Spectroscopic and Magnetic Properties of a Series of mu-Cyano Bridged Bimetallic Compounds of the Type M-II-NC-Fe-III (M = Mn, Co, and Zn) Using the Building Block [Fe-III(CN)(5)imidazole](2-)

Tchouka, Heloise; Meetsma, Auke; Browne, Wesley R.

Published in:
Inorganic Chemistry

DOI:
10.1021/ic101447q

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2010

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Spectroscopic and magnetic properties of a series of \(\mu \)-cyano bridged bimetallic compounds of the type M\(^{\text{II}}\)-NC-Fe\(^{\text{III}}\) (M = Mn, Co and Zn) using the building-block [Fe\(^{\text{III}}\)(CN)\(_5\)imidazole]\(^{2-}\)

Heloïse Tchouka, Auke Meetsma, Wesley Browne

Supporting information

Table S1 Selected bond lengths (Å) and angles (deg)\(^{a,b}\) for 1

<table>
<thead>
<tr>
<th>Bond/Atom</th>
<th>Value (Å)</th>
<th>Bond/Atom</th>
<th>Value (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co1-O1</td>
<td>2.119(3)</td>
<td>Fe1-C1(_h)</td>
<td>1.951(3)</td>
</tr>
<tr>
<td>Co1-N1</td>
<td>2.107(2)</td>
<td>N1-C1</td>
<td>1.145(4)</td>
</tr>
<tr>
<td>Co1-O1(_b)</td>
<td>2.119(3)</td>
<td>N2-C2</td>
<td>1.136(10)</td>
</tr>
<tr>
<td>Co1-N1(_b)</td>
<td>2.107(2)</td>
<td>N3-C3</td>
<td>1.380(7)</td>
</tr>
<tr>
<td>Co1-N1(_d)</td>
<td>2.107(2)</td>
<td>N3-C5</td>
<td>1.340(7)</td>
</tr>
<tr>
<td>Co1-N1(_g)</td>
<td>2.107(2)</td>
<td>N3-C3(_a)</td>
<td>1.380(7)</td>
</tr>
<tr>
<td>Fe1-N3</td>
<td>1.958(5)</td>
<td>N3-C5(_a)</td>
<td>1.340(7)</td>
</tr>
<tr>
<td>Fe1-C1</td>
<td>1.951(3)</td>
<td>N4-C4</td>
<td>1.360(12)</td>
</tr>
<tr>
<td>Fe1-C2</td>
<td>1.919(8)</td>
<td>N4-C5</td>
<td>1.341(13)</td>
</tr>
<tr>
<td>Bond/Angle</td>
<td>Distance/deg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>--------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe1-C1_a</td>
<td>1.951(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe1-C1_f</td>
<td>1.951(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O1-Co1-N1</td>
<td>87.52(9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O1-Co1-O1_b</td>
<td>180</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O1-Co1-N1_b</td>
<td>92.48(9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O1-Co1-N1_d</td>
<td>92.48(9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O1-Co1-N1_g</td>
<td>87.52(9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O1_b-Co1-N1_b</td>
<td>87.52(9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O1_b-Co1-N1_d</td>
<td>87.52(9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O1_b-Co1-N1_g</td>
<td>92.48(9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N1-Co1-O1_b</td>
<td>92.48(9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N1-Co1-N1_b</td>
<td>88.70(9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N1-Co1-N1_d</td>
<td>180</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N1-Co1-N1_g</td>
<td>91.30(9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O1_b-Co1-N1_b</td>
<td>87.52(9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O1_b-Co1-N1_d</td>
<td>87.52(9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O1_b-Co1-N1_g</td>
<td>92.48(9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N1_b-Co1-N1_d</td>
<td>91.30(9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N1_b-Co1-N1_g</td>
<td>180</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N1_d-Co1-N1_g</td>
<td>88.70(9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N3-Fe1-C1</td>
<td>92.56(9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N3-Fe1-C2</td>
<td>180</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N3-Fe1-C1_a</td>
<td>92.56(9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N3-Fe1-C1_f</td>
<td>92.56(9)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
N3-Fe1-C1_h 92.56(9) Fe1-C2-N2 180.00(3)
C1-Fe1-C2 87.44(9) N3-C3-C4 105.8(5)
C1-Fe1-C1_a 174.88(13) N4-C4-C3 111.6(6)
C1-Fe1-C1_f 88.69(12) N3-C5-N4 113.0(6)
C1-Fe1-C1_h 91.08(12)

*a*Estimated standard deviations in the last significant digits are given in parentheses.

*b*Symmetry code: [-a] -1-x, 1/2-y, z; [-b] x, -y, -z; [-c] -x, 1/2+y, -z; [-d] -x, -y, -z; [-e] x, 1/2+y, -z; [-f] -1-x, y, z; [-g] -x, y, z; [-h] x, 1/2-y, z; [-i] -1/2-x, y, -1/2-z.

Table S2 selected bond lengths (Å) and angles (deg)\(^{a,b}\) for 2

<table>
<thead>
<tr>
<th>Bond/Distance</th>
<th>Length (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe-N6</td>
<td>1.958(8)</td>
</tr>
<tr>
<td>Fe-C1</td>
<td>1.956(14)</td>
</tr>
<tr>
<td>Fe-C4</td>
<td>1.935(12)</td>
</tr>
<tr>
<td>Fe-C5_b</td>
<td>1.928(15)</td>
</tr>
<tr>
<td>Fe-C2_c</td>
<td>1.926(16)</td>
</tr>
<tr>
<td>Fe-C3_e</td>
<td>1.937(16)</td>
</tr>
<tr>
<td>Mn-O1</td>
<td>2.188(8)</td>
</tr>
<tr>
<td>Mn-O2</td>
<td>2.278(9)</td>
</tr>
<tr>
<td>Mn-N1</td>
<td>2.214(11)</td>
</tr>
<tr>
<td>Mn-N2</td>
<td>2.159(13)</td>
</tr>
<tr>
<td>Mn-N3</td>
<td>2.214(13)</td>
</tr>
<tr>
<td>Mn-N5</td>
<td>2.217(12)</td>
</tr>
<tr>
<td>Bond</td>
<td>Angle (°)</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>N6-Fe-C1</td>
<td>91.45</td>
</tr>
<tr>
<td>N1-Mn-N2</td>
<td>178.1(5)</td>
</tr>
<tr>
<td>N6-Fe-C4</td>
<td>174.4(6)</td>
</tr>
<tr>
<td>N1-Mn-N3</td>
<td>91.1(4)</td>
</tr>
<tr>
<td>N6-Fe-C5_b</td>
<td>94.1(6)</td>
</tr>
<tr>
<td>N1-Mn-N5</td>
<td>88.5(4)</td>
</tr>
<tr>
<td>N6-Fe-C2_c</td>
<td>90.1(6)</td>
</tr>
<tr>
<td>N2-Mn-N3</td>
<td>90.8(5)</td>
</tr>
<tr>
<td>N6-Fe-C3_e</td>
<td>91.2(6)</td>
</tr>
<tr>
<td>N2-Mn-N5</td>
<td>89.6(5)</td>
</tr>
<tr>
<td>C1-Fe-C4</td>
<td>85.5(6)</td>
</tr>
<tr>
<td>N3-Mn-N5</td>
<td>172.3(5)</td>
</tr>
<tr>
<td>C1-Fe-C5_b</td>
<td>87.9(6)</td>
</tr>
<tr>
<td>Mn-O1-C9</td>
<td>124.4(6)</td>
</tr>
<tr>
<td>C1-Fe-C2_c</td>
<td>94.8(6)</td>
</tr>
<tr>
<td>Mn-O2-C10</td>
<td>127.9(6)</td>
</tr>
<tr>
<td>C1-Fe-C3_e</td>
<td>176.1(6)</td>
</tr>
<tr>
<td>Mn-N1-C1</td>
<td>142.4(11)</td>
</tr>
<tr>
<td>C4-Fe-C5_b</td>
<td>89.1(6)</td>
</tr>
<tr>
<td>Mn-N2-C2</td>
<td>179.2(13)</td>
</tr>
<tr>
<td>C4-Fe-C2_c</td>
<td>86.7(6)</td>
</tr>
<tr>
<td>Mn-N3-C3</td>
<td>174.0(12)</td>
</tr>
<tr>
<td>C4-Fe-C3_e</td>
<td>92.1(6)</td>
</tr>
<tr>
<td>Mn-N5-C5</td>
<td>163.4(12)</td>
</tr>
<tr>
<td>C5_b-Fe-C2_c</td>
<td>174.7(6)</td>
</tr>
<tr>
<td>Fe-N6-C6</td>
<td>124.9(7)</td>
</tr>
<tr>
<td>C5_b-Fe-C3_e</td>
<td>89.0(6)</td>
</tr>
<tr>
<td>Fe-N6-C8</td>
<td>128.8(6)</td>
</tr>
<tr>
<td>C2_c-Fe-C3_e</td>
<td>88.0(7)</td>
</tr>
<tr>
<td>C6-N6-C8</td>
<td>106.2(7)</td>
</tr>
<tr>
<td>O1-Mn-O2</td>
<td>174.2(4)</td>
</tr>
<tr>
<td>C6-N7-C7</td>
<td>108.5(9)</td>
</tr>
<tr>
<td>O1-Mn-N1</td>
<td>87.4(4)</td>
</tr>
<tr>
<td>Fe-C1-N1</td>
<td>176.8(13)</td>
</tr>
<tr>
<td>O1-Mn-N2</td>
<td>92.9(4)</td>
</tr>
<tr>
<td>N2-C2-Fe_d</td>
<td>179.7(17)</td>
</tr>
<tr>
<td>O1-Mn-N3</td>
<td>94.2(4)</td>
</tr>
<tr>
<td>N3-C3-Fe_f</td>
<td>176.9(14)</td>
</tr>
<tr>
<td>O1-Mn-N5</td>
<td>93.5(4)</td>
</tr>
<tr>
<td>Fe-C4-N4</td>
<td>177.0(11)</td>
</tr>
<tr>
<td>O2-Mn-N1</td>
<td>87.1(4)</td>
</tr>
<tr>
<td>N5-C5-Fe_a</td>
<td>174.6(13)</td>
</tr>
<tr>
<td>Bond/Angle</td>
<td>Zn-N1</td>
</tr>
<tr>
<td>------------</td>
<td>-------</td>
</tr>
<tr>
<td>Zn-N1</td>
<td>2.059(2)</td>
</tr>
<tr>
<td>Zn-N2</td>
<td>2.097(2)</td>
</tr>
<tr>
<td>Zn-N3</td>
<td>2.024(3)</td>
</tr>
<tr>
<td>Zn-N1_i</td>
<td>2.059(2)</td>
</tr>
<tr>
<td>Zn-N2_i</td>
<td>2.097(2)</td>
</tr>
<tr>
<td>Fe-N4</td>
<td>1.966(3)</td>
</tr>
<tr>
<td>Fe-C1</td>
<td>1.940(2)</td>
</tr>
<tr>
<td>Fe-C2_c</td>
<td>1.942(2)</td>
</tr>
<tr>
<td>Fe-C3_e</td>
<td>1.919(4)</td>
</tr>
<tr>
<td>Fe-C2_h</td>
<td>1.942(2)</td>
</tr>
</tbody>
</table>

\(^a \text{Estimated standard deviations in the last significant digits are given in parentheses.} \)

\(^b \text{Symmetry code: [}_a[] \text{-1}+x, y, z; [}_b[] 1+x, y, z; [}_c[] 2-x, -1/2+y, 1/2-z; [}_d[] 2-x, 1/2+y, 1/2-z; [}_e[] 3-x, -1/2+y, 1/2-z; [}_f[] 3-x, 1/2 +y, 1/2 -z} \)
Estimated standard deviations in the last significant digits are given in parentheses.

Symmetry code: [a] 3/2-x, 1-y, -1/2+z; [b] -1/2+x, 3/2-y, 1/2-z; [c] 1/2+x, 3/2-y, 1/2-z; [d] 1-x, -1/2+y, 1-z; [e] 1-x, 1/2+y, 1-z; [f] 1-x, 1-y, 1-z; [g] -1/2+x, y, 1/2-z; [h] 1/2+x, y, 1/2-z; [i] 3/2-x, 1/2+y, 1/2+z; [j] x, 1/2-y, z; [k] x, 3/2-y, z.
<table>
<thead>
<tr>
<th>Bond</th>
<th>Length (Å)</th>
<th>Bond</th>
<th>Length (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe-N4</td>
<td>1.969(4)</td>
<td>N5-C4</td>
<td>1.342(6)</td>
</tr>
<tr>
<td>Fe-C1</td>
<td>1.927(6)</td>
<td>N5-C6</td>
<td>1.373(7)</td>
</tr>
<tr>
<td>Fe-C2</td>
<td>1.942(4)</td>
<td>N6-C7</td>
<td>1.335(6)</td>
</tr>
<tr>
<td>Fe-C3</td>
<td>1.947(4)</td>
<td>N6-C11</td>
<td>1.351(6)</td>
</tr>
<tr>
<td>Fe-C4</td>
<td>1.942(4)</td>
<td>N7-C12</td>
<td>1.342(6)</td>
</tr>
<tr>
<td>Fe-C5</td>
<td>1.947(4)</td>
<td>N7-C16</td>
<td>1.339(7)</td>
</tr>
<tr>
<td>Mn-N2</td>
<td>2.215(3)</td>
<td>C5-C6</td>
<td>1.352(9)</td>
</tr>
<tr>
<td>Mn-N6</td>
<td>2.267(4)</td>
<td>C7-C8</td>
<td>1.391(6)</td>
</tr>
<tr>
<td>Mn-N7</td>
<td>2.341(4)</td>
<td>C8-C9</td>
<td>1.377(7)</td>
</tr>
<tr>
<td>Mn-N3_b</td>
<td>2.227(3)</td>
<td>C9-C10</td>
<td>1.373(8)</td>
</tr>
<tr>
<td>Mn-N3_d</td>
<td>2.227(3)</td>
<td>C10-C11</td>
<td>1.387(8)</td>
</tr>
<tr>
<td>Mn-N2_g</td>
<td>2.215(3)</td>
<td>C11-C12</td>
<td>1.486(7)</td>
</tr>
<tr>
<td>N1-C1</td>
<td>1.153(8)</td>
<td>C12-C13</td>
<td>1.402(8)</td>
</tr>
<tr>
<td>N2-C2</td>
<td>1.155(5)</td>
<td>C13-C14</td>
<td>1.372(8)</td>
</tr>
<tr>
<td>N3-C3</td>
<td>1.156(5)</td>
<td>C14-C15</td>
<td>1.376(9)</td>
</tr>
<tr>
<td>N4-C4</td>
<td>1.331(7)</td>
<td>C15-C16</td>
<td>1.387(8)</td>
</tr>
<tr>
<td>N4-C5</td>
<td>1.387(8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N4-Fe-C1</td>
<td>178.2(2)</td>
<td>C3-N3-Mn_c</td>
<td>163.2(3)</td>
</tr>
<tr>
<td>N4-Fe-C2</td>
<td>90.36(14)</td>
<td>Fe-N4-C4</td>
<td>126.3(3)</td>
</tr>
<tr>
<td>N4-Fe-C3</td>
<td>90.62(13)</td>
<td>Fe-N4-C5</td>
<td>128.0(3)</td>
</tr>
<tr>
<td>Bond</td>
<td>Angle</td>
<td>Bond</td>
<td>Angle</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>------------</td>
<td>-----------------------------</td>
<td>------------</td>
</tr>
<tr>
<td>N4-Fe-C2_f</td>
<td>90.36(14)</td>
<td>C4-N4-C5</td>
<td>105.7(4)</td>
</tr>
<tr>
<td>N4-Fe-C3_f</td>
<td>90.62(13)</td>
<td>C4-N5-C6</td>
<td>108.0(4)</td>
</tr>
<tr>
<td>C1-Fe-C2</td>
<td>88.35(16)</td>
<td>Mn-N6-C7</td>
<td>120.6(3)</td>
</tr>
<tr>
<td>C1-Fe-C3</td>
<td>90.68(16)</td>
<td>Mn-N6-C11</td>
<td>120.6(3)</td>
</tr>
<tr>
<td>C1-Fe-C2_f</td>
<td>88.35(16)</td>
<td>C7-N6-C11</td>
<td>118.8(4)</td>
</tr>
<tr>
<td>C1-Fe-C3_f</td>
<td>90.68(16)</td>
<td>Mn-N7-C12</td>
<td>117.9(3)</td>
</tr>
<tr>
<td>C2-Fe-C3</td>
<td>92.92(16)</td>
<td>Mn-N7-C16</td>
<td>123.1(4)</td>
</tr>
<tr>
<td>C2-Fe-C2_f</td>
<td>87.14(16)</td>
<td>C12-N7-C16</td>
<td>119.0(5)</td>
</tr>
<tr>
<td>C2-Fe-C3_f</td>
<td>179.02(15)</td>
<td>Fe-C1-CN1</td>
<td>176.2(5)</td>
</tr>
<tr>
<td>C3-Fe-C2_f</td>
<td>179.02(15)</td>
<td>Fe-C2-N2</td>
<td>176.2(3)</td>
</tr>
<tr>
<td>C3-Fe-C3_f</td>
<td>87.00(16)</td>
<td>Fe-C3-N3</td>
<td>176.5(3)</td>
</tr>
<tr>
<td>C2_f -Fe-C3_f</td>
<td>92.92(16)</td>
<td>N4-C4-N5</td>
<td>110.6(4)</td>
</tr>
<tr>
<td>N2-Mn-N6</td>
<td>130.05(9)</td>
<td>N4-C5-C6</td>
<td>109.4(5)</td>
</tr>
<tr>
<td>N2-Mn-N7</td>
<td>82.95(11)</td>
<td>N5-C6-C5</td>
<td>106.3(5)</td>
</tr>
<tr>
<td>N2-Mn-N3_b</td>
<td>138.52(11)</td>
<td>N6-C7-C8</td>
<td>122.2(5)</td>
</tr>
<tr>
<td>N2-Mn-N3_d</td>
<td>81.19(10)</td>
<td>C7-C8-C9</td>
<td>119.4(5)</td>
</tr>
<tr>
<td>N2-Mn-N2_g</td>
<td>84.85(11)</td>
<td>C8-C9-C10</td>
<td>118.2(5)</td>
</tr>
<tr>
<td>N6-Mn-N7</td>
<td>70.23(14)</td>
<td>C9-C10-C11</td>
<td>120.5(5)</td>
</tr>
<tr>
<td>N6-Mn-N3_b</td>
<td>87.36(11)</td>
<td>N6-C11-C10</td>
<td>121.0(5)</td>
</tr>
<tr>
<td>N6-Mn-N3_d</td>
<td>87.36(11)</td>
<td>N6-C11-C12</td>
<td>115.2(4)</td>
</tr>
<tr>
<td>N6-Mn-N2_g</td>
<td>130.05(9)</td>
<td>C10-C11-C12</td>
<td>123.9(5)</td>
</tr>
<tr>
<td>N7-Mn-N3_b</td>
<td>133.05(8)</td>
<td>N7-C12-C11</td>
<td>116.1(4)</td>
</tr>
<tr>
<td>Bond</td>
<td>Angle (°) (σ)</td>
<td>Bond</td>
<td>Angle (°) (σ)</td>
</tr>
<tr>
<td>---------------------</td>
<td>--------------</td>
<td>---------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>N7-Mn-N3_d</td>
<td>133.05(8)</td>
<td>N7-C12-C13</td>
<td>121.1(5)</td>
</tr>
<tr>
<td>N7-Mn-N2_g</td>
<td>82.95(11)</td>
<td>C11-C12-C13</td>
<td>122.8(4)</td>
</tr>
<tr>
<td>N3_b-Mn-N3_d</td>
<td>83.95(10)</td>
<td>C12-C13-C14</td>
<td>119.1(6)</td>
</tr>
<tr>
<td>N3_b-Mn-N2_g</td>
<td>81.19(10)</td>
<td>C13-C14-C15</td>
<td>119.9(5)</td>
</tr>
<tr>
<td>N3_d-Mn-N2_g</td>
<td>138.52(11)</td>
<td>C14-C15-C16</td>
<td>118.2(5)</td>
</tr>
<tr>
<td>Mn-N2-C2</td>
<td>157.6(3)</td>
<td>N7-C16-C15</td>
<td>122.7(6)</td>
</tr>
</tbody>
</table>

a Estimated standard deviations in the last significant digits are given in parentheses.

b Symmetry code: [a] x, -1/2-y, z; [b] -1/2+x, 1/2-y, 1/2-z; [c] 1/2+x, 1/2-y, 1/2-z; [d] -1/2+x, y, 1/2-z; [e] 1/2+x, y, 1/2-z; [f] x, -1/2-y, z; [g] x, 1/2-y, z;