The temporal evolution of the ratio HNO3/NOy in the Arctic lower stratosphere from January to March 1997

Schneider, J; Arnold, F; Curtius, J; Sierau, B; Fischer, H.; Hoor, P; Wienhold, FG; Parchatka, U; Zhang, Yuan; Schlager, H

Published in:
Geophysical research letters

DOI:
10.1029/1999GL900184

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
1999

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
The temporal evolution of the ratio HNO$_3$/NO$_y$ in the Arctic lower stratosphere from January to March 1997

Abstract. Aircraft-based measurements of HNO$_3$, NO$_y$, N$_2$O, and O$_3$ have been performed in the Arctic lower stratosphere in January (POLSTAR I) and March (STREAM III) of 1997. The two projects employed different aircraft platforms. In addition, NO$_y$ and O$_3$ were measured using different instruments in the two campaigns. HNO$_3$ and NO$_y$ were found strongly correlated with correlation coefficients of 0.84 (POLSTAR I) and 0.69 (STREAM III), respectively. The fraction of HNO$_3$ within NO$_y$ decreased from 96% in January to 59% in March. The decrease is consistent with the lifetime of HNO$_3$ due to photolysis after solar sunrise. The relationship of NO$_y$ and HNO$_3$ with N$_2$O shows that in January NO$_y$ and HNO$_3$ values were markedly higher than expected, which may indicate nitrification by PSC-II particle sedimentation and evaporation. Contradictory, the ratios NO$_y$/O$_3$ observed in January are only slightly elevated. In March, NO$_y$/N$_2$O and NO$_y$/N$_2$O$_2$ relations agree well with others reported in the literature. The difference between the NO$_y$/NO$_2$ and NO$_y$/N$_2$O relationships is partly explained by an observed O$_3$ decrease of about 30% between January and March.

Introduction

Nitric acid (HNO$_3$), which plays a key role in polar ozone chemistry, is the major component of reactive nitrogen (NO$_y$) in the lower stratosphere. So far only few simultaneous measurements of NO$_y$ and HNO$_3$ in the lower stratosphere have been reported [Singh et al., 1997; Fischer et al., 1997], yielding HNO$_3$/NO$_y$ ratios of about 70 - 80%. Calculated HNO$_3$/NO$_y$ ratios [Fahey et al., 1989; Kawa et al., 1992] indicate the rather low stratosphere. So far only few simultaneous measurements of NO$_y$ and HNO$_3$ in the lower stratosphere have been reported. When reactive nitrogen (mainly HNO$_3$) is removed from high altitudes (around 20 km) and released at lower altitudes (11 to 15 km) by PSC-II particle sedimentation and evaporation, the efficiency of chlorine deactivation is reduced. These so-called denitrification/nitrification events have been regularly observed in the Antarctic winter stratosphere [cf. Fahey et al., 1990a], but only rarely in the Arctic stratosphere. For example, in February 1995, substantial denitrification was observed at altitudes around 19 km [Sugita et al., 1998], while renitrification was observed between 10 and 13 km [Fischer et al., 1997; Arnold et al., 1998].

In late winter/early spring, sunrise after the polar night, followed by photodissociation of HNO$_3$ leads to formation of NO$_x$ and, via reaction (1), of CIONO$_2$. This is expected to shift the partitioning within NO$_y$ towards NO$_x$ and CIONO$_2$ and to a decrease of the HNO$_3$ fraction within NO$_y$.

This paper reports on measurements of HNO$_3$, NO$_y$, N$_2$O, and O$_3$ during two aircraft campaigns in winter 1997 in the Arctic lower stratosphere. We focus on a strong reduction of the ratio HNO$_3$/NO$_y$ observed from January to March.

Measurements

The POLSTAR I (Polar Stratospheric Aerosol Experiment 1) included 7 measurement flights between January 24 and February 6, 1997. The STREAM III (Stratosphere-Troposphere Experiment by Aircraft Measurements III) included 5 flights between March 9 and 25, 1997. The operational base for both campaigns was Kiruna, Sweden (69°N, 20°E). During the POLSTAR I mission the German research aircraft Falcon, owned and operated by DLR (Deutsches Zentrum für Luft- und Raumfahrt) was used, while the STREAM mission used the Dutch Cesna Citation research aircraft, operated by Delft University of Technology. Both research aircraft are twin-jets with a maximum flight altitude of approximately 14 km.

NO$_y$ and O$_3$ in the POLSTAR I project were measured by DLR, Oberspiefenhofen [Feigl, 1998]; NO$_y$ in the STREAM III campaign was measured by the Max Planck Institute for Chemistry (MPI-CH), Mainz [Wienhold et al., 1998]; O$_3$ during STREAM III was measured by the Institute for Marine and Atmospheric Research, Utrecht University (IMAU); in both campaigns N$_2$O was measured by MPI-CH; during the STREAM II project, additionally, N$_2$O was measured on two flights of the STREAM III campaign by the Institute for Stratospheric Chemistry, Forschungszentrum Jülich (FZJ) [Bujok et al., 1998]; in both campaigns HNO$_3$ was measured by the Max Planck Institute for Nuclear Physics (MPIK), Heidelberg [Schneider et al., 1998a]. For a detailed description of the IMAU and MPI-CH measurements see Fischer et al. [1997] and references therein.

It has to be taken into account that the NO$_y$ measurements have been performed by two different groups (DLR and MPI-CH) and have not yet been directly compared. On the other hand, the gold converter technique is a well established measuring sys-
tem for stratospheric NO\textsubscript{x} measurements. N\textsubscript{2}O was measured during two flights of the STREAM III campaign by two different techniques (gas chromatograph, FZJ, and tunable diode laser, MPI-CH). The mean deviation (2\sigma) between both instruments was 1% (Flight #1) and 1.8% (Flight #2). Also, the calibration standards of both measurement systems have been compared, yielding agreement of \leq 1%. Note also that the accuracy of the NO\textsubscript{x} measurements is \pm 25% [Fischer et al., 1997; Feigl, 1998], while that of HNO\textsubscript{3} is only \pm 40%, due to the accuracy of the rate coefficient of the calibration reaction [Möhler and Arnold, 1991; Schneider et al., 1998b]. IMRMS measurements of gaseous HNO\textsubscript{3} in the Arctic lower stratosphere can be affected by sampling and evaporation of cloud and aerosol particles containing HNO\textsubscript{3}. During the residence time of the probe gas inside the flow tube (approximately 50 ms) small particles are able to evaporate. Since the sampling is not isokinetic, an enhancement factor of particle sampling of about 4 is to be expected. During the POLSTAR I campaign where occasionally high cirrus clouds were observed in the tropopause region, an overestimation of HNO\textsubscript{3} can not be excluded. However, this does not affect the present data discussion since it focuses only on stratospheric data, selected by the criterion N\textsubscript{2}O < 300 ppbv. In the STREAM III campaign the HNO\textsubscript{3} measurements suffered from an additional uncertainty due to collision induced ion dissociation. A correction has been applied relying on the measured ion ratio O+/CO\textsubscript{2}, yielding a correction factor of about 1.1. This increased the overall uncertainty to \pm 50%.

Results and discussion

Figure 1 presents the nitric acid volume mixing ratios measured during the POLSTAR I (a) and STREAM III (b) campaigns. The entire data sets are shown as (sampling frequency: 13 s) as a function of potential temperature \(\Theta \). The error bars indicate the accuracy (POLSTAR I: 40%, STREAM III: 50%) of the measurements. During the POLSTAR I mission, slightly higher potential temperatures of up to 365 K were reached. Highest nitric acid mixing ratios of up to 4 ppbv were observed at a \(\Theta \) level of about 357 K. During the STREAM III campaign maximum HNO\textsubscript{3} mixing ratios reached only 2.5 ppbv at a \(\Theta \) level of 352 K.

For further analysis, the data were averaged over 5 minutes, and a subset was selected by the criterion N\textsubscript{2}O < 300 ppbv to exclude tropospheric air masses. This rather conservative criterion led to the rejection of 3 flights so that only 4 flights from the POLSTAR I mission (28-01-97, 30-01-97, 01-02-97, 04-02-97) are included in the data discussion. We note that NO\textsubscript{y} was not measured on the flight of 04-02-97.

NO\textsubscript{y} partitioning

Figure 2 presents the overall relationships between HNO\textsubscript{3} and NO\textsubscript{y} during both campaigns, i.e. for all flight tracks characterized by N\textsubscript{2}O < 300. The accuracy of the measurements is indicated by the error bars (HNO\textsubscript{3}: 40% and 50%, respectively; NO\textsubscript{y}: 25%). The dotted lines indicate HNO\textsubscript{3} fractions within NO\textsubscript{y} of 50% and 100%. The solid lines represent linear regressions through the data points. Both species are well correlated with a correlation coefficient \(r^2 \) of 0.84 during POLSTAR I and 0.69 during STREAM III. The most remarkable feature evident from Figure 2 is the different HNO\textsubscript{3} fraction comparing January and March 1997. While the mean ratio HNO\textsubscript{3}/NO\textsubscript{y} (for N\textsubscript{2}O < 300 ppbv) of the three POLSTAR I flights is 0.96 \pm 0.18, it is only 0.59 \pm 0.05 (mean and standard deviation) during the five STREAM III flights.

Figure 3 shows the temporal evolution of the HNO\textsubscript{3}/NO\textsubscript{y} ratio between January 28 and March 25, 1997. The thick bars indicate mean values and standard deviations for the individual flights, the thin error bars indicate the absolute accuracy of the measurements.
ments: 25% for NOy, 40% for HNO3 during POLSTAR I, 50% for HNO3 during STREAM III. These errors were added linearly, resulting in a "worst case" scenario (i.e. the upper error bar limit, for example, is reached when HNO3 was overestimated by 40% and NOy was underestimated by 25%). The accuracy of the HNO3 measurements of 40-50% is mainly determined by the error in the rate coefficient of the calibration reaction [Mohler and Arnold, 1991; Schneider et al., 1998b]. The HNO3 fraction measured in January (96%) is very high, and the mean value of flight #1 (97-01-28) is even larger than 1. Thus, an overestimation of HNO3 is rather likely, while an underestimation of NOy during POLSTAR I is unlikely, since the values are already much higher than the calculated NOy* (see below). Any systematic error in HNO3 or NOy, however, does not change the observed decrease of the ratio HNO3/NOy.

Nitric acid is destroyed by photochemical conversion, either by photolysis (HNO3 + hv → OH + NO2) or by reaction with OH (OH + HNO3 → H2O + NO3). A decrease of the HNO3 fraction inside the NOy at the end of the polar night is not completely unexpected, although, to our knowledge, neither measurements or model calculation showing this feature were reported up to now. From January to March, solar exposure is markedly increasing at the polar regions. The diurnally averaged photodissociation rate of HNO3 for 70øN and 12 km altitude is increasing from about 0.2×10−6 s−1 on January 20 to 2.5×10−7 s−1 at the end of March. The dashed line in Figure 3 represents the functional fit \(y = a \times \exp(-t/\tau) \) through the data, yielding a time constant \(\tau \) of 86 days. This decrease agrees with the time constant for HNO3 photolysis. Although the measurements discussed here have not encountered the same air masses, air masses sampled in March have seen longer periods of sunlight than those encountered at the end of January.

Also shown in Figure 3 is the ratio HNO3/NOy measured during the STREAM II project in February 1995 [Fischer et al., 1997] which yielded an averaged value of 69%. Although this pertains to measurements two years before the presently discussed data sets, in an environment presumably influenced by nitrification, the values fit rather well to the 1997 picture.

Correlations with N2O and O3

Figure 4 shows the volume mixing ratios of HNO3 and NOy as a function of N2O for both measurement campaigns. Linear regressions through the HNO3 data are represented by the solid

![Figure 4. HNO3 and NOy as a function of N2O. a): POLSTAR I; b): STREAM III. Only stratospheric data (N2O < 300 ppbv) are shown. The data points represent 5 minute averages. The error bars indicate the systematic uncertainty. Dotted line: NOy-N2O relationship measured during AASE II [Weinheimer et al., 1993]; dashed line: linear regression of NOy; solid line: linear regression of HNO3.](image)

Figure 5 gives HNO3 and NOy as a function of O3 for both campaigns. The dashed lines give the linear regressions to the NOy-O3 relationships, while the solid lines refer to HNO3. The functional relationships are:

POLSTAR I: \[\text{NOy} = 4.157 \times 10^{-3} \times \text{O}_3 + 0.264 \]

POLSTAR I: \[\text{HNO3} = 4.157 \times 10^{-3} \times \text{O}_3 + 0.264 \]

STREAM III: \[\text{NOy} = 3.833 \times 10^{-3} \times \text{O}_3 + 0.077 \]

STREAM III: \[\text{HNO3} = 1.793 \times 10^{-3} \times \text{O}_3 + 0.215 \]

All values are ppbv. Also shown, by the dotted line, is the relationship NOy/O3 measured in AASE II [Murphy et al., 1993]; dashed line: linear regression of NOy; solid line: linear regression of HNO3.
ratio NOy/O3 should be enhanced by the same value (about 2 ppbv at the highest O3 levels) as the NOy-N2O relationship. This finding is not consistent with the explanation in terms of denitrification.

The STREAM III data agree well with the AASE I data. However, there are also higher HNO3/O3 ratios reported in the literature: Weinheimer et al. [1993] report a ratio of HNO3 to O3 of about 5×10^-3 ppbv/ppbv, measured in AASE II in January and March 1992. This value is nearly identical to the POLSTAR I and the STREAM III measurements is about 30% at N2O < 275 ppbv, corresponding to about 1% per day. This value is comparable to measurements from 1993 [Brengman et al., 1997] and data deduced from ozonesonde measurements for 1997 [Kanudsen et al., 1998]. This O3 decrease does partly compensate the response of the observed NOy/O3 ratio to the NOy decrease between January and March, in a way that the ratio NOy/O3 does not change substantially.

Acknowledgments. We are grateful to the pilots and aircraft technicians of DLR and TU Delft and to the technicians of MPI-K, MPI-CH, and IMAU. JS wants to thank K.-H. Wohlfarth, M. Hanke, and M. de Reus for their support during the STREAM III measurement campaign. This work was funded by the Commission of the European Union (ENV4-CT95-0115) and the German Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie (BMDF).

References

Feigl, Ch., Construction and characterisation of a measuring system for NO, NO2, and NOy, Laboratory studies and measurements in the lower Arctic stratosphere, Ph.D. thesis, 177 pp., Ludwig-Maximilians-Universität München, DLR-Forschungsbericht 98-21, July 1998.

Fischer, H., et al., Observations of high concentrations of total reactive nitrogen (NOy) and nitric acid (HNO3) in the lower Arctic stratosphere during the STREAM II campaign in February 1995, J. Geophys. Res., 102, 23,559-23,571, 1997.

Mohler, O., and F. Arnold, Flow reactor and triple quadrupole mass spectrometer investigations of negative ion reactions involving nitric acid: Implications for atmospheric HNO3 detection by chemical ionization mass spectrometry, J. Atmos. Chem., 13, 33-61, 1991.

J. Schneider, Leibniz-Institut für Atmosphärenphysik, Schloßstr. 6, D-18225 Kühhlungsborn, Germany. (email: schneider@iap-kbo.mpg.de)

F. Arnold and J. Curtius, Atmospheric Physics Division, Max Planck Institute for Nuclear Physics, P.O. Box 103980, D-69029 Heidelberg, Germany. (email: f.arnold@mpi-hd.mpg.de, j.curtius@mpi-hd.mpg.de)

B. Sierau, Institut für Troposphärenforschung, Permoserstraße 15, D-04303 Leipzig, Germany. (email: sierau@tropos.de).

H. Fischer, P. Hoor, U. Parchatka, and Y. C. Zhang, Air Chemistry Department, Max Planck Institute for Chemistry, P.O. Box 3060, D-55020 Mainz, Germany. (email: hofe@mpch-mainz.mpg.de; hoor@mpch-mainz.mpg.de; up@mpch-mainz.mpg.de)

F. G. Wienhold, Fraunhofer-Institut für Physikalische Meßtechnik, Heidenhofstraße 8, D-79110 Freiburg, Germany. (email: wienhold@ipm.fhg.de)

Ch. Feigl, H. Schlager, and H. Ziereis, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der Atmosphäre, Oberpfaffenhofen, D-82234 Weilheim, Germany. (email: christian.feigl@dlr.de; hans.schlager@dlr.de; helmut.ziereis@dlr.de)

J. Lelieveld, H. A. Scheeren, Institute for Marine and Atmospheric Sciences Utrecht (IMAU), Princetonplein 5, NL-3584 CC Utrecht, The Netherlands. (email: j.lelietved@fys.ruu.nl; h.a.scheeren@fys.ruu.nl)

O. Bujok, Institut für Stratosphärische Chemie, Forschungszentrum Jülich, 52425 Jülich, Germany. (email: o.bujok@fz-juech.de)

(Rceived October 14, 1998, revised February 22, 1999; accepted February 25, 1999.)