A Systematic Study on the Synthesis of n-Butyl Substituted 8-Aminoquinolines
Koseoglu, Ahmet; Gul, Turan; Acar, Ali Ersin

Published in: Journal of Heterocyclic Chemistry

DOI:
10.1002/jhet.2399

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2016

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

Download date: 17-09-2023
A systematic study on the synthesis of 8-aminoquinoline derivatives with an n-butyl group at each alternate position of the quinoline ring was carried out. Skraup Reaction and its Doebner–von Miller variation were used to obtain most of the quinoline ring except for the 2-butyl-8-aminoquinolines and 4-butyl-8-aminoquinolines where the commercially available methylquinoline derivatives were used as precursors. The structures of the synthesized compounds were characterized by FTIR, 1H-NMR, COSY, 13C-NMR and HRMS spectra.

INTRODUCTION

Quinolines are key intermediates to important groups of compounds such as drugs [1–6], dyes [7], polymers [8–10] and fluorophores [11,12]. They have found uses in medicine such as antimalarial [13] and anticancer drugs [14]. The amino-substituted quinolines are found both in natural products and synthetically prepared drugs. The 8-aminoquinoline primaquine [5] and the 4-aminoquinoline chloroquine [6] are examples to such aminoquinoline drugs. Owing to this wide area of application, synthesis of aminoquinolines is especially of great importance.

Substituted quinolines can provide the diversity necessary to build libraries of compounds whose members can exhibit different biological effects. Compared with their naphthalene bioisosteres, which are similar in size, quinolines can bear on many different R groups on different positions thanks to the diverse chemistries that can be used. The substitution on the quinoline ring can be introduced in the pre-cyclization or post-cyclization steps [15–21]. This aspect of the quinoline chemistry makes it possible to explore structure-activity relationships (SAR) broadly and construct bigger libraries of compounds in the drug researches. In such an effort, we became interested in the synthesis of 8-aminoquinolines with a butyl substituent where the position of the butyl group was subject to change.

Many examples can be found in literature on the syntheses of substituted quinolines [19–25], but there has been no
systematic study on the syntheses of (monoalkyl)-8-aminoquinolines substituted at each alternate position of the quinoline ring. In this manuscript, a systematic study on the synthesis of 8-aminoquinoline derivatives with an \(n \)-butyl group at each alternate position of the quinoline ring is presented.

RESULTS AND DISCUSSION

As a general approach, Skraup Reaction and its Doebner–von Miller variation were used to obtain the quinoline ring except for the 2-butyl-8-aminoquinolines and 4-butyl-8-aminoquinolines, where the commercially available methyl quinoline derivatives were used as precursors.

Syntheses of 8-amino-2-butylquinoline (4) and 8-amino-4-butylquinoline (8). Compounds 4 and 8 were synthesized starting from 2-methylquinoline and 4-methylquinoline, respectively (Schemes 1 and 2). When the methyl group is on the positions 2- and 4- on the quinoline ring, its protons are acidic enough to be abstracted by a strong base, and the resulting carbanion is prone to electrophilic attack. Thus, syntheses of 2-butylquinoline 1 and 4-butylquinoline 5 were accomplished by the chain extension of 2-methylquinoline (quinaldine) and 4-methylquinoline (lepidine), respectively, using LDA and 1-iodopropane. Nitration of 2 and 7 each gave both 8-nitro and 5-nitro isomers. After the separation of the isomers, the subsequent reduction of 2-butyl-8-nitroquinoline 2 and 4-butyl-8-nitroquinoline 6 by SnCl\(_2\cdot\)2H\(_2\)O/NaBH\(_4\) gave 4 and 8.
Synthesis of 8-amino-3-butylquinoline (11). Compound 11 was synthesized starting from 2-methylenehexanal and 2-nitroaniline by Doebner–von Miller variation of Skraup Reaction (Scheme 3). Both of the quinoline substituents, the nitro group and the butyl group, were simultaneously introduced during the ring formation. Hexanal was treated with 37% aqueous formaldehyde and dimethylamine hydrochloride to give 2-methylenehexanal 9. The next step involved the cyclization of 9 and 2-nitroaniline to obtain the 3-butyl-8-nitroquinoline 10, which was then reduced by SnCl₂/NaBH₄ to give the desired product 11.

Syntheses of 8-amino-5-butylquinoline (22) and 8-amino-7-butylquinoline (23). The syntheses of 22 and 23 started by the cyclization of butyl anilines to corresponding butyl quinolines using the Skraup reaction, where the position of the butyl group on the aniline ring dictated its final position on the 8-aminoquinoline (Scheme 4). The route to 8-amino-5-butylquinoline 22 and 8-amino-7-butylquinoline 23 begins with the multi-step synthesis of 3-butylaniline 16 from the commercially available 4-butylaniline. 4-Butylaniline was first protected by acetylation. After the standard nitrination and the...
The removal of the bromine substituent to give the nitro group to the amino group resulted in simultaneous butylation of the starting from 4-butylaniline. However, the nitration of 6-butylquinoline was synthesized by Skraup method starting from 2-butylaniline. The crude products were subjected to column chromatography, but the products were inseparable. In order to elucidate the structures of 17 and 18, a small portion of the mixture was separated by thin layer chromatography on silica plates. However, the next reaction was continued with the nitration step where the mixture of the two isomers 17 and 18 was used directly. The nitration reaction gave a mixture of 5-bromo-6-butylquinoline 24 and 7-bromo-8-butylquinoline 25, which were successfully separated by column chromatography using silica and hexane/dichloromethane (3/1) mixture as the eluent. The subsequent reductions of 20 and 21 gave 8-amino-5-butylquinoline 22 and 8-amino-7-butylquinoline 23, respectively.

Synthesis of 8-amino-6-butylquinoline (30). The synthesis of 30 was initially designed as shown in Scheme 5 where the 6-butylquinoline 24 was synthesized by Skraup method starting from 4-butaniline. However, the nitration of 6-butylquinoline 24 did not give the desired 8-nitro isomer 30. Instead, it led to the exclusive formation of 6-butyl-5-nitroquinoline 25. Therefore, a different strategy was used to produce 8-amino-6-butylquinoline 30 (Scheme 6) [25]. Because the 5th position of 24 is the most reactive for the nucleophilic aromatic substitution reaction, it was first blocked by bromination with N-bromosuccinimide to give a mixture of 5-bromo-6-butylquinoline 27 and 5,8-dibromo-6-butylquinoline 28. After the necessary separation, the nitration of 27 gave 5-bromo-6-butyl-8-nitroquinoline 29 as the only product. The standard reduction procedure with SnCl2·2H2O/NaBH4 to reduce the nitro group to the amino group resulted in simultaneous removal of the bromine substituent to give the final product 30.

CONCLUSION

In summary, we presented the syntheses of 8-aminoquinolines with an n-butyl group in all possible positions. The methods employed in this work can be used to introduce a variety of alkyl groups to the core aminoquinoline ring. The systematic syntheses of such compounds might be useful in building libraries of compounds with potential biological activity.

EXPERIMENTAL

General. The starting materials and reagents were purchased from Aldrich. Melting points were determined on Stuart SMP11 melting point apparatus (Bibby Scientific Limited, Staffordshire, UK). Fourier Transform Infrared Spectroscopy (FTIR) characterizations were performed on a Thermo Nicolet 380 FT-IR equipped with Smart Orbit diamond ATR accessory. Analytical Chromatography was performed on silica gel 60F254 TLC plates. 1H-NMR and 13C-NMR spectra were obtained by using electrospray ionization (ESI) with Micro-TOF; m/z values are reported.

2-butylquinoline (1) [21]. In order to prepare the lithium diisopropylamide (LDA) solution, in a 25-mL flask equipped with a magnetic stirrer, diisopropylamine (1.83 mL, 13.1 mmol) was dissolved in 12 mL dry THF under N2 at –78°C. To this solution, 2.5 M n-butLi in hexane (5.68 mL, 14.2 mmol) was added, and the mixture was warmed to 0°C in 30 min. Then, the mixture was cooled to –78°C. In order to form the carbantion, 40 mL dry THF was put into a 250-mL round-bottom flask with a magnetic stirrer. To this solution, quinaldine (1.49 mL, 11 mmol) was added under N2 at –78°C. The prepared LDA solution was added to this solution at –78°C. The color of the solution changed to dark orange. This mixture was kept at –78°C for 2.5 h. Isopropanol (1.39 mL, 14.2 mmol) was then added dropwise to this mixture at –78°C under N2, and this mixture was kept at –78°C for 3 h. The resulting mixture was allowed to warm up to room temperature overnight. The color of the solution turned to light orange. The reaction was then quenched with saturated 20 mL NH4Cl.
and extracted with 3 × 50 mL ethyl acetate. The combined organic layers were washed with water and brine, dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The product was further purified by column chromatography using silica gel as the packing material and ethyl acetate as the mobile phase. After evaporation of the solvent, a yellow viscous liquid was obtained, 0.96 g (47%); FTIR (ν, cm⁻¹): 3468, 3371, 2929, 2856, 1526, 1465, 1345, 1063, 959, 852, 767; ¹H-NMR (CDCl₃), δ: 0.88 (t, 3H, J = 7.6 Hz), 1.32 (m, 2H), 1.74 (m, 2H), 2.97 (t, 2H, J = 8.0 Hz), 7.39 (d, 1H, J = 8.0 Hz), 7.50 (t, 1H, J = 8.0, 7.6 Hz), 7.91 (dd, 1H, J = 8.4, 7.2 Hz), 8.09 (d, 1H, J = 8.8 Hz) ppm; ¹³C-NMR (CDCl₃), δ: 13.87, 22.45, 31.07, 38.83, 123.01, 123.20, 124.13, 127.57, 131.26, 135.66, 139.17, 148.00, 165.84 ppm; HRMS (ESI): (m/z) calcd. for C₁₃H₁₅N₂O₂ [M + H]⁺: 253.0953, found: 253.0932.

8-amino-2-butylinoline (4) [27]. The experiment was carried out under N₂ atmosphere. 2-butylinoline-8-nitroquinoline 2 (1.38 g, 6.1 mmol) was dissolved in 10 mL ethanol. Stannous chloride dihydrate (2.73 g, 10.8 mmol) was added to this solution. The color of the solution turned to yellow orange. This mixture was refluxed at 60°C for 1.5 h. NaBH₄ (0.065 mg, 0.0016 mmol) was used as a reducing agent and the mixture was concentrated under reduced pressure for an additional hour. The reaction mixture was made alkaline with 5–6 mL 40% aqueous NaOH. The color of the mixture changed to gray. Reaction mixture was extracted with 3 × 50 mL diethyl ether. The combined organic phases were dried over CaCl₂ and the solvent was evaporated under reduced pressure. The product was purified by distillation at 70°C/40 mmHg to afford the pure colorless oil, 8.90 g (79%); FTIR (v, cm⁻¹): 3367, 2956, 2931, 2872, 1712, 1592, 1465, 1379, 1093, 960, 731; ¹H-NMR (CDCl₃), δ: 0.97 (t, 3H, J = 7.6 Hz), 1.23 (m, 2H), 1.37 (m, 2H), 2.18 (t, 2H), 5.91 (s, 1H), 6.17 (s, 1H), 9.45 (s, 1H) ppm; HRMS (ESI): (m/z) calcd. for C₁₃H₁₂O [M + H]⁺: 113.0966, found: 113.0968.

2-methylhexanal (9) [28]. A mixture of hexanal (12 mL, 0.10 mol), dimethylamino hydrochloride (9.85 g, 0.12 mol) and 37% aqueous formaldehyde (9 mL, 0.12 mol) were stirred at 70°C for 20 h. The aqueous phase was separated and extracted with 3 × 50 mL diethyl ether. The combined organic phases were dried over CaCl₂, and the solvent was evaporated under reduced pressure. The product was purified by distillation at 70°C/40 mmHg to afford the pure colorless oil, 8.90 g (79%); FTIR (v, cm⁻¹): 3367, 2956, 2931, 2872, 1712, 1592, 1465, 1379, 1093, 960, 731; ¹H-NMR (CDCl₃), δ: 0.97 (t, 3H, J = 7.6 Hz), 1.23 (m, 2H), 1.37 (m, 2H), 2.18 (t, 2H), 5.91 (s, 1H), 6.17 (s, 1H), 9.45 (s, 1H) ppm; HRMS (ESI): (m/z) calcd. for C₁₃H₁₂O [M + H]⁺: 113.0966, found: 113.0968.
NMR (CDCl₃), δ: 0.94 (t, 3H, J = 7.2 Hz), 1.39 (m, 2H), 1.78 (m, 2H), 2.97 (t, 2H, J = 8.0 Hz), 7.39 (d, 1H, J = 8.8 Hz), 7.50 (t, 1H, J = 8.0, 7.6 Hz), 7.91 (dd, 1H, J = 8.0, 7.6 Hz), 2.97 (t, 2H, J = 6.4, 1.2 Hz), 8.09 (d, 1H, J = 8.8 Hz) ppm; ¹³C-NMR (CDCl₃), δ: 13.94, 22.64, 32.01, 32.20, 122.35, 124.81, 127.62, 128.60, 139.68, 149.20, 152.22 ppm; HRMS (ESI): (m/z) calcd. for C₁₃H₁₇N₂ [M + H⁺]: 231.1134, found: 231.1107.

A. Koseoglu, T. Gul, and A. E. Acar
Journal of Heterocyclic Chemistry DOI 10.1002/jhet
Vol 53

1-butyl-3-nitrobenzene (15) [32]. In a 50 mL round-bottom flask, 14 (0.767 g, 3.25 mmol) was dissolved in 15 mL acetic acid. To this solution, 6.5 g ice was added, and the resulting suspension was cooled to 0°C. A solution of sodium nitrite (0.246 g, 3.58 mmol) in water (1 mL) was added dropwise, and the reaction mixture was stirred at 0°C for 30 min. The resulting clear solution of the diazo salt was added dropwise to a solution of FeSO₄·7H₂O (0.904 g, 3.25 mmol) in dimethylformamide (11 mL) pre-cooled to 0°C. The reaction mixture was allowed to warm to room temperature and stirred for additional 30 min, diluted with water (100 mL), and the product was extracted into dichloromethane (3 × 40 mL). The organic phase was washed with 10% aqueous NaOH (3 × 30 mL), dried (Na₂SO₄), and evaporated. In order to remove DMF, the product was again extracted with water/diethyl ether (10:1 mixture) and combined organic phases were evaporated. The resulting crude product was purified through a column chromatography using silica gel and hexane as eluent phase. Solvent was evaporated to afford a yellowish liquid, 264 mg (41%); FTIR (v, cm⁻¹): 2958, 2931, 2861, 1524, 1348, 1098, 1086, 804, 790, 731, 685, 672; ¹H-NMR (CDCl₃), δ: 0.91 (t, 3H, J = 7.2 Hz), 1.38 (m, 2H), 1.55 (m, 2H), 2.52 (t, 2H, J = 7.6 Hz), 5.94 (bs, 2H), 6.73 (d, 1H, J = 8.5 Hz), 7.19 (dd, 1H, J = 8.5, 2.0 Hz), 7.90 (d, 1H, J = 6.3 Hz) ppm; ¹³C-NMR (CDCl₃), δ: 13.87, 22.12, 32.26, 34.17, 118.76, 124.71, 131.79, 136.55, 142.91 ppm; HRMS (ESI): (m/z) calcd. for C₁₂H₁₈NO [M + H⁺]: 190.1134, found: 195.1131.

3-butylaniline (16). The procedure of this experiment is the same as 4. Yellow liquid was obtained (95%); FTIR (ν, cm⁻¹): 3306, 2955, 2928, 2858, 1677, 1605, 1591, 1488, 1441, 1377, 1311, 1260, 1167, 1105, 776, 696; ¹H-NMR (CDCl₃), δ: 0.93 (t, 3H, J = 7.6 Hz), 1.37 (m, 2H), 1.58 (m, 2H), 2.53 (t, 2H, J = 7.6 Hz), 3.36 (bs, 2H), 6.52 (d, 1H, J = 8.0 Hz), 6.54 (s, 1H) ppm; ¹³C-NMR (CDCl₃), δ: 12.81, 21.18, 32.20, 34.25, 119.83, 122.17, 128.04, 134.25, 137.72, 143.81, 147.35 ppm; HRMS (ESI): (m/z) calcd. for C₁₀H₁₄NO₂ [M + H⁺]*: 180.1025, found: 180.1022.

3-butyl-2-nitroaniline (7) [33]. In a 100 mL 3-necked round-bottom flask was placed 16 (7.69 g, 51.5 mmol), glycerol (5.7 mL, 78 mmol) and iodine (0.24 g, 1.9 mmol). The reaction mixture was stirred, and 8 mL concentrated H₂SO₄ was added dropwise. The reaction mixture was stirred at 100–105°C. The flask was heated gradually, with stirring, in a silicone bath to 140°C; the reaction proceeded with the evolution of sulfur dioxide and some iodine vapor. Heating at 170°C was continued for 2.5 h. Reaction was monitored by TLC. When the reaction was complete, it was cooled and made alkaline by using 5 N aqueous NaOH. The resulting mixture was extracted with 2 × 50 mL diethyl ether. The ether layers were combined, washed with water, dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The pure orange liquid product was obtained, 1.45 g (96%), mp 259 °C; FTIR (ν, cm⁻¹): 3490, 3370, 2956, 2928, 2858, 1634, 1590, 1515, 1466, 1410, 1357, 1246, 1190, 1168, 1094, 824, 767; ¹H-NMR (CDCl₃), δ: 0.92 (t, 3H, J = 7.3 Hz), 1.35 (m, 2H), 1.55 (m, 2H), 2.52 (t, 2H, J = 7.6 Hz), 5.94 (bs, 2H), 6.73 (d, 1H, J = 8.5 Hz), 7.19 (dd, 1H, J = 8.5, 2.0 Hz), 7.90 (d, 1H, J = 6.3 Hz) ppm; ¹³C-NMR (CDCl₃), δ: 13.87, 22.12, 32.26, 34.17, 118.76, 124.71, 131.79, 136.55, 142.91 ppm; HRMS (ESI): (m/z) calcd. for C₁₀H₁₂N₂O₂ [M + H⁺]*: 195.1134, found: 195.1131.

5-butylnitrobenzene (17) and 7-butylnitroquinoline (18) [33]. In a 100 mL 3-necked round-bottom flask was placed 16 (7.69 g, 51.5 mmol), glycerol (5.7 mL, 78 mmol) and iodine (0.24 g, 1.9 mmol). The reaction mixture was stirred, and 8 mL concentrated H₂SO₄ was added down the condenser. Reaction soon commenced, the temperature raised to 100–105°C. The flask was heated gradually, with stirring, in a silicone bath to 140°C; the reaction proceeded with the evolution of sulfur dioxide and some iodine vapor. Heating at 170°C was continued for 2.5 h. Reaction was monitored by TLC. When the reaction was complete, it was cooled and made alkaline by using 5 N aqueous NaOH.
using dichloromethane (3 × 100 mL), dried over anhydrous Na$_2$SO$_4$ and filtered. Solvent was removed on a rotary evaporator. The crude products were subjected to column chromatography using silica and different solvent mixtures, but the vast majority of the products were inseparable. In order to identify the structures of 5-butylquinoline 17 and 7-butylquinoline 18, a small amount of mixture was separated by analytical chromatography on silica TLC plates. The amount of 5-butylquinoline 17 was just enough to obtain 1H-NMR. Because it was difficult to separate isomers, the mixture of products was nitrated at the next step, 6.82 g (72%); regioisomeric ratio 1:4.

5-butylquinoline (17). 1H-NMR (CDCl$_3$), δ: 0.85 (t, 3H, J=7.6 Hz), 1.33 (m, 2H), 1.58 (m, 2H), 2.92 (t, 2H, J=7.6 Hz), 7.25 (d, 1H, J=6.8 Hz), 7.28 (t, 1H, J=8.0, 4.0 Hz), 7.50 (dd, 1H, J=8.4, 6.8 Hz), 8.78 (d, 1H, J=8.8 Hz), 8.23 (dd, 1H, J=8.0, 1.6 Hz), 8.78 (dd, 1H, J=4.0, 1.6 Hz) ppm; HRMS (ESI): (m/z) calcd. for C$_{13}$H$_{16}$N[M + H]$^+$: 186.1283, found: 186.1263.

Nitrination of 5-butylquinoline (17) and 7-butylquinoline (18) mixture. To a mixture of 17 (6.82 g, 36.81 mmol) in 15.5 mL concentrated H$_2$SO$_4$, cooled in an iced bath was added dropwise 12.5 mL of concentrated H$_2$SO$_4$/HNO$_3$ mixture (3:1). Reaction was maintained at 0°C, stirred rapidly and monitored by TLC until all the quinoline was consumed (2.5 h). Mixture was diluted with 50 mL water, and NaOH(s) was added until pH 10–11. Solution was extracted with 3× 100 mL CH$_2$Cl$_2$, dried over anhydrous Na$_2$SO$_4$, filtered and evaporated. Nitrination of 17 and 18 resulted in 5-butyl-8-nitroquinoline 20, 5-butyl-6-nitroquinoline 19, and 7-butyl-8-nitroquinoline 21. In order to separate the mixture of isomers, the column was prepared using silica gel and dichloromethane/hexane (3:1) as the eluent phase. 5-butyl-8-nitroquinoline 20, 1.13 g (13%); 5-butyl-6-nitroquinoline 19, 0.1 g (1.2%); 7-butyl-8-nitroquinoline 21, 7.45 g (86%); overall nitrination yield: 90%.

5-butyl-6-nitroquinoline (20). mp 73°C; FTIR (ν, cm$^{-1}$): 3079, 2954, 2927, 2868, 2359, 1574, 1515, 1468, 1397, 836, 797, 773, 740, 635, 613, 487; 1H-NMR (CDCl$_3$), δ: 0.98 (t, 3H, J=7.6 Hz), 1.46 (m, 2H), 1.71 (m, 2H), 3.10 (t, 2H, J=8.0 Hz), 7.42 (d, 1H, J=7.6 Hz), 7.55 (dd, 1H, J=8.4, 4.0 Hz), 7.94 (d, 1H, J=7.6 Hz), 8.43 (dd, 1H, J=8.8, 1.6 Hz), 9.05 (dd, 1H, J=4.4, 1.6 Hz) ppm; 13C-NMR (CDCl$_3$), δ: 13.81, 22.62, 32.32, 32.94, 122.19, 123.49, 124.74, 132.44, 140.03, 144.90, 146.91, 151.91 ppm; HRMS (ESI): (m/z) calcd. for C$_{13}$H$_{11}$N$_2$O$_2$ [M + H]$^+$: 231.1134, found: 231.1126.

5-bromo-6-nitroquinoline (27) [34]: 24. (3.42 g, 18.8 mmol) was slowly added to 18.4 mL concentrated H$_2$SO$_4$ dropwise. The exothermic reaction was kept below 30°C, then the solution was cooled to ~40°C and N-bromosuccinimide (NBS) (3.83 g, 21.5 mmol) was slowly added to this solution piecewise while the temperature was kept around ~40°C. The suspension was stirred at 0°C for 1 h. Then the mixture was
poured onto 100 g of crushed ice, and 25% aqueous NH₃ was added until pH = 9 while the temperature was kept under 25°C. The mixture was then extracted with diethyl ether. The organic phase was washed first with 15% aqueous NaOH and then with distilled water and dried over Na₂SO₄. The resulting mixture was filtered and evaporated. The crude product was purified first by crystallization, where it was initially dissolved in 3–4 mL dichloromethane, and then 100 mL of petroleum ether was added and the resulting solution was placed in a refrigerator. After crystallization, the product was separated by a column chromatography on silica gel using dichloromethane/hexane.

Acknowledgments. This work was financially supported by Bogazici University Scientific Research Funds (BAP, Project No: 5085) and TUBITAK (Project No: 109T431).

REFERENCES AND NOTES
[34] Offner, J. D.; Schnakenburg, G.; Rose-Munch, F.; Rose, E.; Dötz, K. H. Organometallics 2010, 29, 3308.