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Abstract

A sixth-order, but ghost-free, gauge-invariant action is found for a fourth-rank

symmetric tensor potential in a three-dimensional (3D) Minkowski spacetime.

It propagates two massive modes of spin 4 that are interchanged by parity

and is thus a spin-4 analog of linearized ‘new massive gravity’. Also found

are ghost-free spin-4 analogs of linearized ‘topologically massive gravity’ and

‘new topologically massive gravity’, of fifth and eighth order, respectively.

PACS numbers: 11.10.Kk, 11.15.Wx

1. Introduction

There is a well-developed theory of relativistic free-field spin-s gauge theories in a four-

dimensional (4D) Minkowski spacetime, based on symmetric rank-s gauge potentials. The

topic was initiated by Fronsdal [1] and its geometric formulation was provided by de Wit

and Freedman [2]. We refer the reader to [3] for a more recent review. The s 6 2 cases

are standard; in particular, the s = 2 field equation is the linearized Einstein equation for

a metric perturbation. This provides a model for integer ‘higher spin’ (s > 2) where the

gauge-invariant two-derivative field strength is an analog of the linearized Riemann tensor. A

feature of these higher spin gauge theories of relevance here is that the gauge transformation

parameter, a symmetric tensor of rank s − 1, is constrained to be trace free. If this constraint
on the parameter were to be relaxed, then any gauge-invariant equation would be higher than

second order, and this would normally imply the propagation of ghost modes, i.e. modes of

negative energy.

The situation for three-dimensional (3D) Minkowski spacetime is different, in many

respects. One is that the standard ‘higher spin’ gauge-field equations do not actually propagate

any modes in 3D. One may take advantage of this simplification, and the fact that 3D gravity

can be recast as a Chern–Simons (CS) theory [4, 5], to construct CS models for higher spin
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fields interacting with 3D gravity in an anti de Sitter (adS) background. The original model

of this type [6] is analogous to Vasiliev’s 4D theory of all integer higher spins interacting

in an adS background [7]. However, in 3D one can consider a ‘truncated’ version describing

only a finite number of higher spin fields coupled to gravity [8, 9]. Such models have recently

yielded interesting insights [10–12] although the absence of propagating modes may limit

their impact.

Propagating modes arise in 3D when higher derivative terms are included in the action.

The best known case is ‘topologically massive gravity’ (TMG) which involves the inclusion

of a third-order Lorentz–Chern–Simons term [13]. This is a parity-violating gravity model

that propagates a single massive spin-2 mode, thereby illustrating another special feature of

3D: gauge invariance is consistent with non-zero mass. TMG is ghost free, despite the higher

derivative nature of the field equations, because one may choose the overall sign of the action

to ensure that the one propagated mode has positive energy. Rather more surprising is the

fact that there exists a parity-preserving unitary model with curvature-squared terms, and

hence fourth-order equations, that is ghost free and propagates two massive spin-2 modes,

which are exchanged by parity; this is ‘new massive gravity’ (NMG) [14]. It is notable that the

problems normally associatedwith nonlinearities in higher derivative theories [15] are absent in

NMG [16].

These facets of gauge-field dynamics in 3D are, by now, well known. Less well known,

because it is peculiar to ‘higher spin’ (s > 2), is yet another unusual feature: the trace-

free constraint on the gauge parameter may be relaxed, resulting in what we shall call an

‘unconstrained’ higher spin gauge invariance. As stated above, this implies higher order field

equations, but this need not imply a violation of unitarity in 3D. The spin-3 case was discussed

in [17]. Two distinct parity-violating ghost-free spin-3 models with unconstrained gauge

invariance were found there. One is a natural spin-3 analog of TMG and, as for TMG, the

absence of ghosts is essentially a consequence of the fact that only one mode is propagated.

Nevertheless, the unconstrained nature of the gauge invariance is crucial; a previous attempt to

construct a spin-3 analog of TMGwith a trace-free gauge parameter led to amodel propagating

an additional spin-1 ghost [18]. We should point out here that another more recent model has

also been called a ‘spin-3 TMG’ [19].

The above considerations motivate the investigation of higher spin gauge theories in 3D

with unconstrained gauge invariance. A systematic procedure for the construction of such

theories was proposed in [17]. Starting from the 3D version of the standard massive Fierz–

Pauli (FP) equations for a rank-s symmetric tensor field, which we denote by G, one can solve

the subsidiary differential constraint on this field to obtain an expression3 for it in terms of a

rank-s symmetric tensor gauge potential h:

Gµ1...µs
= εµ1

τ1ν1 · · · εµs

τsνs∂τ1 · · · ∂τs
hν1···νs

. (1.1)

We now view G as the field strength for h; it is invariant under the gauge transformation

δξ hµ1···µs
= ∂(µ1ξµ2···µs), (1.2)

where the infinitesimal symmetric tensor parameter of rank (s − 1) is unconstrained. The FP

equations become

(¤ − m2)Gµ1···µs
= 0, ηµνGµνρ1···ρs−2 = 0. (1.3)

The dynamical equation is now of order s + 2, and hence ‘higher derivative’ for s > 0. What

was the algebraic constraint is now a differential constraint of order s, and what was the

differential constraint is now the Bianchi identity

∂νGνµ1···µs−1 ≡ 0. (1.4)

3 Here we use a normalization different from that used in [17].

2



Class. Quantum Grav. 28 (2011) 245007 E A Bergshoeff et al

This procedure can equally be applied to the parity-violating ‘square-root FP’ (
√
FP) spin-s

equations that propagate one mode rather than two. In this case, taking the mass to be µ, one

obtains the topologically massive spin-s equations

εµ1
τλ∂τ Gλµ2···µs

= µGµ1µ2···µs
, ηµνGµνρ1···ρs−2 = 0. (1.5)

For s = 2, these are the equations of linearized TMG and for s = 3 they are the equations of

the spin-3 analog of TMG mentioned above.

Given the equivalence of the unconstrained gauge theory formulation of spin-s field

equations with the standard FP and
√
FP equations, one may ask what is to be gained by a

gauge theory formulation: What advantage does it have over the original FP formulation? In

the s = 2 case, the answer is that it allows the introduction of local interactions, through a

gauge principle, that would otherwise be impossible: linearized NMG is the linearization of

the nonlinear NMG, which is not equivalent to any nonlinear modification of the FP theory

of massive spin 2 (and the same is true of TMG). One may hope for something similar in the

higher spin case, although we expect this to be much less straightforward. It may be necessary

to consider all even spins, or an adS background, as in Vasiliev’s 4D theory. There is also a

potential link to new 3D string theories [20].

The linear gauge-theory equations (1.3) propagate, by construction, two spin-s modes

that are interchanged by parity, but the construction only guarantees an on-shell equivalence

with FP theory. There is no guarantee that both spin-s modes are physical, rather than ghosts;

this depends on the signs of the kinetic energy terms in an (off-shell) action4. The action that

yields the s = 1 case of (1.3) has been studied previously as ‘extended topologically massive

electrodynamics’ (ETME) [21], and one of the two spin-1 modes turns out to be a ghost, so the

on-shell equivalence to FP does not extend to an off-shell equivalence for s = 1. In contrast,

the fourth-order spin-2 equations are those of linearized NMG, for which both spin-2 modes

are physical. Moving on to s = 3, the construction of an action shows that one of the spin-3

modes is a ghost [17], exactly as for spin 1.

No attempt to construct actions for s > 4wasmade in [17] because this requires additional

‘auxiliary’ fields. Here we construct, by finding the required auxiliary fields, actions that can

be described as spin-4 analogs of TMG and NMG. In the latter case, the absence of ghosts

is a non-trivial issue, which we settle using the method introduced by Deser for NMG [22]

and further developed in [23]. This result is consistent with a conjecture of [17], on which we

elaborate at the end of this paper, that a spin-s analog of NMG (i.e. a ghost-free parity-invariant

action of order s + 2 in derivatives propagating two spin-s modes) exists only for even s.

Although it might seem remarkable that a sixth-order action for spin-4 can be ghost free,

it is possible to construct (linear) higher order ghost-free spin-4 models by enlarging the

gauge invariance to include a spin-4 analog of linearized spin-2 conformal invariance, with a

symmetric second-rank tensor parameter. In fact, spin-s gauge-field equations of this type can

be found by solving simultaneously both the differential subsidiary condition of the FP or
√
FP

theory and its algebraic trace-free condition [17], and these equations may be integrated to an

action without the need for auxiliary fields. For example, the spin-s
√
FP equations become

the equations that follow by variation of the symmetric rank-s tensor h in the action

S[h] = 1

2

∫

d3x

{

hµ1...µsCµ1...µs
+ 1

µ
εµ

αβhµν1...νs−1∂αCβν1...νs−1

}

, (1.6)

4 As already mentioned, this is not an issue for ‘topologically massive’ theories because they propagate only one

mode and the sign of the action may be chosen such that this one mode is physical.
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where C is the spin-s Cotton-type tensor for h [25], defined (up to a factor) as the rank-s

symmetric tensor of order (2s−1) in derivatives that is invariant under the spin-s generalization
of a linearized conformal gauge transformation:

δ3hµ1µ2µ3...µs
= η(µ1µ23µ3...µs). (1.7)

A convenient expression for the Cotton-type tensor is

Cµ1...µs
= εµ1...µs

= ε(µ1
ν1ρ1 · · · εµs−1

νs−1ρs−1∂|ν1 · · · ∂νs−1Sρ1...ρs−1|µs), (1.8)

where the rank-s symmetric tensor S, of order s in derivatives, is a spin-s generalization of the

linearized 3D Schouten tensor with the conformal-type transformation

δ3Sµ1µ2µ3...µs
= ∂(µ1∂µ2Äµ3...µs), (1.9)

where Ä is a rank-(s − 2) tensor operator, of order (s − 2) in derivatives, acting on the

rank-(s − 2) tensor parameter 3.
Applied to the

√
FP spin-2 model, this construction yields the linearized fourth-order

‘new topologically massive gravity’ theory of [23], found and analyzed independently in [24].

It was also used in [17] to find a sixth-order ghost-free action for a single spin-3 mode. Here

we present details of the s = 4 case. In particular, we verify that the eighth-order spin-4 action

of type (1.6) propagates a single mode and we show that it is ghost free. We also apply the

construction to the spin-4 FP theory, obtaining a ninth parity-preserving action but in this

case one of the two spin-4 modes is a ghost, as for the analogous lower spin cases considered

in [17].

2. Spin-4 equations

Setting s = 4 in (1.5), we obtain the ‘topologically massive’ equations for a single spin-4

mode of mass µ, described by a fourth-rank symmetric gauge potential h:

εµ
τλ∂τ Gλνρσ = µGµνρσ , Gtrµν (h) = 0, (2.1)

where we have defined Gtrµν (h) = ηρσ Gµνρσ (h). Similarly, setting s = 4 in (1.3) we obtain the

parity-preserving field equations for a pair of spin-4 modes of mass m, exchanged by parity5

(¤ − m2)Gµνρσ (h) = 0, Gtrµν (h) = 0. (2.2)

In either case,

Gµνρσ (h) = εµ
ταεν

ηβερ
ξγ εσ

ζδ∂τ∂η∂ξ∂ζ hαβγ δ, Gtrµν (h) = ηρσ Gµνρσ (h). (2.3)

We use a ‘mostly plus’ metric convention and define the isotropic rank-3 antisymmetric tensor

ε such that6

ε012 = −1. (2.4)

The tensor G(h) is invariant under the gauge transformation

δhµνρσ = ∂(µξνρσ ), (2.5)

with the unconstrained infinitesimal rank-3 symmetric tensor parameter ξ .

We shall begin by confirming, using the ‘canonical’ methods of [22, 23], that

equations (2.1) and (2.2) propagate, respectively, one and two massive modes. This analysis

will be useful when we later turn to a similar analysis of the actions. As we focus on the

5 According to one definition, the spin of a particle in 3D may have either sign, which is flipped by parity. We call

this the ‘relativistic helicity’ and define spin to be its absolute value. According to this definition, both modes of a

parity doublet have the same spin.
6 This sign is opposite to that used in [23] and [14].
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canonical structure of the equations, we make a time/space split for the components of the

various fields, setting µ = (0, i) where i = 1, 2. We may then choose a gauge such that7

∂ihiµνρ = 0. (2.6)

In this gauge, we may write the components of h in terms of five independent gauge-invariant

fields (ϕ0, ϕ1, ϕ2, ϕ3, ϕ4) as follows:

h0000 = 1

(∇2)2
ϕ0, h000i = 1

(∇2)2
∂̂iϕ1, h00i j = 1

(∇2)2
∂̂i∂̂ jϕ2,

h0i jk = 1

(∇2)2
∂̂i∂̂ j∂̂kϕ3, hi jkl = 1

(∇2)2
∂̂i∂̂ j∂̂k∂̂lϕ4, (2.7)

where

∂̂i = ε0
i j∂ j. (2.8)

Note that we permit space non-locality, since this does not affect the canonical structure.

Substitution into (2.3) gives

G0000(h) = (∇2)2ϕ4, G000i(h) = ∇2(∂̂iϕ3 + ∂iϕ̇4),

G00i j(h) = (∂̂i∂̂ jϕ2 + 2∂̂(i∂ j)ϕ̇3 + ∂i∂ jϕ̈4),

G0i jk(h) = 1

∇2
[∂̂i∂̂ j∂̂kϕ1 + 3∂̂(i∂̂ j∂k)ϕ̇2 + 3∂̂(i∂ j∂k)ϕ̈3 + ∂i∂ j∂k

(

∂3t ϕ4
)]

,

Gi jkl (h) = 1

(∇2)2

[

∂̂i∂̂ j∂̂k∂̂lϕ0 + 4∂̂(i∂̂ j∂̂k∂l)ϕ̇1 + 6∂̂(i∂̂ j∂k∂l)ϕ̈2.

+ 4∂̂(i∂ j∂k∂l)(∂
3
t ϕ3) + ∂i∂ j∂k∂l

(

∂4t ϕ4
)]

, (2.9)

and hence

Gtr00(h) = ∇2(ϕ2 − ¤ϕ4),

Gtr0i(h) = ∂̂i(ϕ1 − ¤ϕ3) + ∂i(ϕ̇2 − ¤ϕ̇4), (2.10)

Gtri j(h) = 1

∇2
[∂̂i∂̂ j(ϕ0 − ¤ϕ2) + 2∂̂(i∂ j)(ϕ̇1 − ¤ϕ̇3) + ∂i∂ j(ϕ̈2 − ¤ϕ̈4)].

Using these results, the tensor equation Gtr = 0 implies that

ϕ0 = ¤
2ϕ4, ϕ1 = ¤ϕ3, ϕ2 = ¤ϕ4, (2.11)

which eliminates (ϕ0, ϕ1, ϕ2) as independent fields. The dynamical equation of (2.1) is then

equivalent to

ϕ3 = µϕ4, (¤ − µ2)ϕ4 = 0, (2.12)

so a single mode of mass µ is propagated. The dynamical equation of (2.2) is similarly

equivalent to

(¤ − m2)ϕ3 = 0, (¤ − m2)ϕ4 = 0, (2.13)

which shows that there are two propagating degrees of freedom of equal mass m.

The spins of the propagated modes cannot be determined easily by this method since

they are defined with respect to the Lorentz transformations that leave invariant the original

equations, and this has been broken by the gauge-fixing condition and subsequent (space

non-local) field redefinitions8. However, the initial construction, which guarantees on-shell

equivalence to (according to the case) the
√
FP or FP equations for spin 4, tells us that the

modes have spin 4.

7 The summation convention applies.
8 In light of this, it is notable that the resulting equations are still Lorentz invariant, but these Lorentz transformations

are not those of the original action.
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3. A spin-4 analog of TMG

We now seek a gauge-invariant, and manifestly Lorentz-invariant, action that yields the

‘topologically massive spin-4 equations (2.1). One can show that such an action must involve

additional ‘auxiliary’ fields that are set to zero by the equations of motion. There is a systematic

procedure that can be used to find these auxiliary fields but here we just give the final result.

One needs an auxiliary symmetric tensor πµν and an auxiliary vector field φµ :

S =
∫

d3x

{

1

2µ4
hµνρσ Gµνρσ (h) − 1

2µ5
hµνρσ εµ

αβ∂αGβνρσ (h)

+ 1

µ4
πµνGtrµν (h) + 1

µ3
πµνCµν (π ) + 2

µ2
πµνGµν (π )

+ 4

µ
πµνεµ

αβ∂απβν + 8(πµνπµν − π2) − 1

µ
φµ∂µπ + 1

µ
φµ∂απαµ

− 1

16µ
φµεµ

αβ∂αφβ + 1

4
φµφµ

}

, (3.1)

where

π = ηµνπµν (3.2)

and where Cµν (π ) denotes the Cotton tensor of π :

Cµν (π ) = ε(µ
αβ∂|αSβ|ν)(π ), Sµν (π ) = Gµν (π ) − 1

2
ηµνGtr(π ). (3.3)

We now summarize how the equations of motion of this action may be shown to be equivalent

to equations (2.1). We first write down the un-contracted equations of motion of hµνρσ , πµν

and φµ. These are equations with four, two and one indices. We next construct out of these

equations all possible equations with fewer indices by taking divergences and/or traces. In

total, this leads to one (zero, two, two, four) equations with four (three, two, one, zero) indices.

We now first use the four equations with zero indices to derive that

ηµνGtrµν (h) = ∂ρ∂σπρσ = π = ∂µφµ = 0. (3.4)

Next, we use the two equations with one index to show that ∂λπλµ = φµ = 0. From the two

equations with two indices, we can then subsequently deduce that

Gtrµν (h) = πµν = 0. (3.5)

Substituting all these equations back into the original equation ofmotion for the tensor potential

h then leads to equations (2.1).

4. A spin-4 analog of NMG

Similarly, we now seek a gauge-invariant, and manifestly Lorentz-invariant, action that yields

the spin-4 equations (2.2). In this case, the auxiliary vector field φµ is not needed; only the

symmetric tensor πµν and an additional scalar φ are required. Defining

Gµν (π ) = εµ
τρεν

ησ ∂τ∂ηπρσ , (4.1)

we may write the action as

S =
∫

d3x

{

− 1

2m4
hµνρσ Gµνρσ (h) + 1

2m6
hµνρσ

¤ Gµνρσ (h) + 1

m4
πµνGtrµν (h)

− 1

2m2
πµνGµν (π ) − 1

2
(πµνπµν − π2) + φπ + 13

12
φ2 + 1

12m2
φ ¤φ

}

. (4.2)

6
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Following the same procedure as in the TMG-like case, we summarize how the equations of

motion of this action are equivalent to equations (2.2). We first write down the un-contracted

equations of motion of hµνρσ , πµν and φ. These are equations with four, two and zero indices.

We next construct out of these equations all possible equations with fewer indices by taking

divergences and/or traces. In total, this leads to one (zero, two, one, four) equations with four

(three, two, one, zero) indices. The fact that there is no equation with three indices follows

from the Bianchi identity

∂µGµνρσ (h) ≡ 0, (4.3)

which is the s = 4 case of (1.4). We now first use the four equations with zero indices to derive

that

ηµνGtrµν (h) = ∂ρ∂σπρσ = π = φ = 0. (4.4)

Next, we use the single equation with one index to show that ∂λπλµ = 0. From the two

equations with two indices, we subsequently deduce that

Gtrµν (h) = πµν = 0 . (4.5)

Substituting all these equations back into the original equation ofmotion for the tensor potential

h then leads to (2.2).

By construction, the action (4.2) propagates two spin-4 modes. We now need to show

that both these modes are physical, rather than ghosts. To do this we first need to rewrite the

action in terms of gauge-invariant variables only and then eliminate auxiliary fields to get an

action for the propagating physical modes only. We have already seen how to write the gauge

potential h in terms of the five gauge-invariant fields (ϕ0, ϕ1, ϕ2, ϕ3, ϕ4). The auxiliary tensor

πµν has six independent components, which we may write in terms of six independent fields

(ψ0, ψ1, ψ2; λ0, λ1, λ2) as follows:

π00 = − 1

∇2
(ψ0 + 2λ̇0), π0i = − 1

∇2
[∂̂i(ψ1 + λ̇1) + ∂i(λ0 + λ̇2)],

πi j = − 1

∇2
(∂̂i∂̂ jψ2 + 2∂̂(i∂ j)λ1 + 2∂i∂ jλ2). (4.6)

The dependence on the variables (λ1, λ2, λ3) is that of a spin-2 gauge transformation, so the

tensor Gµν (π ), which is invariant under such a transformation, depends only on the three

variables (ψ0, ψ1, ψ2). Specifically, substituting the above expressions for the components of

πµν gives

G00(π ) = −∇2ψ2, G0i(π ) = −(∂̂iψ1 + ∂iψ̇2),

Gi j(π ) = − 1

∇2
(∂̂i∂̂ jψ0 + 2∂̂(i∂ j)ψ̇1 + ∂i∂ jψ̈2) (4.7)

and hence

ηµνGµν (π ) = −(ψ0 − ¤ψ2). (4.8)

We are now in a position to determine the form of the action in terms of the gauge-invariant

variables. Direct substitution yields the result

S =
∫

d3x {L1 + L2} , (4.9)

where

L1 = 4

m6
ϕ1(¤−m2)ϕ3 − 2

m4
ψ1(ϕ1 − ¤ ϕ3) − 1

m2
ψ2
1 − λ21 − (ψ1 + λ̇1)

1

∇2
(ψ1 + λ̇1),

(4.10)

7
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which depends only on the four fields (ϕ1, ϕ3;ψ1; λ1), and

L2 = 1

m6
ϕ0(¤−m2)ϕ4 + 3

m6
ϕ2(¤−m2)ϕ2

− 1

m4
ψ0(ϕ2 − ¤ ϕ4) − 1

m4
ψ2(ϕ0 − ¤ ϕ2) − 1

m2
ψ0ψ2

+ 2λ2ψ2 − (ψ2 + 2λ2)
1

∇2
(ψ0 + 2λ̇0)

− (λ0 + λ̇2)
1

∇2
(λ0 + λ̇2) + φ

1

∇2
(ψ0 + 2λ̇0)

−φψ2 − 2φλ2 + 13

12
φ2 + 1

12m2
φ ¤φ, (4.11)

which depends only on the remaining eight fields (ϕ0, ϕ2, ϕ4;ψ0, ψ2; λ0, λ2;φ). We have

already seen that the propagating fields are ϕ3 and ϕ4, so it must be that one spin-4 mode

is propagated by each of these two parts of the action. We now aim to confirm this and to

determine whether the propagated modes are physical or ghosts. A systematic analysis is

possible but we give only the final results.

Discarding total derivatives, the Lagrangian L1 can be rewritten as

L1 = 1

m8
ϕ̃1(¤−m2)ϕ̃1 + ψ̃2

1 − λ̃21 + 1

m2
ϕ̃23 , (4.12)

where

ϕ̃1 = ϕ1 + m2ϕ3 + 1

2
m2ψ1, ϕ̃3 = ϕ3 − 1

m2
ϕ1 − 1

2
ψ1,

ψ̃1 = 1√
−∇2

[(

1+ ∇2

2m2

)

ψ1 + λ̇1 + ∇2

m4
ϕ1 − ∇2

m2
ϕ3

]

, (4.13)

λ̃1 = λ1 + 1

m4
ϕ̇1 + 1

2m2
ψ̇1 − 1

m2
ϕ̇3.

Using these relations, the field equations of (4.12) can be shown to imply that ψ1 = λ1 = 0

and

ϕ1 = ¤ϕ3, (¤ − m2)ϕ3 = 0, (4.14)

in agreement with our earlier conclusion that ϕ3 is the only independent propagating field (in

the original basis).

In a similar way, the Lagrangian L2 can be rewritten as

L2 = 4

m6
ϕ̃2(¤−m2)ϕ̃2 − φ̃ ϕ̃4 − 1

m4
ψ̃2 ϕ̃0 + λ̃2ψ̃0 + λ̃20, (4.15)

where

ϕ̃0 = ϕ0 − m2ϕ2 + m2(¤ + m2)ψ2 − m2¤φ − 7

6
m4φ, ϕ̃2 = ϕ2 + 1

6
m2φ,

ϕ̃4 = ϕ4 − 1

m2
ϕ2 − 1

6
φ, ψ̃0 = − 1

∇2
(ψ0 − ¤ ψ2 + ¤ φ),

ψ̃2 = ψ2 − 1

m2
(¤−m2)ϕ4, λ̃0 = 1√

−∇2
(λ0 − ψ̇2 − λ̇2 + φ̇), (4.16)

λ̃2 = 2λ2 + ∇2

m4
(ϕ2 − ¤ϕ4) +

(

1+ ∇2

m2

)

ψ2 − φ,

φ̃ = 7

6
φ − 1

6m2
¤φ − 1

m4
(¤ − m2)ϕ2 − ψ2.
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Using these relations, the field equations of L2 can be shown to be equivalent to ψ0 = ψ2 =
λ0 = λ2 = φ = 0 and

ϕ0 = ¤
2ϕ4, ϕ2 = ¤ϕ4, (¤ − m2)ϕ4 = 0, (4.17)

again in agreement with our earlier conclusion that ϕ4 is the only independent propagating

field (in the original basis).

If we now recombine the two Lagrangians L1 and L2 and eliminate auxiliary fields, we

arrive at the Lagrangian

L = 1

m8
ϕ̃1(¤−m2)ϕ̃1 + 4

m6
ϕ̃2(¤ − m2)ϕ̃2. (4.18)

Observe that both terms have the same sign. This means that the overall sign can be chosen

such that both modes are physical. In our conventions, the sign that we have chosen is precisely

such that this is the case, so our spin-4 action is ghost free.

5. Conformal spin 4

So far, we have considered massive spin-4 gauge theories with equations that can be obtained

by solving the differential subsidiary condition of corresponding FP or
√
FP equations. As

mentioned in section 1, it is possible to solve, simultaneously, both the differential subsidiary

constraint and the algebraic trace-free condition on the FP field, which thereby becomes a

Cotton-type tensor for a gauge potential h that is subject to a conformal-type linearized gauge

transformation that can be used to remove its trace. Here we present a few further details of

this construction for spin 4 and we analyze the physical content of the ‘conformal’ models

that one finds this way.

The spin-4 FP field becomes the spin-4 Cotton-type tensor

Cµνρσ = ε(µ
α1β1εν

α2β2ερ
α3β3∂|α1∂α2∂α3Sβ1β2β3|σ )(h), (5.1)

where the spin-4 Schouten-type tensor S, for symmetric rank-4 tensor potential h, is

Sµνρσ (h) = Gµνρσ (h) − η(µνGtrρσ )(h) + 1
8
η(µνηρσ )η

αβGtrαβ (h). (5.2)

The conformal-type transformation for spin-4 is

δhµνρσ = η(µν3ρσ ). (5.3)

The invariance of the Cotton-type tensor under this gauge transformation is an immediate

consequence of the following simple transformation law for the spin-4 Schouten-type tensor:

δSµνρσ (h) = ∂(µ∂νÄρσ ), Äµν = Gµν (3) − 1
6
ηµνGtr(3), (5.4)

where the tensor G(3) is the linearized Einstein tensor for the second-rank tensor

parameter 3.

Following the procedure outlined above, we deduce that the spin-4 FP equations are

equivalent to the single equation

(¤ − m2)Cµνρσ = 0, (5.5)

with no lower derivative constraints; what were the differential and algebraic constraints of

the FP theory are now the Bianchi and trace-free identities

∂µCµνρσ ≡ 0, ηµνCµνρσ ≡ 0. (5.6)

Equation (5.5) may integrated to the following ninth-order action, without the need of auxiliary

fields:

S(9) = 1

2

∫

d3x hµνρσ (¤ − m2)Cµνρσ (h). (5.7)

9
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Similarly, the
√
FP spin-4 equations become

εµ
αβ∂αCβνρσ = µCµνρσ , (5.8)

again with no lower derivative constraints. These equations can be integrated to the following

action, eighth order in derivatives:

S(8) = 1

2

∫

d3x

{

hµνρσCµνρσ (h) + 1

µ
εµ

αβhµνρσ ∂αCβνρσ (h)

}

. (5.9)

Again, no auxiliary fields are needed.

By construction, the actions S(8) and S(9) propagate, respectively, one or two modes of

spin 4, although there is no guarantee that none of the modes is a ghost. To settle this issue,

we may use the additional gauge invariance (5.3) to go to a gauge in which

hiiµν = 0. (5.10)

In this gauge, the only non-zero components appearing in decomposition (2.7) are

h0000 = 1

(∇2)2
ϕ0, h000i = 1

(∇2)2
∂̂iϕ1. (5.11)

As a consequence of this simplification, we will need only the following components of the

Cotton-type tensor:

C0000 = − 1
2
(∇2)2ϕ1,

C000i = − 1
8
∇2∂̂iϕ0 − 1

2
∇2∂iϕ̇1

C00i j = − 1
2
∂̂i∂̂ j ¤ϕ1 − 1

4
∂̂(i∂ j)ϕ̇0 − 1

2
∂i∂ jϕ̈1. (5.12)

The remaining components are not zero but they are determined in terms of the ones given

by conditions (5.6).

Using these results for the Cotton-type tensor, we find that

S(9) = −1
2

∫

d3x ϕ0(¤−m2)ϕ1. (5.13)

This action propagates two modes but one is a ghost. This was to be expected because this is

what happens for s = 2, 3 [17]. In contrast, S(8) propagates a single mode. To check this, we

may use the above expressions for the Cotton-type tensor components to deduce that

S(8) =
∫

d3x

{

−1
2
ϕ0ϕ1 + 1

16µ
ϕ20 + 1

µ
ϕ1 ¤ϕ1

}

. (5.14)

The field ϕ0 is now auxiliary and may be trivially eliminated, so that

S(8) → 1

µ

∫

d3x ϕ1(¤−µ2)ϕ1. (5.15)

This action clearly propagates a single mode, and this mode is physical if µ > 0. We have

therefore found an eighth-order ghost-free action that propagates a single spin-4 mode.

6. Conclusions

In this paper, we have constructed ghost-free actions that yield spin-4 analogs of linearized

massive gravity models. One, of fifth order in derivatives, is a parity-violating field theory

that propagates a single spin-4 mode; it is a spin-4 analog of linearized ‘topologically massive

gravity’ (TMG). The other, of sixth order in derivatives, is a parity-preserving field theory

that propagates two spin-4 modes; it is a spin-4 analog of ‘new massive gravity’ (NMG). In

10
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both cases, the action involves auxiliary fields and is invariant under an unconstrained spin-4

gauge transformation (i.e. one in which the third-rank symmetric tensor gauge parameter is

not constrained to be trace free). The absence of ghosts is non-trivial in the NMG-type case

but we have verified by ‘canonical’ methods that both propagating modes are physical.

In the spin-2 case, both TMG and NMG are particular limits of a ‘general massive gravity’

model that propagates two spin-2 modes, generically with different masses [14]. We expect

there to exist a spin-4 analog of this model, such that the TMG-type and NMG-type spin-4

models constructed here arise as special cases.

Given a spin-s TMG-type model, we could construct a parity-preserving theory by taking

the action to be the sum of two TMG-type models with opposite sign masses. This bi-field

model has the same propagating content as a single NMG-type model but is one order lower in

derivatives. In the spin-2 case, there exists a ‘soldering’ procedure that allows one to convert

the bi-field TMG model into an NMG model [26]. We do not expect this to work for spin

3 (because the attempt to construct a spin-3 NMG-type model, along the lines of this paper,

yields a model with ghosts [17]) but there might exist some analogous ‘soldering’ procedure

for spin 4.

We have also constructed a parity-violating ghost-free ‘conformal spin-4’ action that

propagates a single spin-4 mode. In this case, the action is eighth order in derivatives but

invariant under a spin-4 analog of a spin-2 linearized conformal gauge invariance, in addition

to the unconstrained spin-4 gauge invariance. This is the spin-4 analog of ‘new topologically

massive gravity’. There is a parity-preserving version, of ninth-order in derivatives, that

propagates two spin-4 modes but one mode is a ghost. However, a parity-preserving bi-field

model of eighth order will have the same physical content as the sixth-order spin-4 NMG-type

action.

Of course, what is ultimately of importance is which, if any, of the various models

constructed here has some extension to an interacting theory or, more likely, plays a role in

the context of some interacting 3D theory of higher spins. It seems likely to us that a much

improved understanding of the general spin s > 2 case will be needed to begin addressing this

issue. This lies outside the scope of this paper. However, we will conclude with an argument

that goes some way toward a proof of the conjecture in [17] that an NMG-like action for

integer spin s is ghost free only if s is even.

To prove the conjecture, we should start from an action for a spin-s NMG-type model, as

found here for s = 4, in which case we would first have to find the auxiliary fields. Recall that

these auxiliary fields are needed to impose the lower order constraint equation. As a shortcut,

we could construct an action for the dynamical equation alone, for which auxiliary fields are

not needed, and then impose ‘by hand’ the constraint equation. In other words, we consider

the Lagrangian

Lspin−s = 1
2
hµ1···µs (¤−m2)Gµ1···µs

(h). (6.1)

To the field equations, we must now add, ‘by hand’, the trace-free constraint

Gtrµ1···µs−2
(h) = 0 . (6.2)

We now proceed to a canonical analysis of this Lagrangian, and the constraint, by setting

hi1i2···it0···0 = 1

(−∇2)s/2
∂̂i1 · · · ∂̂it ϕt (t = 0, . . . , s). (6.3)

It then follows, for r = 0, . . . , s, that

Gi1···ir0···0(h) = (−1)r(−∇2)
s
2
−r

r
∑

p=0

(

r

p

)

∂̂(i1 · · · ∂̂ip
∂ip+1 · · · ∂ir )∂

r−p

0 ϕs−p, (6.4)

11
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and, for r = 2, · · · , s, that

Gtri1···ir−20···0(h) = (−1)r+1(−∇2)
s
2
−r+1 (6.5)

×
r−2
∑

p=0

(

r − 2
p

)

∂̂(i1 · · · ∂̂ip
∂ip+1 · · · ∂ir−2 )∂

r−p−2
0

(

ϕs−p−2 − ¤ϕs−p

)

.

Substituting into Lagrangian (6.1), we obtain

Lspin−s =























1

2

(

s

s/2

)

ϕs/2(¤−m2)ϕs/2 +
(s/2)−1
∑

t=0

(

s

t

)

ϕt (¤−m2)ϕs−t even s,

−
(s−1)/2
∑

t=0

(

s

t

)

ϕt (¤−m2)ϕs−t odd s.

(6.6)

In either case, the equations of motion that follow from this Lagrangian are

(¤−m2)ϕt = 0 (t = 0, . . . , s). (6.7)

To these equations, we have to add the trace-free condition (6.2), which is equivalent to

ϕs−p−2 = ¤ϕs−p (p = 0, . . . , s − 2). (6.8)

By combining (6.7) with (6.8), one finds, for t 6 s, that

ϕ0 = mtϕt, t = 0, 2, 4, . . . , (6.9)

ϕ1 = mt−1ϕt, t = 1, 3, 5, . . . . (6.10)

Next, one substitutes these equations into the Lagrangians of (6.6) in order to eliminate

all fields other than ϕ0 and ϕ1. For even spin s, the resulting Lagrangians contain only two

terms: ϕ0(¤−m2)ϕ0 and ϕ1(¤−m2)ϕ1, both with the same (positive) sign. The even-spin

Lagrangians are therefore ghost free. In contrast, the Lagrangians for odd spin contains only

one off-diagonal term, which is proportional to ϕ0(¤−m2)ϕ1. In this case, therefore, one

mode is physical and the other a ghost. Although this argument falls short of a proof that there

is a ghost-free spin-sNMG-type action only for even s, we believe that it captures the essential

difference between the even- and odd-spin cases.
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