Pluronic–lysozyme conjugates as anti-adhesive and antibacterial bifunctional polymers for surface coating

Agnieszka K. Muszanska a, Henk J. Busscher a, Andreas Herrmann b, Henny C. van der Mei a,⁎, Willem Norde a,c

a Department of Biomedical Engineering, W. J. Kolff Institute, FB40, University Medical Center Groningen and University of Groningen, P.O. Box 196, 9700 AD Groningen, The Netherlands
b Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
c Laboratory of Physical Chemistry and Colloid Science, Wageningen University and Research Center, P.O. Box 8038, 6700 EK Wageningen, The Netherlands

A R T I C L E I N F O

Article history:
Received 9 March 2011
Accepted 5 May 2011
Available online 28 May 2011

Keywords:
Block copolymers
Protein–polymer conjugates
Functional coatings
Medical applications

A B S T R A C T

This paper describes the preparation and characterization of polymer–protein conjugates composed of a synthetic triblock copolymer with a central polypropylene oxide (PPO) block and two terminal polyethylene oxide (PEO) segments, Pluronic F-127, and the antibacterial enzyme lysozyme attached to the telechelic groups of the PEO chains. Covalent conjugation of lysozyme proceeded via reductive amination of aldehyde functionalized PEO blocks (CHO-Pluronic) and the amine groups of the lysine residues in the protein. SDS-PAGE gel electrophoresis together with MALDI-TOF mass spectrometry analysis revealed formation of conjugates of one or two lysozyme molecules per Pluronic polymer chain. The conjugated lysozyme showed antibacterial activity towards Bacillus subtilis. Analysis with a quartz crystal microbalance with dissipation revealed that Pluronic–lysozyme conjugates adsorb in a brush conformation on a hydrophobic gold-coated quartz surface. X-ray photoelectron spectroscopy indicated surface coverage of 32% by lysozyme when adsorbed from a mixture of unconjugated Pluronic and Pluronic–lysozyme conjugate (ratio 99:1) and of 47% after adsorption of 100% Pluronic–lysozyme conjugates. Thus, bifunctional brushes were created, possessing both anti-adhesive activity due to the polymer brush, combined with the antibacterial activity of lysozyme. The coating having a lower degree of lysozyme coverage proved to be more bactericidal.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Biomaterials in the human body are prone to bacterial infections, which may lead to the formation of a biofilm. Biofilm formation is preceded by protein adsorption, deposition of cells and bacteria. The complex structure of a biofilm, containing slime and extracellular polymeric matrix, makes it resistant to the host immune system as well as to antibiotic treatment [1]. Infection of implanted biomaterials usually requires secondary surgery [2,3]. Various biomaterials surface modifications have been developed to improve their antibacterial properties of implant surfaces, such as applying bactericidal agents [4], a hydrogel coating releasing bioactive antibodies [5], nitric oxide releasing substrates [6], a coating with furanones [7], chalcones [8], or various polymers [9]. Especially the later polymer brush coatings, have been proven in the past to reduce bacterial adhesion by one or two orders of magnitude [10–12], which makes them a promising tool for biomedical applications. A polymer brush is formed when highly soluble polymer chains are grafted to the surface at high packing density, forcing the polymer chains to extend into the surrounding aqueous medium. Thus, a highly hydrated polymer layer is formed at the surface, which acts as a barrier preventing deposition of particles, including bacteria [10]. Polymer chains can be grafted to the surface by simple physi-sorption, or by covalent bond formation. Chemical attachment makes the brush more stable but it is a complex and time-consuming procedure [13]. The grafting density plays a crucial role in the conformation of the adsorbed polymer layer. At low grafting densities, the polymer chains are coiled resulting in a so-called mushroom conformation of the adsorbed polymer molecule. At higher grafting densities, when the separation between the anchoring points is less than the hydrodynamic radius of the polymer coils, the polymer chains are forced to stretch into the surrounding medium forming a brush conformation [14]. In aqueous media, polyethylene oxide (PEO) is most often used as the soluble polymer. Ethylene oxide (EO) moieties
in the PEO chain have a good structural fit with water molecules enabling a strong hydrogen bond between the ether oxygen of PEO and the hydrogen of water. Thus the PEO brush coating is highly hydrated. Compression of the PEO chains in the brush increases the osmotic pressure along with a reduction of their conformational entropy. This creates a strong repulsive force against deposition of indwelling particles, including bacteria [13,15,16].

The aim of this study is to design a bifunctional polymer brush coating by conjugation of an antibacterial compound with the polymer molecules so that the brush attains bi-functionality i.e., resistance to particle deposition and selective lethal interaction with microorganisms. For our study, we chose Pluronic F-127 as the PEO-containing polymer. Pluronics are a family of synthetic non-toxic neutral triblock copolymers made up of a central hydrophobic polypropylene oxide (PPO) block that is connected to two hydrophilic blocks, PEO−PPO−PEO. In aqueous medium this triblock copolymer self-assembles into micelles. After exposure to a hydrophobic surface, the micelles disaggregate in favour of adsorption. It is inferred that the hydrophobic PPO block attaches spontaneously to the surface, whereas the two PEO segments extend into the water phase [17,18]. Lysozyme was chosen as the antimicrobial agent because of its well known bactericidal properties [19,20], physiological abundance, high thermal stability with respect to structure [21], wide pH activity range [22], and well known structure [23,24]. Lysozyme is able to destruct bacterial cell walls by an enzymatic hydrolysis of 1,4-beta-linkages between N-acetylmuramic acid and N-acetyl-o-glucosamine residues of peptidoglycan in the bacterial cell wall, especially for Gram-positive bacteria [20]. Broadly directed activity makes lysozyme an important antimicrobial agent that can be used to prevent biomaterial associated infections by a wide variety of bacterial strains [25]. The use of polymer–protein conjugates is relatively new in biomedical research and has potential applications in drug delivery systems [26–28], and as novel biocompatible materials for e.g., implants and tissue engineering [29–32]. We used the protein–polymer conjugation approach [26] to synthesize lysozyme functionalized Pluronic molecules.

For lysozyme to exert enzymatic activity, it is desired, if not required, that it is exposed to the solution rather than being adsorbed to the surface. If the conjugate would adsorb with the lysozyme attached to the surface, the lysozyme would barely be accessible for the bacteria due to shielding by the polymer. Moreover, it has been reported that after adsorption on hydrophobic surfaces lysozyme loses its antimicrobial activity [33]. This implies that the conjugate should adsorb in a similar conformation as the unmodified Pluronic, i.e., via attachment of its PPO block, as shown in Fig. 1. Surface coatings consisting of Pluronic–lysozyme conjugates were characterized in terms of thickness, viscoelastic properties, surface composition and their anti-adhesive and antibacterial properties.

2. Materials and methods

2.1. Aldehyde-end functionalization of Pluronic F-127

5 mM excess of Dess-Martin periodinane (1,1,1-tris(acetyloxy)-1,1-dihydro-1,2-benzoiodoxol-3(1H)-one, 97%, Sigma Aldrich, Germany) was added to a solution of 200 mg of Pluronic F-127 (PEO99−PPO65−PEO99), MW = 12.6 kDa (BASF, Sigma Aldrich, Germany) in 20 ml of dry dichloromethane (Sigma Aldrich, Germany) at room temperature and stirred overnight. Thereafter, the reaction mixture was treated with cold diethyl ether ~ 30 ml (Merck, Germany). The precipitated product was cooled on an ice-water bath for 1 h, filtered off, washed with cold diethyl ether (2 x 20 ml) and dried under vacuum. The product was characterized by proton NMR in order to confirm conversion of the PEO hydroxy end-groups into aldehyde functionalities and the degree of conversion was determined using the Purpald colorimetric assay [34]. First, a calibration curve was recorded, in order to convert measured UV–VIS absorbance into number of aldehyde functionalities (37 wt% in H2O, Sigma Aldrich, Germany), as described elsewhere [34]. Aldehyde functionalized Pluronic was dissolved in ultrapure water in a known range of concentrations. Next, 100 μl of polymer solution was added to 100 μl of 30 μM Purpald (4-amino-3-hydrazino-5-mercapto-1,2,4-triazole, Sigma Aldrich, Germany) solution in 2 M NaOH. After 15 min equilibration, 100 μl of a 30 μM sodium periodate (NaIO4, Sigma Aldrich, Germany) solution in 0.2 M NaOH was added and oxidation

![Fig. 1. Reaction scheme for the oxidation of Pluronic (A) and conjugation with lysozyme (B) forming micelles in aqueous medium, and adsorption on a hydrophobic surface into the brush conformation (C).](image-url)
2.2. Lysozyme conjugation

Lysozyme from chicken egg white (MW = 14.3 kDa, protein content ≥ 90%; Sigma Aldrich, Germany), was dissolved in 50 mM sodium nitrate (NaNO₃, Fluka, Germany) at pH 7.7, filtered over 0.22 μm pore size Acrodisc filter, to remove dust and minor impurities, and added dropwise to a stirred solution of aldehyde functionalized Pluronic (200 mg in 50 mL 50 mM NaNO₃ solution) at room temperature. After 20 min, 20 mg of sodium cyanoborohydride (NaCNBH₃, 95%; Sigma Aldrich, Germany) was added and the mixture was left stirring overnight at room temperature and pH 7.7. The molar ratio of lysozyme relative to aldehyde groups was chosen such that there was 10% molar excess of polymer aldehyde groups to amine groups from lysines in the lysozyme. Conjugation of protein to polymer was confirmed by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) using NuPAGE Novex 4–12% Bis-Tris Gel (Molecular Probes, Invitrogen) stained with SimplyBlue™ safe stain (Molecular Probes, Invitrogen, The Netherlands). Then, the reaction mixture was placed into a dialysis tube (MWCO 25 kDa) and dialyzed against 50 mM sodium nitrate (NaNO₃, Fluka, Germany) at pH 7.7 for 5 days changing the surrounding medium every 24 h in order to remove unreacted protein together with free polymer molecules. The purification process was monitored by SDS-PAGE and when no more free lysozyme molecules were detected, the reaction mixture was freeze-dried and kept at −20 °C. Molecular weight of obtained conjugates was determined using a Voyager-DE Pro (Applied biosystems, USA) MALDI-TOF mass spectrometer. Samples were prepared by plate spotting of tested compounds, mixed with a sinapinic acid matrix. Pure lysozyme was used as a reference sample.

2.3. Enzymatic activity assay

The enzymatic activity of Pluronic–lysozyme conjugates was determined and compared with that of free lysozyme using Bacillus subtilis 168. B. subtilis was selected to evaluate the biocompatibility of Pluronic–lysozyme conjugates as an anti-bacterial surface coating, as a representative of the many strains sensitive to lysozyme, including strains involved in biomaterial associated infections. Lysozyme destructs the bacterial cell wall by catalyzing hydrolysis of 1,4-beta-linkages between N-acetylmuramic acid and N-acetyl-D-glucosamine residues of peptidoglycan, a major component of the bacterial cell wall. The reaction mixture was placed at 37 °C in a water bath for 3 min. These crystals were immersed in a heated (70 °C) water, dried under a gold crystal at 5 MHz oscillating frequency. Prior to use, the gold surface of the control samples. Pure PBS buffer was used as a blank sample to calibrate the spec- trum. Bacteria were rinsed 3 times with PBS buffer and dried under a gold crystal at 5 MHz oscillating frequency[35]. Prior to use, the gold surface of the control samples. Pure PBS buffer was used as a blank sample to calibrate the spectrum. Bacteria were rinsed 3 times with PBS buffer and dried under a gold crystal at 5 MHz oscillating frequency[35]. Prior to use, the gold surface of the control samples. Pure PBS buffer was used as a blank sample to calibrate the spectrum. Bacteria were rinsed 3 times with PBS buffer and dried under a gold crystal at 5 MHz oscillating frequency[35]. Prior to use, the gold surface of the control samples. Pure PBS buffer was used as a blank sample to calibrate the spectrum. Bacteria were rinsed 3 times with PBS buffer and dried under a gold crystal at 5 MHz oscillating frequency[35]. Prior to use, the gold surface of the control samples. Pure PBS buffer was used as a blank sample to calibrate the spectrum. Bacteria were rinsed 3 times with PBS buffer and dried under a gold crystal at 5 MHz oscillating frequency[35]. Prior to use, the gold surface of the control samples. Pure PBS buffer was used as a blank sample to calibrate the spectrum. Bacteria were rinsed 3 times with PBS buffer and dried under a gold crystal at 5 MHz oscillating frequency[35]. Prior to use, the gold surface of the control samples. Pure PBS buffer was used as a blank sample to calibrate the spectrum. Bacteria were rinsed 3 times with PBS buffer and dried under a gold crystal at 5 MHz oscillating frequency[35]. Prior to use, the gold surface of the control samples. Pure PBS buffer was used as a blank sample to calibrate the spectrum. Bacteria were rinsed 3 times with PBS buffer and dried under a gold crystal at 5 MHz oscillating frequency[35]. Prior to use, the gold surface of the control samples. Pure PBS buffer was used as a blank sample to calibrate the spectrum. Bacteria were rinsed 3 times with PBS buffer and dried under a gold crystal at 5 MHz oscillating frequency[35]. Prior to use, the gold surface of the control samples. Pure PBS buffer was used as a blank sample to calibrate the spectrum. Bacteria were rinsed 3 times with PBS buffer and dried under a gold crystal at 5 MHz oscillating frequency[35]. Prior to use, the gold surface of the control samples. Pure PBS buffer was used as a blank sample to calibrate the spectrum. Bacteria were rinsed 3 times with PBS buffer and dried under a gold crystal at 5 MHz oscillating frequency[35]. Prior to use, the gold surface of the control samples. Pure PBS buffer was used as a blank sample to calibrate the spectrum. Bacteria were rinsed 3 times with PBS buffer and dried under a gold crystal at 5 MHz oscillating frequency[35]. Prior to use, the gold surface of the control samples. Pure PBS buffer was used as a blank sample to calibrate the spectrum. Bacteria were rinsed 3 times with PBS buffer and dried under a gold crystal at 5 MHz oscillating frequency[35]. Prior to use, the gold surface of the control samples. Pure PBS buffer was used as a blank sample to calibrate the spectrum. Bacteria were rinsed 3 times with PBS buffer and dried under a gold crystal at 5 MHz oscillating frequency[35]. Prior to use, the gold surface of the control samples. Pure PBS buffer was used as a blank sample to calibrate the spectrum. Bacteria were rinsed 3 times with PBS buffer and dried under a gold crystal at 5 MHz oscillating frequency[35]. Prior to use, the gold surface of the control samples. Pure PBS buffer was used as a blank sample to calibrate the spectrum. Bacteria were rinsed 3 times with PBS buffer and dried under a gold crystal at 5 MHz oscillating frequency[35]. Prior to use, the gold surface of the control samples. Pure PBS buffer was used as a blank sample to calibrate the spectrum. Bacteria were rinsed 3 times with PBS buffer and dried under a gold crystal at 5 MHz oscillating frequency[35]. Prior to use, the gold surface of the control samples. Pure PBS buffer was used as a blank sample to calibrate the spectrum. Bacteria were rinsed 3 times with PBS buffer and dried under a gold crystal at 5 MHz oscillating frequency[35]. Prior to use, the gold surface of the control samples. Pure PBS buffer was used as a blank sample to calibrate the spectrum. Bacteria were rinsed 3 times with PBS buffer and dried under a gold crystal at 5 MHz oscillating frequency[35]. Prior to use, the gold surface of the control samples. Pure PBS buffer was used as a blank sample to calibrate the spectrum. Bacteria were rinsed 3 times with PBS buffer and dried under a gold crystal at 5 MHz oscillating frequency[35]. Prior to use, the gold surface of the control samples. Pure PBS buffer was used as a blank sample to calibrate the spectrum. Bacteria were rinsed 3 times with PBS buffer and dried under a gold crystal at 5 MHz oscillating frequency[35]. Prior to use, the gold surface of the control samples. Pure PBS buffer was used as a blank sample to calibrate the spectrum. Bacteria were rinsed 3 times with PBS buffer and dried under a gold crystal at 5 MHz oscillating frequency[35]. Prior to use, the gold surface of the control samples. Pure PBS buffer was used as a blank sample to calibrate the spectrum. Bacteria were rinsed 3 times with PBS buffer and dried under a gold crystal at 5 MHz oscillating frequency[35]. Prior to use, the gold surface of the control samples. Pure PBS buffer was used as a blank sample to calibrate the spectrum. Bacteria were rinsed 3 times with PBS buffer and dried under a gold crystal at 5 MHz oscillating frequency[35]. Prior to use, the gold surface of the control samples. Pure PBS buffer was used as a blank sample to calibrate the spectrum. Bacteria were rinsed 3 times with PBS buffer and dried under a gold crystal at 5 MHz oscillating frequency[35]. Prior to use, the gold surface of the control samples. Pure PBS buffer was used as a blank sample to calibrate the spectrum. Bacteria were rinsed 3 times with PBS buffer and dried under a gold crystal at 5 MHz oscillating frequency[35]. Prior to use, the gold surface of the control samples. Pure PBS buffer was used as a blank sample to calibrate the spectrum. Bacteria were rinsed 3 times with PBS buffer and dried under a gold crystal at 5 MHz oscillating frequency[35]. Prior to use, the gold surface of the control samples. Pure PBS buffer was used as a blank sample to calibrate the spectrum. Bacteria were rinsed 3 times with PBS buffer and dried under a gold crystal at 5 MHz oscillating frequency[35]. Prior to use, the gold surface of the control samples. Pure PBS buffer was used as a blank sample to calibrate the spectrum. Bacteria were rinsed 3 times with PBS buffer and dried under a gold crystal at 5 MHz oscillating frequency[35]. Prior to use, the gold surface of the control samples. Pure PBS buffer was used as a blank sample to calibrate the spectrum. Bacteria were rinsed 3 times with PBS buffer and dried under a gold crystal at 5 MHz oscillating frequency[35]. Prior to use, the gold surface of the control samples. Pure PBS buffer was used as a blank sample to calibrate the spectrum. Bacteria were rinsed 3 times with PBS buffer and dried under a gold crystal at 5 MHz oscillating frequency[35]. Prior to use, the gold surface of the control samples. Pure PBS buffer was used as a blank sample to calibrate the spectrum. Bacteria were rinsed 3 times with PBS buffer and dried under a gold crystal at 5 MHz oscillating frequency[35]. Prior to use, the gold surface of the control samples. Pure PBS buffer was used as a blank sample to calibrate the spectrum. Bacteria were rinsed 3 times with PBS buffer and dried under a gold crystal at 5 MHz oscillating frequency[35]. Prior to use, the gold surface of the control samples. Pure PBS buffer was used as a blank sample to calibrate the spectrum. Bacteria were rinsed 3 times with PBS buffer and dried under a gold crystal at 5 MHz oscillating frequency[35]. Prior to use, the gold surface of the control samples. Pure PBS buffer was used as a blank sample to calibrate the spectrum. Bacteria were rinsed 3 times with PBS buffer and dried under a gold crystal at 5 MHz oscillating frequency[35]. Prior to use, the gold surface of the control samples. Pure PBS buffer was used as a blank sample to calibrate the spectrum. Bacteria were rinsed 3 times with PBS buffer and dried under a gold crystal at 5 MHz oscillating frequency[35]. Prior to use, the g
forming units or CFUs) on each surface. 10 μl of the suspension was transferred onto a glass slide and stained with live/dead stain (BacLightM, Molecular Probes Europe BV) to determine percentage viability of the bacteria using fluorescence microscopy (Leica, Wetzlar, Germany) as a measure for the antibacterial functionality of the coatings.

3. Results

3.1. Pluronic–lysozyme conjugation

The preparation of Pluronic–lysozyme conjugates is outlined in Fig. 1. The first step (A) involving Pluronic oxidation, was confirmed using Purpald colormetric assay analysis, indicating 30% conversion of the hydroxyl end-groups (OH) into aldehyde functionalities (CHO). In the next step (B), the activated Pluronic molecules were coupled to lysine residues of lysozyme via reductive amination. Conjugate formation was confirmed by gel electrophoresis (Fig. 2A). Lane 1 shows the protein molecular weight marker, which is a mixture of purified proteins resolving in sharp bands from 10 to 140 kDa. This marker is used to compare the molecular weight of the obtained conjugates. Lane 2 in Fig. 2A shows Pluronic–lysozyme conjugates with molecular weights of 27 kDa and 41 kDa, respectively, and lane 3 represents free lysozyme. Since the average molecular weight of Pluronic F-127 is 12.6 kDa and that of lysozyme 14.3 kDa, a conjugate of one Pluronic molecule with one lysozyme molecule corresponds to MW 27 kDa and one Pluronic molecule coupled with two lysozyme molecules to MW 41 kDa. Moreover, lane 2 indicates the presence of remaining uncoupled lysozyme molecules, which were effectively removed by dialysis, as can be seen in lane 4. Molecular weights of the obtained conjugates were confirmed by MALDI-TOF mass spectrometry (see Fig. 2B). The mass spectrum of the purified sample shows characteristic peaks of the 1:1 Pluronic–lysozyme conjugate of MW 27 kDa (indicated as a in Fig. 2B) and the 1:2 Pluronic–lysozyme conjugate of MW 41 kDa (indicated as b in Fig. 2B). The strong peak to the left of 20 kDa peak, is expected to be a conjugate of one Pluronic with two lysozymes, appearing as a doubly charged molecular ion. Moreover, the mass spectrometric analysis confirms the effectiveness of the dialysis purification step since no free lysozyme molecules were detected.

3.2. Enzymatic activity assay of Pluronic–lysozyme conjugates

Data presented in Fig. 3 show that Pluronic–lysozyme conjugates of 1 mg/ml concentration exhibit similar antibacterial activity as free lysozyme in a concentration of 0.005 mg/ml. The optical density of bacterial suspensions of Pluronic–lysozyme conjugates (1 mg/ml) was reduced from 0.50 to 0.16 ± 0.01, whereas for free lysozyme (0.005 mg/ml) the reduction was from 0.50 to 0.18 ± 0.02. Furthermore, a decrease in optical density from 0.50 to 0.35 ± 0.02 and 0.37 ± 0.02 was observed for bacterial suspensions exposed to pure phosphate buffer saline (PBS) and uncoupled Pluronic (1 mg/ml), respectively.

3.3. Properties of adsorbed Pluronic–lysozyme conjugates

3.3.1. Quartz crystal microbalance with dissipation measurements

Fig. 4 shows the hydrated thickness (A) and relaxation time (B) upon exposure of the gold-coated quartz crystal to the various adsorbed compounds, i.e., (a) the uncoupled CHO-Pluronic, (b) lysozyme, (c) lysozyme after CHO-Pluronic, (d) CHO-Pluronic after lysozyme and (e) Pluronic–lysozyme conjugate 100%. The thickness of the 100% Pluronic–lysozyme conjugate is 14.3 ± 1.4 nm, which is greater than the sum of those calculated for CHO-Pluronic (5.8 ± 0.5 nm) and lysozyme (3.6 ± 0.5 nm). The relaxation time of the conjugate (7.9 ± 0.2) × 10⁻³ s does not significantly differ from that of the uncoupled CHO-Pluronic (7.5 ± 1.5) × 10⁻³ s, whereas it is much less than the relaxation time of adsorbed lysozyme (12.6 ± 2.9) × 10⁻³ s. Furthermore, both the thicknesses and relaxation times of lysozyme supplied to pre-adsorbed CHO-Pluronic (6.9 ± 0.4 nm and (8.5 ± 1.9) × 10⁻³ s, respectively) as well as CHO-Pluronic after lysozyme (5.8 ± 2.3 nm and (9.0 ± 1.5) × 10⁻³ s, respectively), resemble those recorded for exposure to only uncoupled CHO-Pluronic. Increasing the ratio of Pluronic conjugated with lysozyme to uncoupled Pluronic in the solution exposed to the surface, yields a change in the hydrated thickness from 7.1 ± 0.3 nm for 1% conjugation to 13.8 ± 0.5 nm for 25% conjugation, as presented in Fig. 5. Beyond a conjugation ratio of 25%, the hydrated thickness reached saturation. No significant changes in the

![Fig. 2](image-url) (A) SDS-PAGE analysis, lane 1—molecular weight marker, lane 2—Pluronic coupled with lysozyme before purification (mixture of ~27 kDa conjugates, ~41 kDa conjugates and free lysozymes ~14 kDa), lane 3—free lysozyme, lane 4—Pluronic coupled with lysozyme after dialysis (mixture of ~27 kDa conjugates and ~41 kDa conjugates).and (B) MALDI-TOF mass spectrum of Pluronic–lysozyme conjugates revealing successful coupling of one Pluronic molecule with one (a) and two lysozyme molecules (b).
relaxation time with different degree of conjugation were observed for either of the adsorbed compounds.

3.3.2. X-ray photoelectron spectroscopy measurements

Table 1 presents observed N1s electron counts for each sample. Based on the number of counts, the gold-coated surface with only adsorbed lysozyme resulted in 50% protein coverage, whereas adsorption from a solution with 100% or 1% Pluronic lysozyme conjugation yielded 47% and 32% coverage by lysozyme, respectively.

3.4. Bacterial adhesion and growth

Fig. 6 gives the number of adhering bacteria in the absence of growth on uncoated silicone rubber, on a coating of unmodified Pluronic and of Pluronic–lysozyme conjugates (1% and 100% conjugation ratios) as a function of time. Adhesion of B. subtilis 168 after 2 h was reduced from \((1.3 \pm 0.5) \times 10^5\) cm\(^{-2}\) on an uncoated Pluronic brush. Adhesion to 100% and 1% Pluronic–lysozyme conjugated brush coated surfaces resulted in \((1.1 \pm 0.2) \times 10^5\) and \((0.8 \pm 0.0) \times 10^5\) bacteria adhering per cm\(^2\), respectively, attesting to their anti-adhesive functionality.

Fig. 7 shows that the total number of cultivable bacteria or CFUs present on the surfaces after 20 h growth is highest after coating with unconjugated Pluronic molecules, followed by uncoated silicone rubber. The number of CFUs present on a surface coated with a 100% Pluronic–lysozyme conjugate is reduced to about 30% and to 15% for 1% Pluronic–lysozyme conjugate, as compared with a coating consisting of unconjugated Pluronic molecules. After 20 h of growth, however, there are both cultivable, live bacteria as well as dead bacteria, as presumably killed by the coating, present. The fraction of live bacteria (see Fig. 7) on the uncoated silicone rubber is 69% and even 91% on unmodified Pluronic brush. However, in case of the lysozyme containing conjugates, the viability drops to 28% and 19% for coatings with 100% and 1% Pluronic–lysozyme conjugates, respectively. These findings attest to the antibacterial functionality, in addition to an anti-adhesive functionality.

4. Discussion

Anti-adhesive properties of polymer brush coatings have been reported in literature before [10,36], but interactions between bacteria and functionalized brushes have not received much attention so far. In this study, we present an approach for bio-conjugate formation using a synthetic polymer, i.e. Pluronic and the protein lysozyme, in a two-step reaction. The resulting conjugates were characterized by SDS-PAGE gel electrophoresis, MALDI-TOF mass spectrometry and enzymatic activity assay. Physico-chemical properties of surfaces coated with Pluronic–lysozyme conjugates were determined using QCM-D and XPS techniques. Anti-adhesive and antibacterial functionalities of the modified coatings were determined against B. subtilis in a parallel plate flow chamber in terms of the number of initially adhering bacteria per unit area and the number of viable bacteria after growth for 20 h.

4.1. Preparation and activity of Pluronic–lysozyme conjugates

The conjugation reaction of lysozyme molecules to the Pluronic F-127 polymer requires only a simple procedure, is reproducible, and cost effective without the need of substrate recovery. Therefore,
the coupling strategy involving two steps, i.e. alcohol oxidation followed by protein attachment by reductive amination, can be applied for other peptides and proteins as well. However, with lysozyme there is a risk of multi-conjugate formation because each lysozyme molecule contains six lysine residues, which gives the possibility of multiple couplings. Such a hybrid, where lysozyme is completely surrounded by polymer chains would be rather inactive due to reduced accessibility to the bacterial cell wall. To suppress the formation of multi-conjugates, the pH of the reaction mixture should be well controlled and maintained at \(\sim 7.7 \). For \(\text{pH} < 7 \) protonation of the \(-\text{NH}_2\) groups of all six lysine residues makes the coupling reaction impossible to proceed and for \(\text{pH} > 8 \) all \(-\text{NH}_2\) groups are deprotonated and, hence, available for coupling with the PEO blocks. Analysis of obtained conjugates shows the absence of multi-conjugates. SDS-PAGE together with mass spectrometry clearly showed the presence of conjugates composed of Pluronic molecules with one and two lysozymes per chain. The compound with a MW 20 kDa, which was detected by MALDI-TOF, but not by SDS-PAGE, is expected to be a conjugate of one Pluronic with two lysozymes, appearing as a doubly charged molecular ion. MALDI-TOF is a soft ionization method where the singly protonated molecular ions are usually the dominant species. However, they can be accompanied by doubly charged species at approximately half the m/z value [37], which explains in our case the presence of a peak with half the MW of 41 kDa. The partial loss of lysozyme activity after coupling to the polymer chain may be caused by conformational changes in the protein structure and/or reduction in the enzyme–substrate contact.

Based on the molecular weights of both Pluronic and lysozyme, we estimate how much protein is present in 1 mg conjugate. Having a mixture of Pluronic coupled with one and Pluronic coupled with two lysozymes in an assumed ratio 1:1, we calculate that 1 mg contains 0.4 mg of Pluronic and 0.6 mg of lysozyme. This indicates activity loss of the conjugated proteins by a factor of 120 compared to free lysozyme. Although, this is a severe loss, the adhesion and growth data together with biofilm viability displayed in the Figs. 6 and 7, prove strongly remaining lysozyme activity in the conjugates when applied as a surface coating.

4.2. Conformation of Pluronic–lysozyme conjugates at a hydrophobic surface

Pluronic molecules adsorb at a hydrophobic surface by attachment of their hydrophobic PPO block, whereas their PEO chains protrude in the aqueous solution [17]. Pluronic F-127 adsorption is dictated by the hydrophobicity of the substrate surfaces and adsorbs on different hydrophobic surfaces in the same conformation and with comparable thickness [39]. Hence, the structural information on the coating derived from QCM-D experiments using hydrophobic gold substrates may be correlated to the bacterial adhesion and viability tests performed in the parallel plate flow chamber on a hydrophobic silicone rubber biomaterial. After attachment of lysozyme to the terminal ends of the PEO chains, the adsorption behaviour of the conjugate may deviate from that of unmodified Pluronic. Lysozyme also has a tendency to adsorb to hydrophobic surfaces [38], and hence it may compete with the PPO block to attach to the surface. Obviously, the adsorbed Pluronic–lysozyme conjugate can adopt a brush or a pancake conformation (see Fig. 8a and b), depending on the adsorption affinity of lysozyme, relative to that of PPO, and on the loss of conformational entropy of the conjugate when it attaches via lysozyme at its terminal ends. It may also be possible that the conjugate anchors to the surface by both its PPO and lysozyme moieties as shown in Fig. 8c. The conformation of the layer of Pluronic–lysozyme conjugates on the surface was investigated by comparing values of their thickness and relaxation time with those of uncoupled lysozyme and Pluronic, obtained using QCM-D. The thickness of the uncoupled CHO-Pluronic (5.8 ± 0.5 nm) is in agreement with the thickness of a Pluronic brush of the same type [39]. The thickness of adsorbed lysozyme (3.6 ± 0.5 nm) corresponds to a monolayer with side-on adsorbed unperturbed lysozyme molecules having dimensions of 3.0 nm × 3.0 nm × 4.5 nm [22]. The thickness of the Pluronic–lysozyme conjugate is larger than the sum of those of CHO-Pluronic and lysozyme, suggesting that the lysozyme coupling forces the Pluronic to stretch out further into the solution. The observation that beyond a Pluronic–lysozyme : CHO-Pluronic ratio of 25% in solution, the thickness of the coating does not increase any further suggests preferential adsorption of the

Table 1

<table>
<thead>
<tr>
<th>Sample</th>
<th>(N_1) counts</th>
<th>Surface coverage by lysozyme [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trough filled with lysozyme (reference)</td>
<td>4268</td>
<td>100</td>
</tr>
<tr>
<td>Lysozyme deposited on gold</td>
<td>2110</td>
<td>50</td>
</tr>
<tr>
<td>100% Pl–Lys</td>
<td>2017</td>
<td>47</td>
</tr>
<tr>
<td>1% Pl–Lys</td>
<td>1349</td>
<td>32</td>
</tr>
</tbody>
</table>

Fig. 5. Hydrated thickness and relaxation time of adsorbed layers of Pluronic–lysozyme conjugates as a function of the degree of conjugation (100% corresponds to one Pluronic chain coupled to one or two lysozyme molecules). Error bars indicate standard deviation over three separate experiments.
Pluronic–lysozyme conjugate. The relaxation time of this conjugate resembles that of CHO-Pluronic rather than that of lysozyme, showing that the polymer part and not the protein part determines the viscoelastic properties. Adsorption of lysozyme after pre-adsorption of CHO-Pluronic, as well as sequential adsorption in the reversed order, yields values for thickness and relaxation time resembling those obtained for CHO-Pluronic and deviating from the values obtained for lysozyme. These observations provide strong evidence that in sequential adsorption, CHO-Pluronic does displace lysozyme from the surface, but that lysozyme is not able to displace adsorbed CHO-Pluronic. Apparently, the affinity of Pluronic for the hydrophobic gold surface is much higher than the affinity of lysozyme for that surface. From those data, we infer that the conjugate adsorbs by attaching its PPO block to the surface and the PEO chains with the attached lysozyme molecules are exposed to the solution. The strong attachment of the PPO block to the hydrophobic surface is in line with the high stability of Pluronic layers adsorbed at such a surfaces [40,41].

The occurrence of the adsorbed Pluronic–lysozyme conjugates in a brush-like conformation is further supported by the results from the bacterial adhesion and growth experiments, although adhesion of *B. subtilis* 168 is higher on a functionalized brush than on an unconjugated Pluronic brush coating, which might be ascribed to favourable electrostatic interaction between the positively charged lysozyme molecules and the negatively charged bacteria. This on its turn, is supported by the observation of an increased fraction of dead bacteria in the biofilm grown on coatings with Pluronic–lysozyme conjugated brushes.

4.3. Composition of the coating with respect to anti-adhesive and antibacterial functionalities

Varying the ratio between Pluronic–lysozyme conjugates and unmodified Pluronic in a brush, enables determination of the optimal composition of the coating. Results obtained by XPS analysis clearly show that the content of lysozyme in 100%
Pluronic–lysozyme conjugated coating is almost the same as when the surface is coated only with uncoupled lysozyme, corresponding to 47% surface coverage by lysozyme. Even for the coating formed after exposing the surface to a solution containing only 1% Pluronic–lysozyme conjugate, lysozyme coverage remains remarkably high, i.e., 32%. Again, this points to preferential adsorption of the conjugate relative to CHO-Pluronic. As expected, a lower surface coverage by lysozyme yields less bacterial adhesion, indicating that the anti-adhesive functionality of the Pluronic coating is preserved. The most viable biofilm was found on the uncoated Pluronic brush coating, in line with previous work [10], in which it was found that bacteria growing on Pluronic brush coatings were less thick than on uncoated silicone rubber allowing more nutrients to penetrate into the adhering biofilm, yielding more viable bacteria. In fact, these observations prompted us to design a Pluronic brush coating more than on uncoated silicone rubber allowing more nutrients to penetrate into the adhering biofilm, yielding more viable bacteria. In fact, these observations prompted us to design a Pluronic brush coating with the lysozyme in the solution (b) a pancake with lysozyme adsorbed on the structure (c) a structure where both lysozyme and the PPO of the Pluronic adsorbed to silica particles. Phys Chem Chem Phys 2001;3:235–9. [20] Terpakova E, Siegel RW, Derdik J, Derdik J. Silica nanoparticle size influences the structure and antibacterial functions of our coating are not expected to be lost after adsorption to a protein-containing biofilm.

5. Conclusions

We presented a successful approach for preparing bioconjugates of synthetic polymers with natural proteins to be applied as functional coatings. Thus, brush coatings consisting of Pluronic and Pluronic–lysozyme conjugates were applied that exert bi-functionality, i.e. an anti-adhesive activity due to the polymer brush together with the antibacterial activity of the lysozyme. The work described in this paper contributes to a better understanding of the behaviour and surface properties of functionalized polymers, which may help to future development of more complex multifunctional coatings for application in biological systems, including coating of biomaterials implant surfaces.

Funding

This research was funded by the University of Groningen–University Medical Center Groningen, Groningen, The Netherlands.

References

