neutralizes negative charges in the SCF, but importantly not all positive charges of K72 are engaged in interaction with negative charges in the SCF and positive charges of adsorbed K72 remain available for further interaction with negatively charged glycosylated mucins during renewed exposure to saliva (Figure 3b; Information Table S1). Glycosylation in the S-SCFs with no adsorbed SUPs amounts to 5.8 ± 0.8% and increases with the molecular weight of the adsorbed SUPs to 6.9 ± 0.3% and 7.2 ± 0.6% in SCFs with K36 and K72, respectively.

From the measurements described above one can conclude that cationic recombinant SUPs adsorb on SCFs and decrease their structural softness, i.e. increase their rigidity. SUPs carrying more positive charges create more rigid films, and more efficiently recruit salivary proteins to form a SCF with a thicker globular structure and higher degree of glycosylation, generating a longer repulsive force range and more stable, low friction. Patients with oral dryness symptoms have reduced salivary flow rates, but naturally occurring salivary proteins are always present. This study is the first in which naturally occurring salivary proteins are recruited through the adsorption of recombinant, cationic SUPs to improve several parameters crucial for effective biolubrication. Our approach represents a groundbreaking strategy for artificial biolubrication, where additives act in concert with and enhance the natural lubricants rather than simply replacing them. A proof of principle was obtained for oral lubrication the most challenging environment for biolubrication, but similar recruitment mechanisms may be applied in other parts of the human body as well.

SCF is composed of glycosylated, high-molecular weight mucins (0.25 to 20 MDa) that adsorb in loops and trains (with a molecular aspect ratio of up to 1/1000) and thereby provide a scaffold to hold and retain water molecules at the surface, while adsorbed smaller proteins like proline-rich proteins, histatins, lysozymes, and amylases may be found underneath the loops and between the trains (Figure 3a). Based on the measurements presented above, we suggest a model for the interaction of cationic SUPs with an existing SCF and for how the adsorbed cationic proteins may be further involved in the recruitment of salivary proteins during renewed exposure to saliva. K36 and K72 bind to the negatively charged mucins leading to elimination of electrostatic stabilization of the adsorbed film and its subsequent collapse, forming a rigid structure (Figure 3b). K72 is a polypeptide consisting of more than 400 amino acids with 72 positively charged groups evenly distributed along the polymer backbone. The higher number of positive charges in K72 compared with K36 neutralizes negative charges in the SCF, but importantly not all positive charges of K72 are engaged in interaction with negative charges in the SCF and positive charges of adsorbed K72 remain available for further interaction with negatively charged glycosylated mucins during renewed exposure to saliva (Figure 3b;
where f_f is the friction force at f_f. Accordingly, yield strength for S-SCF in absence of recombinant cationic SUPs is 80 ± 12 kPa, increasing to 102 ± 8 kPa in the presence of adsorbed K36. In contrast, no discontinuity in the linearity of friction force against the normal force was observed for K72-treated films within the range of normal forces applied, indicating that the yield strength of S-SCFs in presence of K72 exceeds 102 kPa. This increase in the yield strength can be attributed to improved cohesive strength in the adsorbed films, against the applied shear force.

In conclusion, an ideal biolubricant-like artificial saliva should lubricate the oral surfaces and at the same time sustain this lubrication for lasting benefits. Here we demonstrate that non-toxic, recombinant cationic SUPs adsorb on SCFs to recruit further glycosylated mucins from saliva, provided the number of positive charges is sufficiently high. These hydrated and rigid films improve interfacial lubrication and maintain their structural integrity upon high contact pressures. Current generations of artificial salivas are inadequate to restore oral lubrication on a lasting basis. Cationic recombinant SUPs as additives, however, go even beyond restoration to rejuvenation of the film, affording effective lubrication under conditions of reduced availability of naturally occurring mucins. On the basis of the cooperative layer-by-layer mechanism laid out here, cationic protein polyelectrolytes show great promise for restoring impaired biolubrication.

Experimental Section

Design, development, and characterization of recombinant cationic polypeptides: All chemicals were used as received without any further purification. The pUC19 cloning vector, restriction enzymes, and GeneJET Plasmid Miniprep kits from QIAGEN, Inc. (Valencia, CA) were purchased from LaserBio Labs (Sophia-Antipolis, France). QIAquick spin miniprep kits from QIAGEN, Inc. (Valencia, CA). E. coli XL1-Blue competent cells for plasmid amplification were purchased from Stratagene (La Jolla, CA). Oligonucleotides for sequencing were ordered from Entelechon (Regensburg, Germany) and was delivered in the standard cloning vector pUC19, digested with EcoRI and HinDIII. Gene oligomerization step. All cloning steps were performed according to standard molecular biology methods. SUP K9 was transferred into the standard cloning vector pUC19, digested with EcoRI and HindIII. Gene
oligomerization was performed as described by Meyer and Chilkoti.[26,28] Genes of correct length were identified by gel electrophoresis following plasmid digestion with EcoRI and HindIII and sequencing (ServiceXS, Leiden, The Netherlands).

Protein expression and purification: Genes coding for K36 and K72 were cloned into the expression vector pET25b(+)-SfiI-His6 as described before.[18] Escherichia coli BLR (DE3) (Novagen Inc., San Diego, CA) were transformed with pET25b(+)-SfiI-His6 containing the respective SUP genes. For protein production, Terrific Broth medium (TB; 12 g/L tryptone, 24 g/L yeast extract) enriched with phosphate buffer (2.31 g/L KH$_2$PO$_4$, 12.34 g/L K$_2$HPO$_4$) and glycerol (4 mL/L), and supplemented with 100 μg/mL ampicillin was inoculated with an overnight starter culture to an initial optical density at 600 nm (OD$_{600}$) of 0.1 and incubated at 37 °C with orbital agitation at 250 rpm until OD$_{600}$ reached 0.7. Cultures were shifted to 30 °C, for additional 16 h. Cells were harvested by centrifugation (7000 g, 20 min, 4 °C), resuspended in lysis buffer (10 mM Tris-HCl, pH 8.0, 300 mM NaCl, 20 mM imidazole) to an OD$_{A280}$ of 100 and disrupted with a constant cell disrupter (Constant Systems Ltd., Northants, UK). Cell debris was removed by centrifugation (40000 g, 90 min, 4 °C). Polypeptides were purified from the supernatant under native conditions by Ni-sepharose chromatography (GE Healthcare). Protein-containing fractions were dialyzed extensively against ultrapure water. Purified polypeptides were frozen in liquid nitrogen, lyophilized and stored at −17 °C until further use.

Protein characterization: Concentrations of purified SUPs were determined by measuring absorbance at 280 nm on a SpectraMax M2 (Molecular Devices, Sunnyvale, CA). Protein purity was determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) on a 12% polyacrylamide gel according to Laemmli. [29] Mass spectrometric analysis was performed using a 4800 MALDI-TOF/TOF Analyzer (Applied Biosystems, Foster City, CA, USA). Trypsinogen (MW = 23,980) was used as calibration standards for K36 and K72 were reduced electrophoretic mobility compared to a commercial molecular weight standard, a well-known phenomenon for elastin-like polypeptides.[29,30] Mass spectrometric analysis was performed using a 4800 MALDI-TOF/TOF Analyzer (Applied Biosystems, Foster City, CA, USA). Trypsinogen (MW = 23,980) was used as calibration standards for K36 and K72 showed reduced electrophoretic mobility.

Saliva collection: Saliva from twenty healthy volunteers (10 men, 10 women, average age 30 ± 8 years) was collected into ice-chilled cups after stimulation of flow by chewing Parafilm®. Volunteers gave their informed consent to saliva donation, in agreement with the guidelines set out by the Medical–Ethical-Committee at the University-Medical Center-Groningen, The Netherlands. After saliva was pooled and centrifuged at 12000 g, 15 min, 4 °C, phenylmethylsulfonylfluoride was added to a concentration of 1 mM as a protease-inhibitor. The solution was again centrifuged, dialyzed for 24 h, 4 °C against demineralized water, and freeze-dried for storage. Lyophilized stock was prepared by mixing freeze-dried material originating from 2 L of saliva. Reconstituted saliva was prepared from the lyophilized stock by dissolution of 1.5 mg/mL in buffer (2 mM potassium phosphate, 1 mM CaCl$_2$, 50 mM KCl, pH 6.8).

Quartz crystal microbalance with dissipation monitoring: Structural softness and formation kinetics of SCFs were studied using a QCM-D device, model Q-sense E4 (Q-sense, Gothenburg, Sweden). Au-coated quartz crystals with 5 MHz were used as substrata. Before each experiment, crystals were cleaned by 10 min UV/ozone treatment, followed by immersion into a 3:1:1 mixture of ultrapure-water, NH$_3$ and H$_2$O$_2$ at 70 °C for 10 min, drying with N$_2$ and another UV/ozone treatment. QCM-D chamber is disc-shaped with the inlet and outlet facing the crystal surface. The chamber was perfused with buffer by peristaltic pump (Ismatec SA, Glattbrugg, Switzerland), when stable base lines for both frequency and dissipation at third harmonics were achieved, saliva was introduced. Saliva was perfused through the chamber at 25 °C for 2 h, flow rate of 50 μL/min, corresponding with a shear rate of 3 s$^{-1}$ after which, the chamber was perfused with buffer or 0.05% w/v of SUP for 2 min and followed by another 2 h of salivary deflection to form a secondary SCF denoted as S-SCF. In between spherical chamber was perfused with buffer for 15 min or till a stable frequency shift of less than 2Hz over 10 min was observed. The shear rate in the QCM-D represents a low oral salivary flow.[31] Frequency and dissipation were measured real-time during perfusion. After experiments, crystals were removed from the QCM-D and immediately used for further experiments.

Colloidal probe atomic force microscopy: Friction force, surface topography and repulsive force range toward a colloidal AFM probe[32] were measured in buffer with an AFM (Nanoscope IV Dimension™ 3100) equipped with a Dimension Hybrid XYZ SPM scanner head (Veeco, New York, USA) on the differently adsorbed SCFs. Rectangular, tipless cantilevers were calibrated for their torsional and normal stiffness using AFM Tune (IT v2.5 software).[33] The normal stiffness (K_n) was between 0.01–0.04 N/m and the torsional stiffness (K_t) between 2–4 × 109 N m/rad. Subsequently, a silica-particle of 4.74 μm diameter (β (Bangs laboratories, Fishers, IN, USA) was glued to a cantilever with an epoxy glue (Pattex, Brussels, Belgium). The deflection sensitivity (s) of the colloidal probe was recorded at a constant compliance with bare crystal in buffer to calculate the normal force (F_n) applied using

$$F_n = \Delta V_n = \alpha \cdot K_n$$

(2)

where ΔV_n is the voltage output from the AFM photodiode due to normal deflection of the colloidal probe. The torsional stiffness and geometrical parameters of the probe were used to calculate the friction force (F_f)[33,32] according to

$$F_f = \frac{\Delta V_t}{2} = \frac{K_t}{s} = \frac{\Delta \delta}{(d + \frac{f_2}{2})}$$

(3)

where t is the thickness of the cantilever, δ is the torsional detector sensitivity of the AFM and s corresponds to the voltage output from the AFM photodiode due to lateral deflection of the probe. Lateral deflection was observed at a scanning angle of 90 degrees over a scan area of 5 × 5 μm2 and a scanning frequency of 1 Hz. The colloidal probe was incrementally loaded and unloaded up to a normal force of 35 nN. At each normal force, 10 friction loops were recorded to yield the average friction force. Repulsive force-distance curves between a colloidal probe and the films were obtained at a trigger threshold of 10 nN and an approach and retraction velocity of 10 μm/s. The repulsive force range (D) was determined at a point where colloidal tip starts experiencing the repulsive force >1 nN between the two interacting surfaces.

X-ray photoelectron spectroscopy: Glycosylation of the adsorbed SCFs was determined by using XPS (S-probe, Surface Science Instruments, Mountain View, CA, USA). Films adsorbed on Au-coated quartz crystals as removed from the QCM-D, were dried in the pre-vacuum chamber of the XPS, and then subjected to a vacuum of 10$^{-7}$ Pa. X-rays (10 kV, 22 mA, spot size 250 × 1000 μm), were produced using an aluminum anode. Scans in the binding energy range of 1–1100 eV were made at low resolution (pass energy 150 eV). The area under each peak was used to yield elemental surface concentrations for C, O, N, and Au after correction with sensitivity factors provided by the manufacturer. The O$_{1s}$ peak was split into three components for oxygen involved in amide groups (C=O-N; 531.3 eV), carbonyl groups (C=O-H; 532.7 eV) and oxygen arising from the crystal. Accordingly, the fraction of the O$_{1s}$ peak at 532.7 eV (%O$_{1s}$) was used to calculate the amount of oxygen involved in glycosylated moieties (%O$_{glyco}$) and amides (%O$_{amide}$).

$$\%O_{glyco} = \frac{O_{1s} - O_{amid}}{O_{amid}}$$

(4)

$$\%O_{amide} = \frac{O_{amid}}{O_{total}}$$

(5)

where %O$_{total}$ is the total percentage of oxygen.
Supporting Information

Supporting Information is available from the Wiley Online Library or from the author.

Acknowledgements

A.H. acknowledges financial support from the EU (ERC starting grant NUCLEOPOLY), from NWO (VICI grant) and from the Zernike Institute for Advanced Materials. P.K.S. acknowledges ZonMw grant no. 91107008 for enabling the purchase of the quartz crystal microbalance, QCM.

Received: January 14, 2013
Revised: March 1, 2013
Published online: May 22, 2013