A Diverse Family of Inositol 5-Phosphatases Playing a Role in Growth and Development in Dictyostelium discoideum*

Harriët M. Loovers, Kees Veenstra, Helena Snippet, Xavier Pesesse, Christophe Erneux, and Peter J. M. van Haastert

From the Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands and Institute of Interdisciplinary Research, Free University of Brussels, Campus Erasme, Building C, 808 Route de Lennik, B-1070 Brussels, Belgium

Inositol phosphate-containing molecules play an important role in a broad range of cellular processes. Inositol 5-phosphatases participate in the regulation of these signaling molecules. We have identified four inositol 5-phosphatases in Dictyostelium discoideum, Dd5P1-4, showing a high diversity in domain composition. Dd5P1 possesses only an inositol 5-phosphatase catalytic domain. An unique domain composition is present in Dd5P2 containing a RCC1-like domain. RCC1 has a seven-bladed propeller structure and interacts with G-proteins. Dd5P3 and Dd5P4 have a domain composition similar to human Synaptojanin with a Sac1 domain and OCRL with a RhoGAP domain, respectively. We have expressed the catalytic domains and show that these inositol 5-phosphatases have different substrate preferences. Single and double gene inactivation suggest a functional redundancy for Dd5P1, Dd5P2, and Dd5P3. Inactivation of the gene coding for Dd5P4 leads to defects in growth and development. These defects are restored by the expression of the complete protein but not by the 5-phosphatase catalytic domain.

Inositol phosphates play a role in a variety of eukaryotic cellular processes, including chemotaxis and membrane trafficking. They are regulated by a number of enzymes. The group of phosphatidylinositol 3-kinases (PI3K) phosphorylates the lipid substrates PI, PI(4)P, and PI(4,5)P2 at the 3-position of the inositol ring (1). The lipid product PI(3,4,5)P3 has been strongly implicated to be important in chemotaxis in neutrophils and fibroblasts (2, 3). PTEN, identified as a tumor suppressor gene (4), reverses the action of PI3K by dephosphorylation of PI(3,4,5)P3 and PI(3,4)P2 at the 3-position (5).

Another group of enzymes, the inositol 5-phosphatases, can remove the phosphate group at the 5-position of the inositol ring (6–8). The importance of inositol 5-phosphatase activity in PI(3,4,5)P3 regulation is demonstrated by SHIP1. In stimulated B-cells, SHIP1 accounts for the major phosphatase activity toward PI(3,4,5)P3, and inactivation of SHIP1 leads to an increased and prolonged PI(3,4,5)P3 production (9). Other inositol 5-phosphatases have been shown to play important roles in a number of cellular processes. Mutations in the inositol 5-phosphatase OCRL are responsible for Lowe syndrome in human (10), and deletion of the presynaptic inositol 5-phosphatase Synaptotagmin leads to neurological abnormalities and early death of mice (11).

In the social amoeba, Dictyostelium discoideum chemotaxis toward folic acid and cAMP is an essential strategy for survival (12). Several observations suggest that phosphatidylinositol phosphates mediate chemotaxis and, in particular, the localization of the signal inside D. discoideum cells. The PH domains of a number of proteins involved in chemotaxis, including CRAC, Akt/PKB, and PhdA, have been shown to transiently localize at the leading edge of cells moving in a chemotactic gradient (13–15). As these PH domains bind to PI(3,4,5)P3 and PI(3,4)P2, an asymmetric lipid distribution is implicated by these observations. In pi3k1/2-null cells, a strain with two putative PI3Ks inactivated (16), the transient localization of PhdA cannot be long observed and cells show reduced chemotaxis (15). On the other hand, in PTEN-null cells, a strain in which a putative 3-phosphatase is inactivated, the localization of PH-domains is prolonged and broadened and chemotaxis is also reduced (17, 18). Inositol 5-phosphatases may play an important role in the regulation of the phosphoinositides. As this group of enzymes leads to the degradation of PI(3,4,5)P3 and at the same time formation of PI(3,4)P2, another PH-binding molecule, they can be central players in the metabolic route of these signaling molecules.

Phosphoinositides have also been implicated in endocytosis in D. discoideum. Pi3k1/2-null cells are affected with respect to pinocytosis (19), suggesting a role for PI(3,4,5)P3 in this process. The inhibitors of phospholipase C, an enzyme converting PI(4,5)P2 into Ins(1,4,5)P3 and diacylglycerol, reduce the rate of phagocytosis (20, 21). Because inositol 5-phosphatases can act on PI(4,5)P2, PI(3,4,5)P3, and Ins(1,4,5)P3, they are probably important in the endocytic pathway.

To investigate the role of inositol 5-phosphatases in chemotaxis and endocytosis, we cloned and characterized four D. discoideum inositol 5-phosphatases. Catalytic activity was determined, indicating that they act as inositol 5-phosphatases. Single and double gene disruptants were obtained and growth, chemotaxis, and development were studied in these knockout strains.
EXPERIMENTAL PROCEDURES

Identification and Sequence Analysis—The first putative inositol 5-phosphatase sequence was obtained using degenerated primers complemented to the conserved motifs I and II found in inositol 5-phosphatases (see “Results”), and the PCR product was used to screen a cDNA library kindly provided by Dr. R. A. Fietel. The *D. discoideum* genomic (www.sdsc.edu/mpd/dicty) and cDNA databases (www.csm.biol.tsukuba.ac.jp) were screened for other putative inositol 5-phosphatases using either the conserved motif I or II. Using Sequan from Lisanov, sequences were aligned and contigs were formed. Additional sequences were obtained by screening a cDNA library, kindly provided by Dr. R. H. Gomer, with a PCR fragment containing part of the catalytic domain (used primers: Dd5P2: 5PS2S1 + 5PS2R1; Dd5P3: 5PS5S1 + 5PS5R1; and Dd5P4: 5PS4S1 + 5PS4R1, see “Appendix A”). The longest clones obtained for Dd5P3 (4212 bp) and Dd5P4 (2795 bp) encode the complete open reading frame of 1377 and 787 amino acids, respectively. For Dd5P2, the longest clone only encoded for the amino acids 1–599. In combination with data from the genomic data base, a complete open reading frame of 1794 amino acids was constructed. The longest clone obtained for Dd5P1 encodes for amino acids 118–678; the missing part of the 5‘-open reading frame was obtained from the data base. A comparison of the sequence obtained from cDNA clones with the genomic data base sequences revealed the presence of one intron in each inositol 5-phosphatase gene (Dd5P1: nucleotides 397–499; Dd5P2: nucleotides 53–187; Dd5P3: nucleotides 241–384; and Dd5P4: nucleotides 1357–1622) (GenBank™ accession numbers AY184992, AY184993, AY184994, and AY184995, respectively). BLAST, Smart, Pfam, and Expasy programs were used to analyze the obtained sequences. Alignments were made using ClustalW2 (www.ebi.ac.uk/Tools/clustalw2) followed by optimization using Gomter, with a PCR fragment containing part of the catalytic domain of the enzyme was added to the reaction mixture (50 mM HEPES, pH 7.4, 2 mM MgCl2, 4 mM dithiothreitol, 1 mg/ml bovine serum albumin), and the reaction was stopped and lipids were extracted.

Strains and Growth Conditions—The first putative inositol 5-phosphatase in *D. discoideum* was identified by performing a PCR with degenerated primers using either the conserved motif I or II. Using Seqman from Lasergene (DNAstar), contigs were formed. Additional sequences were obtained by screening the cDNA database, complete sequences were obtained from cDNA libraries of *D. discoideum* (see “Appendix A”) and the universal T7 primer with cDNA as template. The PCR product was digested with BamHI and cloned into the pRSETB plasmid. The insert was sequenced and cloned into the pBlud site of pRSETB. The insert was sequenced and cloned into the RhoGAP domain was obtained by PCR using primer OE4GAPl (see “Appendix A”) and the universal T7 primer with cDNA as template. The PCR product was digested with BamHI and cloned into the pBlud site of pRSETB. The insert sequence was used for screening the isolated cDNA libraries.

Activity Measurements—Activity toward Ins(1,4,5)P3 and Ins(1,3,4,5)P4 was determined as described previously (23). 5 μl (diluted of enzyme) was added to the reaction mixture (50 mM HEPES, pH 7.4, 2 mM MgCl2, 48 mM β-mercaptoethanol, 1 mg/ml bovine serum albumin), containing either 100 μM Ins(1,4,5)P3, 10 μM Ins(1,3,4,5)P4, or 10 μM Ins(1,3,4,5)P4 and 10 μM Ins(1,3,4,5)P4 and 10 μM Ins(1,3,4,5)P4. After 15 min of incubation the reaction was stopped and the products were separated on Dowex columns. Activity toward PI(4,5)P2 and PI(3,4,5)P3 was determined as described previously (24). 50 μg of phosphatidyl serine and 10 μg of *[32P]PI(3,4,5)P3* (see below for preparation method) or 20 μg of phosphatidyl serine and 10 μg of *[32P]PI(3,4,5)P3* (see below for preparation method) or 20 μg of phosphatidyl serine and 10 μg of *[32P]PI(3,4,5)P3* were resuspended in 50 μl of 50 mM Tris-HCl, pH 7.4. Vesicles were formed by sonication, and 1 μl of each sample was loaded on the gel. Activity toward PI(4,5)P2 and PI(3,4,5)P3 was determined as described previously (25). 50 μg of phosphatidyl serine and 10 μg of *[32P]PI(3,4,5)P3* were prepared by making vesicles containing 50 μg of phosphatidyl serine and 100 μg of phosphatidyl serine and incubation with PI3K (purified from baculovirus using an expression vector kindly provided by B. Vanhaesebroeck (25) and 70 μCi [γ-32P]ATP (3000 Ci/mmol) in reaction buffer (50 mM Tris-HCl, pH 7.4, 1.5 mM dithiothreitol, 100 mM NaCl, 0.5 mM EDTA, 5 mM MgCl2, 100 μM ATP). After 30 min, the reaction was stopped and the products were extracted. Lipids were separated by TLC and visualized by exposure to film or Phosphor-Imager. The case of the PI(4,5)P2 assay, the spots were visualized using a Flourescence spray (Perkin Elmer Life Sciences) and scraped from the plates (Silica Gel 60, Merck) and radioactivity was measured.

RESULTS

Identification of Four Inositol 5-Phosphatase in *D. discoideum*—The first potential inositol 5-phosphatase in *D. discoideum* was identified by performing a PCR with degenerated primers. The obtained PCR product was used as probe for cDNA library screening. The gene found using this method was called Dd5P1 (*D. discoideum* 5-phosphatase 1) and codes for a protein of 678 amino acids (see “Appendix B”). To identify other putative inositol 5-phosphatases in *D. discoideum*, we searched the *D. discoideum* database for sequences showing homology to the conserved motifs I and II, WXGDXXN/Y/F/R and P/A/S/W/C/T/DR/I/V/L, respectively, which are characteristic for inositol 5-phosphatases (6). Using the partial sequence obtained from the data base, complete sequences were obtained from cDNA library screens. Three putative inositol 5-phosphatases were identified (see “Appendix B”), coding for proteins consisting of...
Inositol 5-Phosphatases in D. discoideum

The other two inositol 5-phosphatases identified in D. discoideum are homologous to human inositol 5-phosphatases. Dd5P3 resembles the synaptojanin-like proteins found in both human and yeast with the highest BLAST score of the catalytic domain with that of INP5b from fission yeast (37% identity, 59% similarity) (34). Similar to human Synaptojanin and yeast INP5p, Dd5P3 has a SacI-like domain including the conserved RXNCXCDRTNT motif (35) in front of the inositol 5-phosphatase domain (see “Appendix E”). The SacI domains of Synaptojanin and INP5b have been shown to remove the phosphate group of PI(4)P, PI(3)P, and at a low rate, both phosphates of PI(3,5)P2 (36). The long C-terminal part of Dd5P3 does not have any homology with known domains and consists of poly(Q) and poly(N) repeats.

Dd5P4 is homologous to human OCRL (10) and INPP5b (37, 38), consisting of a inositol 5-phosphatase domain followed by a RhOGAP domain (see “Appendix F”). The catalytic domain has the highest BLAST score with the catalytic domain of human INP5b (44% identity, 60% similarity). RhOGAP domains are known to catalyze the GTPase activity of Rho proteins. The crystal structure of human RhOGAP has been solved indicating a role for two conserved amino acids, Arg-85-hOGAP and Asn-194-hOGAP, and Asn-194-hOGAP in GAP-activated GTP hydrolysis (39). The role of these amino acids is supported by mutational analysis (39, 40). Mutational analysis has also shown that the conserved Arg is not predominantly involved in the binding of Rho proteins (40). In Dd5P4, the Arg and the Asn are substituted by an Ile and Gln, respectively. This observation may suggest that Dd5P4 does not exhibit high RhOGAP activity, but may still bind Rho proteins.

Different Transcription Levels during Development—To determine the transcription levels of the D. discoideum inositol 5-phosphatases, Northern blot analysis was performed. Very low transcription levels were observed for the four inositol 5-phosphatases in all stages of the D. discoideum life cycle (Fig. 3). Dd5P1 and Dd5P3 were equally transcribed in all stages with the exception of the even lower transcription of Dd5P3 in the vegetative stage. The levels of transcription of Dd5P2 were higher during aggregation than during growth and multicellular development. The transcription of Dd5P4 was relatively high during growth, decreased during aggregation, and returned to almost vegetative levels in the multicellular stages. Furthermore, a smaller transcript of 2.5 kilobases was observed in the multicellular stages.

Activity toward Soluble and Lipid Substrates of D. discoideum Inositol 5-Phosphatases—To determine whether the four putative inositol 5-phosphatases identified in D. discoideum can function as inositol 5-phosphatases, the catalytic activity and specificity of the inositol 5-phosphatase domains were studied in vitro. The catalytic domains were expressed as His tag fusion proteins in E. coli and purified. The protein of the expected size could be detected by Western blot analysis for Dd5P3-3 (Fig. 4). The Western blot analysis performed for Dd5P4 showed a band at a higher position than expected (62 instead of 55 kDa), but the purified protein did show inositol 5-phosphatase activity. Unfortunately, because of the very low expression levels obtained for the catalytic domain of Dd5P1, no activity could be determined for this protein.

The purified catalytic domains of Dd5P2, Dd5P3, and Dd5P4 were incubated with the phospholipids PI(4,5)P2 and PI(3,4,5)P3 and the water-soluble inositol phosphates Ins(1,4,5)P3 and Ins(1,3,4,5)P4. Substrate degradation was quantified using thin-layer chromatography for the phospholipids and ion-exchange chromatography for the water-soluble inositol phosphates. The results are summarized in Fig. 5 demonstrating good degradation of PI(4,5)P2 by all inositol 5-phosphatases,
Ins(1,4,5)P₃ is best degraded by Dd5P₁ whereas Dd5P₂, Dd5P₃, and Dd5P₄, human OCRL (AAAS9964), SHIP2 (O15357), yeast SPsynaptojanin (SPsynj, 1I9Y_A), and INP5₂p (NP_014293) are shown in black (100% identity) or gray (80–100% identity). Asterisks in the top row indicate amino acids interacting with a metal ion, and open circles indicate amino acids directly interacting with inositol phosphates.

whereas PI₃,₄,₅P₃ is degraded predominantly by Dd5P₂ and also by Dd5P₄ but not by Dd5P₃. Good degradation of the water-soluble inositol phosphates Ins(1,4,5)P₃ and Ins(1,3,4,5)P₄ is observed for Dd5P₂, Dd5P₃, and Dd5P₄, showing the best degradation of Ins(1,4,5)P₃ by Dd5P₃, whereas Ins(1,3,4,5)P₄ is best degraded by Dd5P₂ (Fig. 5C). Comparing the activity of the four enzymes for each substrate indicates the relatively preferred substrates (Table I). The protein with the highest activity toward Ins(1,4,5)P₃ is the catalytic domain of Dd5P₃. This protein, compared with the other proteins, is poor in dephosphorylation of lipid-soluble substrates. This substrate specificity is almost opposite to the specificity of the homologue INP5₁p, which degrades PI(4,5)P₂ but does not hydrolyze Ins(1,4,5)P₃. Dd5P₂, in contrast, is a very good PI(3,4,5)P₃- and PI₃,₄,₅P₃-metabolizing enzyme.

Gene Inactivation Leads to Defects in Growth and Development—Upon starvation, D. discoideum wild-type cells show chemotaxis toward the cAMP secreted by other starving cells. The formed aggregate develops into a migrating slug or fruiting body. The spores of the fruiting body are resistant to severe conditions and mature into single amoeba under better conditions. To get an indication of the function of inositol 5-phosphatases in D. discoideum, the four identified inositol 5-phosphatases genes have been knocked out. The effect of gene inactivation on chemotaxis has been investigated by determining the response of cells toward different cAMP concentrations using the small-droplet chemotaxis assay. Single gene inactivation of either Dd5P₃ or Dd5P₄ or double gene inactivation of Dd5P₂ and Dd5P₃ (Dd5P₂/Dd5P₃) did not negatively affect chemotaxis, whereas single disruption of Dd5P₁ or Dd5P₂ slightly improved chemotaxis (Fig. 6). Also, the double disruption of either Dd5P₁ and Dd5P₂ (Dd5P₂/Dd5P₃) or Dd5P₁ and Dd5P₃ (Dd5P₁/Dd5P₃) resulted in slightly improved chemotaxis. Growth and development of the cells were also studied. The single gene inactivation of Dd5P₁, Dd5P₂, or Dd5P₃ did not result in any observable difference in growth rate in axenic medium or on bacterial lawns (data not shown). The single disruptants Dd5P₁, Dd5P₂, and Dd5P₃ were deposited on non-nutrient agar plates or grown on bacterial lawns to study the development of the cells. Aggregation of the cells proceeded at a rate
Inositol 5-Phosphatases in D. discoideum

The single disruption of Dd5P4 knock-out strains (Dd5P4−/−) did not restore any of the defects. As can be seen in Fig. 7, growth rate on bacterial lawns was affected as well. Overexpression of Dd5P4 lead to the formation of multiple-tipped aggregates (Fig. 8).

TABLE I

Substrate specificity of Dd5P1–4 towards different substrates

<table>
<thead>
<tr>
<th>Enzymes</th>
<th>Relative activity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ins(1,4,5)P3</td>
</tr>
<tr>
<td>Dd5P1</td>
<td>ND</td>
</tr>
<tr>
<td>Dd5P2</td>
<td>+</td>
</tr>
<tr>
<td>Dd5P3</td>
<td>+++</td>
</tr>
<tr>
<td>Dd5P4</td>
<td>+</td>
</tr>
</tbody>
</table>

comparable to wild-type cells. Slug formation was also normal as well as the formation of fruiting bodies. The spores that were formed were viable (data not shown). Also, Dd5P1/2−, Dd5P1/3−, or Dd5P2/3− cells showed no defect in growth or development.

The single disruption of Dd5P4 did affect growth and development. The growth rate in axenic medium was significantly lower for Dd5P4 cells compared with wild-type AX3 cells (Fig. 7). Whereas the doubling time of wild-type cells is ~15 h in shaking culture, the doubling time of Dd5P4-deficient cells is 41 h. The growth rate on bacterial lawns was affected as well for Dd5P4− cells. Amoeba were deposited on a bacterial lawn and incubated at 22 °C. Approximately 90% wild-type amoeba formed visible plaques within 4 days, whereas <1% Dd5P4− cells formed visible plaques after 9 days. The development of the Dd5P4 cells when grown on bacterial lawns was affected as well. The inactivation of Dd5P4 lead to the formation of multiple-tipped aggregates (Fig. 8).

DISCUSSION

The implicated role of phosphoinositide molecules in signal localization has lead to an increased interest in metabolizing enzymes such as inositol 5-phosphatases. The amount of data on mammalian inositol 5-phosphatases has expanded rapidly over the last few years, showing important functions for inositol 5-phosphatases in several processes.

Human inositol 5-phosphatases are divided in two groups. Type I inositol 5-phosphatases only convert the water-soluble substrates Ins(1,4,5)P3 and Ins(1,3,4,5)P4. They do not convert lipid substrates. Type II inositol 5-phosphatases do convert phosphoinositides (e.g. PI(4,5)P2 and PI(3,4,5)P3), and in most cases, they also convert water-soluble substrates. The insertions present in Type I enzymes may prevent the enzymes from binding to the membrane surface, which may explain the differences in substrate specificity between Types I and II inositol.
5-phosphatases (28). The insertions present in Type I inositol 5-phosphatases are not present in either one of the
D. discoideum inositol 5-phosphatases. As expected by this sequence analysis, the D. discoideum 5-phosphatases Dd5P2, Dd5P3, and Dd5P4 catalyze the dephosphorylation of both water-soluble and lipid substrates, which classify them as Type II inositol 5-phosphatases. The D. discoideum genome has been sequenced to near completion, making it unlikely that more inositol 5-phosphatases containing the motifs WXGDXXN/Y/F/R and P/A/S/W/C/T/DR/I/V/L are present. Therefore, probably no Type I and only four Type II inositol 5-phosphatases are present in D. discoideum.

Type II inositol 5-phosphatases can be divided in three subgroups on the basis of domain composition. SHIP1 represents the group of SH2 domain containing inositol 5-phosphatases Synaptotagmin, the Sac1 domain containing enzymes, and OCRL, the RhoGAP domain containing inositol 5-phosphatases (Fig. 1). Mammals contain all three groups of proteins. Six non-mammalian organisms containing putative inositol 5-phosphatases have been sequenced completely so far. The metazoans C. elegans and D. melanogaster lack inositol 5-phosphatases containing a SH2 domain, but both contain one Synaptotagmin-like protein (441) and Q9W296, respectively) and one OCRL-like protein (O17590 and O46049, respectively). The diversity in the plant Arabidopsis thaliana, the yeast strains Saccharomyces cerevisiae and Schizosaccharomyces pombe, and the microsporidia Encephalitozoon cuniculi is even less. The inositol 5-phosphatases of A. thaliana contain only WD40 repeats as additional domains (e.g. Q8SKB7 and O80560), whereas in yeast only Synaptotagmin-like proteins are present (28, 34). The one inositol 5-phosphatase of E. cuniculi (CAD25856) only contains the inositol 5-phosphatase catalytic domain. In prokaryotes, no inositol 5-phosphatases have been identified.

The four inositol 5-phosphatases in D. discoideum show a high diversity in domain composition compared with the evolutionary position of this organism between plants and yeast. A homologue of OCRL (Dd5P4) and a homologue of Synaptotagmin (Dd5P3) were identified. Also, a unique combination of a RCC1-like domain in front of the inositol 5-phosphatase domain was identified (Dd5P2). This combination of domains has not been found in any other protein reported or present in the GenBank™ so far.

Knock-out strains with one or a combination of two inactive genes for Dd5P1, Dd5P2, and Dd5P3 show no defects in growth and development, suggesting a redundancy among these proteins. Chemotaxis toward cAMP is similar or slightly improved in all of the inositol 5-phosphatase knock-out cell lines compared with wild type. Recently, it has been shown that the 3-phosphatase PTEN is the major PI(3,4,5)P3/PI(3,4)P2-degrading enzyme. It has been suggested that inositol 5-phosphatases add an addition layer of regulation of these molecules, fine-tuning the chemotactic signal (42). Our results support the role of the group of inositol 5-phosphatases as a minor negative regulator of chemotaxis in D. discoideum. It will be interesting to study the effects of either overexpression or inactivation of the inositol 5-phosphatases in a PTEN-null background.

Inactivation of Dd5P4 resulted in defects in growth and development. The reduced growth rate, either in axenic culture or grown on bacterial plates, suggests a role for Dd5P4 in endocytosis. Development is also affected as the cells form multiple-tipped aggregates. The relative high transcription levels of Dd5P4 at vegetative and multicellular stages support the role of Dd5P4 in growth and development. Knock-out strains of PI3K1 + 2 are defective in chemotaxis, growth, and development (15, 16). The cells grow slowly on bacterial lawns and in axenic medium and form multiple-tipped aggregates resembling the phenotype of Dd5P4. No enzyme activity measurements have been reported for the PI3K in D. discoideum, but they have been suggested to catalyze the formation of PI(3)P, PI(3,4)P2, and PI(3,4,5)P3 on basis of sequence homology. Our results support a role for PI(3,4,5)P3 and or PI(3,4)P2 in growth and development; Dd5P4 regulates the levels of these phospholipids by degradation of PI(3,4,5)P3 and production of PI(3,4)P2. On the other hand, the effect of inactivation of Dd5P4 could also be assigned to its action on either PIP(4,5)P2 or Ins(1,4,5)P3, two signaling molecules also implicated in endocytosis (20, 21). In addition, the RhoGAP domain could be responsible for the function of Dd5P4 in endocytosis. Rho proteins have been shown to play a role in both development and growth. The defects in growth and development of Dd5P4+ cells can be rescued by overexpression of the full-length protein. These defects can not be restored by transfection of D. discoideum cells with an expression vector containing either the inositol 5-phosphatase catalytic domain or the RhoGAP domain. Although we can not exclude that the domains are not properly expressed or folded, the fact that the inositol 5-phosphatase catalytic domain expressed in E. coli is catalytically active would suggest that inositol 5-phosphatase activity is not sufficient to restore the defects of Dd5P4+ cells. It is possible that the RhoGAP and inositol 5-phosphatase catalytic domain act together to perform its function in growth. The binding of a Rho protein to the RhoGAP domain could affect the inositol 5-phosphatase activity. This would lead to a direct interaction between the Rho and phosphoinositide pathways. It would be interesting to see if and which Rho protein binds to the GAP domain of Dd5P4.

Acknowledgements—We are indebted to all of the teams involved in the Dictyostelium sequencing projects. We thank L. Dryer and H. Otsuka for their contribution in cloning and analyzing Dd5P1.
REFERENCES