Similar patterns of age-specific reproduction in an island and mainland population of great tits *Parus major*

Sandra Bouwhuis, Arie J. van Noordwijk, Ben C. Sheldon, Simon Verhulst and Marcel E. Visser

The process of ageing was long thought to be too infrequent to affect life-histories in natural populations. Long-term studies have, however, recently demonstrated ageing to be ubiquitous even in the wild, although confounding factors, such as emigration instead of mortality, or inter-population variation in rates of ageing have seldom been addressed. Here, we present analyses of female age-specific reproductive performance in a Dutch island population of great tits *Parus major*. For this population with limited connectivity to surrounding areas, we show that, between individuals, reproductive lifespan positively co-varies with recruit production, while within individuals performance improves up to 3 years of age, after which it gradually declines. We also show these patterns to be strikingly similar to those recently found in a less isolated British mainland population of great tits, characterised by different environmental conditions and life-history evolution, in particular the frequency of multiple breeding. Our results therefore suggest patterns of age-specific reproductive performance to be robust to both environmental and life-history variation.

Within-individual age-specific reproductive performance and survival probability are of growing importance to biologists, as their effect on population dynamics (e.g. Ezard et al. 2007) and life-history evolution (Bennett and Owens 2002) is becoming more and more apparent. Fortunately, while classic analyses of age-specific performance largely relied on a cross-sectional approach, and therefore could not account for selective effects via the appearance or disappearance of phenotypes from the population (Forslund and Párt 1995), recent statistical advances have allowed for accurate estimation of within-individual age-specific trajectories from longitudinal data (van de Pol and Verhulst 2006, Nussey et al. 2008). Studies adopting this new approach have both shown that selective effects can be substantial (e.g. Nussey et al. 2006, McClure et al. 2008, Bouwhuis et al. 2009), and provided compelling evidence for age-specificity of survival and various measures of reproductive performance (e.g. Cam et al. 2002, Brommer et al. 2007, Keller et al. 2008).

With respect to age-specific survival, the trait to study is straightforward. In the case of age-specific reproductive performance, however, the focal reproductive trait can range over the entire breeding cycle, for birds from laying date and clutch size (e.g. McClure et al. 2008) to number of local recruits (e.g. Bouwhuis et al. 2009) or even grand-recruits (Bouwhuis et al. 2010b). This choice of trait may have consequences for detectability of age-specific performance (e.g. if age-effects increase in strength over the breeding cycle, Bouwhuis et al. 2009), as well as its interpretation (e.g. producing fewer offspring at old age can be beneficial if these offspring are of better quality, but see Bouwhuis et al. 2010b). So far, the number of locally recruited offspring seems to be the best reproductive performance measure, since it combines offspring number and quality in terms of first-year survival. Yet, this measure only provides an unbiased estimate of reproductive senescence if emigration of offspring is independent of maternal age and reproductive lifespan. In many studies, offspring mortality and emigration are difficult to distinguish. As a solution, one can (1) use proxies for emigration to test for potential bias, such as dispersal distance (Ronce et al. 1998, Bouwhuis et al. 2009), (2) study patterns over multiple spatial scales to estimate the effect of biased dispersal (Tinbergen 2005), or (3) study isolated populations in which migration is quantitatively less important (e.g. Kluwer 1971).

Here, we adopt the latter approach and study within-individual patterns of age-specific recruit production, while controlling for between-individual heterogeneity, in a bird population that is relatively isolated: a population of great tits *Parus major* breeding on the Dutch island of Vlieland (Kluwer 1971, Verhulst and van Eck 1996, Postma and van Noordwijk 2005). A within-individual pattern of age-specific reproductive performance was recently shown for a British population of great tits at Wytham Woods (Bouwhuis et al. 2009), a population characterised by high...
connectivity with the surrounding areas (Verhulst et al. 1997, McCleery et al. 2004), and a population in which offspring dispersal distance decreases with maternal reproductive lifespan (Bouwuis et al. 2009), such that patterns of age-specific reproductive performance may be affected by differential emigration. Although populations can vary in more than one respect, and in this case connectivity, by replicating the analyses performed for the British population, we can begin to assess the robustness of age-specific patterns found.

Moreover, whereas within-species comparative studies of patterns of age-specific performance have occasionally been performed using wild-caught individuals brought into the laboratory (grasshoppers Melanoplus sanguinipes/devastator-Tatar et al. 1997; Daphnia pulex-pulicaria-Dudycha 2001; guppies Poecilia reticulata-Reznick et al. 2004; medflies Ceratitís capitata-Müller et al. 2009), we are aware of only a single replicate study in the wild. In Virginia opossums Didelphis virginiana, an island population having a long-term history of reduced exposure to predators was found to experience slower rates of ageing than a mainland population (Austad 1993). This is an exciting result, and similar comparative studies could shed light on whether other ecological factors underlie variation in rates of ageing between populations of the same species too. Here, we provide the first example in birds, by combining the data from the Vlieland and Wytham great tit populations. We test whether patterns of age-specific reproduction differ between these populations, which themselves differ in connectivity to the surrounding areas, environmental conditions and life-history parameters (Table 1).

Methods

Study populations and data collection

Data used here were collected as part of two long-term studies of great tits breeding in nest boxes (1) in Wytham Woods, UK, and (2) on the island of Vlieland, The Netherlands. These study populations were established in 1947 and 1955 respectively, and have been monitored continuously ever since. Each breeding season, nest boxes were checked to ascertain laying date, clutch size, hatching date, brood size and number of fledglings. Chicks were ringed when 15 days old, and parents were trapped at the nest whilst feeding their chicks. Parental age was based on birth year for locally born birds, or plumage characteristics (Svensson 1994) at first catching for immigrants. Female immigrants comprised 45% and 22% of the Wytham and Vlieland dataset, respectively, but since most immigrants entered the population as yearlings, exact age was known for 92% and 98% of birds. For birds first captured with adult plumage, an age of 2 was assumed.

Data selection

As described previously (Bouwuis et al. 2009), data from 1947–1960 were omitted from the Wytham dataset, because the number of nest boxes varied over this time period. Data from 1960–2008 were used, and breeding attempts were included in our dataset if: (1) the female parent was caught, (2) no experimental manipulation had occurred, (3) age and age at last reproduction (ALR) of the female parent were known, and (4) the number of local recruits produced was known. In total, this data selection resulted in 7 341 breeding attempts by 4 935 females, aged 1–9 years. For Vlieland, data from 1955–1975 and 1988–2008 were omitted because of extensive population-wide experimental manipulation during these periods. Data from 1976–1988 were used, and here, the data selection as described above resulted in 1 225 breeding years by 760 individual female great tits. Note that on Vlieland the number of recruits was summed over all broods reared in a breeding season, as Vlieland great tits regularly opted for multiple breeding (in 41% of the 1 225 breeding years; also see Verboven et al. 2001, Husby et al. 2009), whereas Wytham great tits very rarely produce a second brood (0.2% of all breeding attempts). On Vlieland, breeding age ranged from 1 to 7 years.

Statistical analysis

Patterns of age-specific recruit production have previously been analysed, and reported, for the Wytham population (Bouwuis et al. 2009), and here we repeated these analyses for the Vlieland population. As described in Bouwuis et al. (2009), we analysed the effect of maternal age on female recruit production using additive, cross-classified random effect models with Poisson distributed errors and a Markov chain Monte Carlo estimation algorithm with 100 000 iterations to assure mixing of parameters (Browne et al. 2007). Our model included fixed effects of (1) female status (locally-born versus immigrant, two-level class variable), (2) female age and age\(^2\), (3) female ALR and ALR\(^2\), and (4) interactions between female ALR and age and age\(^2\).

In addition, they included random effects of female identity, year, and area (there are five separate woodlands on Vlieland, which differ in size and vegetation, Kluyver 1971), to account for repeated, non-independent observations on the same bird, and spatiotemporal environmental heterogeneity, respectively. The full model (Table 2) was simplified by backward stepwise removal of least-significant terms, where significance (p < 0.05, two-tailed) was assessed using the Wald statistic calculated from the posterior mean and standard deviation, tested against a chi-square distribution.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Vlieland</th>
<th>Wytham</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female immigration rate</td>
<td>22%</td>
<td>45%</td>
</tr>
<tr>
<td>Recruitment rate</td>
<td>12%</td>
<td>10%</td>
</tr>
<tr>
<td>Multiple breeding</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>Beeches present</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>Average breeding density (ha(^{-1}))</td>
<td>0.4</td>
<td>0.8</td>
</tr>
<tr>
<td>Average clutch size per season</td>
<td>11.8</td>
<td>8.7</td>
</tr>
<tr>
<td>Average brood size per season</td>
<td>9.5</td>
<td>8.1</td>
</tr>
<tr>
<td>Average nr. of fledglings per season</td>
<td>7.7</td>
<td>7.0</td>
</tr>
<tr>
<td>Average nr. of recruits per season</td>
<td>1.0</td>
<td>0.7</td>
</tr>
<tr>
<td>Average breeding age</td>
<td>1.8</td>
<td>1.8</td>
</tr>
<tr>
<td>Average reproductive lifespan</td>
<td>1.9</td>
<td>1.9</td>
</tr>
</tbody>
</table>
To compare the effects of age and selective disappearance on recruitment of offspring between female great tits on the island of Vlieland and in the British population of Wytham Woods, we combined both datasets. Within the longitudinal model setup, we tested for the overall effects of immigrant status, age, age2, ALR and for the effects of population, both as a main effect and in interaction with immigrant status, age, age2 and ALR using the model selection described above (Table 3). The comparative model was run both using the maximal dataset for each population, and using only the data collected between 1976 and 1988 in both populations to assure that our results were not driven by the different time periods used.

All models were fitted using MLwiN v. 2.02 (Browne et al. 2001, Rasbash et al. 2005).

Results

Vlieland patterns of age-specific reproduction

We found female great tits to exhibit age-specific variation in their reproductive performance (Table 2). The significantly negative quadratic effect of age suggests within-individual improvement in recruit production up to the average (± SE) age of 2.91 (± 0.04) years, after which performance declines (Fig. 1, fitted curves). The significant between-individual effect of ALR reveals a positive correlation between female reproductive lifespan and annual recruit production. This means that poor-quality breeders selectively disappear from the population, an effect masking signs of senescence at the population-level (Fig. 1, circles), as also evidenced by a poor fit between the population-level circles and individual-level curves in Fig. 1. Interactions between ALR and age, which would imply that age-effects differ between females of different reproductive lifespan, were not significant and were dropped from the model. Similarly, a quadratic effect of ALR did not explain a significant amount of variation in reproductive performance, suggesting no combined effects of selective disappearance and a trade-off between reproduction and survival, or variation in the rate of selective disappearance with age. Finally, locally-born females and females that were born elsewhere and immigrated into the Vlieland population, did not differ significantly in their annual production of local recruits.

Table 3. Results from models testing the effects of population (Vlieland vs Wytham), age and selective disappearance (estimated using reproductive lifespan, ALR) on recruitment of offspring by female great tits on Vlieland. Estimates for random effects are marked by (r). Shown are parameter estimates (Est.) with standard errors, 95% CI's and significance (* for p < 0.05). Values for significant terms are in bold, and values for non-significant terms are presented as estimated when re-added to the minimal adequate model.

To compare the effects of age and selective disappearance on recruitment of offspring between female great tits on the island of Vlieland and in the British population of Wytham Woods, we combined both datasets. Within the longitudinal model setup, we tested for the overall effects of immigrant status, age, age2, ALR and for the effects of population, both as a main effect and in interaction with immigrant status, age, age2 and ALR using the model selection described above (Table 3). The comparative model was run both using the maximal dataset for each population, and using only the data collected between 1976 and 1988 in both populations to assure that our results were not driven by the different time periods used.

All models were fitted using MLwiN v. 2.02 (Browne et al. 2001, Rasbash et al. 2005).

Results

Vlieland patterns of age-specific reproduction

We found female great tits to exhibit age-specific variation in their reproductive performance (Table 2). The significantly negative quadratic effect of age suggests within-individual improvement in recruit production up to the average (± SE) age of 2.91 (± 0.04) years, after which performance declines (Fig. 1, fitted curves). The significant between-individual effect of ALR reveals a positive correlation between female reproductive lifespan and annual recruit production. This means that poor-quality breeders selectively disappear from the population, an effect masking signs of senescence at the population-level (Fig. 1, circles), as also evidenced by a poor fit between the population-level circles and individual-level curves in Fig. 1. Interactions between ALR and age, which would imply that age-effects differ between females of different reproductive lifespan, were not significant and were dropped from the model. Similarly, a quadratic effect of ALR did not explain a significant amount of variation in reproductive performance, suggesting no combined effects of selective disappearance and a trade-off between reproduction and survival, or variation in the rate of selective disappearance with age. Finally, locally-born females and females that were born elsewhere and immigrated into the Vlieland population, did not differ significantly in their annual production of local recruits.

Table 3. Results from models testing the effects of population (Vlieland vs Wytham), age and selective disappearance (estimated using reproductive lifespan, ALR) on recruitment of offspring by female great tits on Vlieland. Estimates for random effects are marked by (r). Shown are parameter estimates (Est.) with standard errors, 95% CI's and significance (** for p < 0.01, *** for p < 0.001, * for p < 0.05). Values for significant terms are in bold, and values for non-significant terms are presented as estimated when re-added to the minimal adequate model.
Inter-population comparison

Combining the Vlieland and Wytham datasets resulted in a total of 8,566 breeding years by 5,695 individual females, whose age ranged from 1–9, averaging 1.81. Our analyses of recruit production confirmed that, overall, female great tits exhibit age-specific variation in their reproductive performance, and experience selective disappearance of poor-quality breeders from the breeding population (Table 3). Despite the immigrant status effect being non-significant for Vlieland (see above), there was a significant overall effect of female immigrant status that did not differ significantly between the populations, showing that locally-born females outperform immigrant females.

Moreover, the effects of female age, age2 and ALR on recruit production did not differ between the Vlieland and Wytham populations, as evidenced by the population parameter never reaching statistical significance, either as a main effect, or in interaction with female age, age2 or ALR (Table 3). The similarity of age effects of reproductive performance was also confirmed by a strong correlation between age-specific recruit production for ages 1–7 in the two populations: for the population-level averages (Pearson’s $r=0.884$, Fig. 2 solid circles), as well as the fitted values for birds of average ALR from the minimal adequate models (Pearson’s $r=0.999$, Fig. 2 open circles).

Restricting the dataset to breeding events from the years for which data were available for both populations, i.e. 1976–1988, did not alter the qualitative conclusions of the models (Table 3).

Discussion

Our analyses of age-specific reproductive performance in a Dutch island population of great tits led to two main findings: between-individual heterogeneity in survival and reproductive performance, and, after accounting for this heterogeneity, within-individual age-specificity of recruit production. Moreover, our inter-population comparison showed these patterns to be statistically indistinguishable from the patterns found in a British population of great tits.

Between-individual heterogeneity was revealed by a positive correlation between female reproductive lifespan (measured as age at last reproduction, ALR) and annual recruit production. A similar pattern has previously been found for kittiwakes Rissa tridactyla (Cam et al. 2002), and was suggested to reflect differences in individual quality (but see Wilson and Nussey 2010). Alternatively, a positive correlation between female reproductive lifespan and recruit production could arise if females which are poor survivors, or are more prone to disperse between breeding events and leave the study area, produce offspring which are more likely to emigrate. For the Wytham population, the likelihood of this option was previously assessed by testing for a relation between maternal ALR and offspring natal dispersal distance (Bouwhuis et al. 2009), although the factors determining dispersal distance within a woodland may differ from the factors determining whether or not individuals emigrate from a woodland altogether (Verhulst et al. 1997). Females with a longer reproductive lifespan produced offspring that dispersed less far within the study (maternal ALR: $–0.320 \pm 0.124, \chi^2 = 6.633, p = 0.010$), suggesting one of these mechanisms may be at work if dispersal distance also reflects the emigration process.
For Vlieland, which is more isolated than Wytham, we expect emigration to be quantitatively less important (Kluyver 1971). Nevertheless, an analysis of offspring natal dispersal distance revealed a quantitatively similar, although non-significant, effect of maternal ALR ($-0.382 \pm 0.267 \text{ m}^{0.5} \text{ yr}^{-1}, \chi^2 = 2.052, p = 0.152$). Combination of the Wytham and Vlieland dataset confirmed the relationship to be similar (population*ALR: $-0.090 \pm 0.252, \chi^2 = 0.129, p = 0.719$ and the overall ALR effect to be significantly negative ($-0.324 \pm 0.116, \chi^2 = 7.865, p = 0.005$). Therefore, if emigration is indeed less important on Vlieland, we may expect natal dispersal distance to reflect processes other than emigration (also see Verhulst et al. 1997), and the positive correlation between reproductive lifespan and recruit production to mainly reflect female and offspring survival, i.e. individual quality differences. More work on the origin of individual quality (e.g. Hamel et al. 2009a, Hamel et al. 2009b), and on the genetic basis of longevity and dispersal (e.g. McCleery et al. 2004, Doligez and Pärt 2009b), and on the scope of the work presented here, allowing more extensive comparative analyses of rates of reproductive ageing in birds.

In conclusion, our analyses of a Dutch island population of great tits, characterised by relatively low migration rates and relatively high local recruitment rates, have revealed between-individual heterogeneity, and within-individual age-specificity of reproductive performance. Both patterns are strikingly similar to recent findings in a British population of great tits, and although our analyses increase the population sample size merely from one to two, they strongly suggest that the patterns found are robust under varying levels of connectivity, environmental conditions and concomitant differences in life histories.

Acknowledgements – We gratefully acknowledge all fieldworkers, and especially the late Hubert van Eck, who collected most of the Vlieland data. We also thank Jan Visser for maintaining the Vlieland database, and the State Forestry Commission for allowing the Vlieland fieldworkers to collect data within their property. Constructive criticism from Dan Nussey, Tore Slagsvold and two anonymous referees was greatly appreciated and has improved the manuscript. The collection of data in Wytham has been funded by grants and studentships from the UK Natural Environment and Biotechnology and Biological Sciences Research Councils (NERC and BBSRC respectively). Both S.V. and M.E.V. are supported by an NWO VICI-grant.

References

