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Neurodevelopmental origins of abnormal
cortical morphology in dissociative identity
disorder

Reinders AATS, Chalavi S, Schlumpf YR, Vissia EM, Nijenhuis ERS,
J€ancke L, Veltman DJ, Ecker C. Neurodevelopmental origins of
abnormal cortical morphology in dissociative identity disorder.

Objective: To examine the two constitutes of cortical volume (CV), that
is, cortical thickness (CT) and surface area (SA), in individuals with
dissociative identity disorder (DID) with the view of gaining important
novel insights into the underlying neurobiological mechanisms
mediating DID.
Methods: This study included 32 female patients with DID and 43
matched healthy controls. Between-group differences in CV, thickness,
and SA, the degree of spatial overlap between differences in CT and SA,
and their relative contribution to differences in regional CV were
assessed using a novel spatially unbiased vertex-wise approach. Whole-
brain correlation analyses were performed between measures of cortical
anatomy and dissociative symptoms and traumatization.
Results: Individuals with DID differed from controls in CV, CT, and
SA, with significantly decreased CT in the insula, anterior cingulate,
and parietal regions and reduced cortical SA in temporal and
orbitofrontal cortices. Abnormalities in CT and SA shared only about
3% of all significantly different cerebral surface locations and involved
distinct contributions to the abnormality of CV in DID. Significant
negative associations between abnormal brain morphology (SA and
CV) and dissociative symptoms and early childhood traumatization
(0 and 3 years of age) were found.
Conclusions: In DID, neuroanatomical areas with decreased CT and
SA are in different locations in the brain. As CT and SA have distinct
genetic and developmental origins, our findings may indicate that
different neurobiological mechanisms and environmental factors impact
on cortical morphology in DID, such as early childhood
traumatization.
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Significant outcomes

• This multicenter case–control study in 75 participants revealed that dissociative identity disorder is
associated with significant abnormal cortical volume and with distinct abnormalities of cortical thick-
ness and cortical surface area.

• Because cortical thickness and cortical surface area have distinct genetic and developmental origins,
different neurobiological mechanisms and environmental factors may impact differently on brain
morphology in dissociative identity disorder.
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Limitations

• Only female individuals with dissociative identity disorder volunteered to participate in the study.

• We were not able to perform a regression analysis with post-traumatic stress disorder severity.

Introduction

Dissociative identity disorder (DID) is considered
an early-onset and chronic interpersonal trauma-
related disorder (1–6). For early-onset interper-
sonal trauma-related disorders, it is currently
unknown how early traumatization affects the
development of the brain and what particular
aspect of the cortical neuroanatomy is most
affected. Altered stress reactivity following child-
hood trauma is related to altered gene expression
(7), thus suggesting that early life stressors may
have long-lasting detrimental effects on neurobiol-
ogy and foster development of trauma-related psy-
chopathology (8) such as DID. A novel spatially
unbiased vertex-wise method that examines regio-
nal differences in cortical volume (CV) on the basis
of its two different neurodevelopmentally driven
constituent components, cortical thickness (CT)
and surface area (SA), has become available (9).
Examining the brain in DID using this method
may therefore provide important new insights into
the neurobiological development in early-onset
trauma-related disorders.

Dissociative identity disorder is a psychiatric
disorder involving two or more dissociative per-
sonality states, recurrent gaps in the recall of
everyday events or important personal informa-
tion, and/or traumatic events that are inconsistent
with ordinary forgetting, which is not related to
substance abuse or general medication (10). Preva-
lence of DID is approximately 1% among women
in the general population (11) and 6% in
psychiatric out-patients (12). Nevertheless, few
neuroimaging studies have examined the neu-
roanatomical correlates of DID. Previous studies
examining neuroanatomical alterations in DID
mostly focused on subcortical regions (3, 13–15).
However, a recent study by our group (4) has also
investigated brain abnormalities in DID on the
cortical level using an exploratory approach in a
set of 68 predefined cortical areas across the cortex
and reported that individuals with DID have sig-
nificantly reduced gray matter volume in the med-
ial and dorsolateral prefrontal cortex, the anterior
cingulate, the insular cortex, inferior parietal areas,
and in several regions within the temporal lobe (4).
A high degree of overlap was found between these

neuroanatomical aberrations and dissociative per-
sonality state-dependent brain functioning during
emotion regulation, which showed predominantly
activation in the parietal regions, insula and lim-
bic-prefrontal circuitry (16, 17). The parietal and
insular regions, and the limbic-prefrontal circuitry
of the brain are therefore of pivotal interest in the
investigation of brain function and structure in
DID.

Moreover, previous studies examining neu-
roanatomical abnormalities in DID were mostly
based on a priori defined regions of interests and
were based on traditional measures of regional or
brain volumes. However, CV is by definition a
product of CT and SA, which represent distinct
aspects of the cortical architecture (18), are medi-
ated by different genetic determinants (19), and
have a contrasting phylogeny (20) and distinct
developmental trajectories (21). It is thus crucial
for our understanding of the effects that early-
onset and chronic interpersonal traumatization
has on the brain, and which particular aspects of
the cortical architecture are most vulnerable.
Last, only few studies to date have investigated
the relationship between dissociative symptoms
and measures of structural brain morphology (4,
22–24), and the neurobiological correlates of dis-
sociative symptoms therefore remain poorly
understood.

In this study, we therefore employed a spatially
unbiased, that is vertex-wise, approach to investi-
gate cortical morphology in a large sample of
adult females with DID as compared to healthy
controls (HC) in order to disentangle differences
in CT and SA and their relative contribution to
observed differences in CV. We hypothesized that
individuals with DID would show neuroanatomi-
cal differences in all three parameters predomi-
nantly in parietal and insular regions, and the
limbic-prefrontal circuitry of the brain. These dif-
ferences are expected to correlate negatively with
the severity of dissociative symptoms and trau-
matic experiences. We further hypothesized that
differences in CT and SA would be largely non-
overlapping, given the non-specific, that is non-
genetic, etiology of DID, and hence reflecting
different phylogenetic processes under the influ-
ence of early life stress.
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Aims of the study

Traditional volumetric measures of brain anatomy
are highly unspecific as cortical volume is—by defi-
nition—a product of the two distinct parameters
cortical thickness (CT) and cortical SA. We aimed
to not only investigate whether dissociative iden-
tity disorder (DID) is associated with volumetric
differences in brain morphology, but also to disen-
tangle the relative contribution of CT and SA to
regional abnormalities in cortical volume in order
to elucidate the neurobiological underpinnings of
DID. Furthermore, we aimed to investigate
whether abnormalities in cortical morphology are
associated with dissociative symptoms and/or
(early) traumatization. Ultimately, we aimed to
provide new insights into neurobiological mecha-
nisms involved in the development of abnormal
cortical morphology in DID.

Material and methods

Participants

Overall, data from 75 participants (32 women with
DID, 43 female HC) were included in this study
from three centers: the University Medical Centre
in Groningen (UMCG, the Netherlands), the Ams-
terdam Medical Centre (AMC, the Netherlands),
and the University Hospital in Zurich (USH,
Switzerland). Sample details have been published
previously [see Chalavi et al. (3, 4) for the Dutch
sample and Schlumpf et al. (25, 26) for the Swiss/
German sample]. In sum, all women with DID
were recruited from private practitioners of psychi-
atry and psychotherapy and psychiatric out-
patient departments and initially diagnosed
according to DSM-IV criteria. The clinical diagno-
sis was subsequently confirmed by independent
expert clinicians using the Structural Clinical Inter-
view for DSM-IV Dissociative Disorders (SCID-
D) (27, 28). Psychoform dissociative symptoms
were measured with the Dissociative Experiences
Scale (DES Ref. 29), and somatoform dissociative
symptoms with the Somatoform Dissociation
Questionnaire (SDQ-20 Ref. 30). Depersonaliza-
tion symptoms were assessed using the Cambridge
Depersonalization Scale (CDS Ref. 31). Potentially
traumatizing events were measured with the Trau-
matic Experiences Checklist (TEC Ref. 32). For
the five categories emotional neglect, emotional
abuse, physical abuse, sexual abuse, and sexual
harassment, the TEC total scores as well as TEC
scores from different stages in childhood were cal-
culated, that is for 0–6 years, 7–12 years, and 13–
18 years. In addition, using a set of paired t-tests,

the five TEC categories were statistically compared
between the three different childhood age ranges:
0–6 vs. 7–12, 0–6 vs. 13–18, and 7–12 vs. 13–18.

Out of 32 DID individuals, 29 individuals had
comorbid post-traumatic stress disorder (PTSD),
and three individuals had PTSD in remission. The
following information concerning other comorbid
disorders was obtained based on DSM-IV classifi-
cation (American Psychiatric Association, 1994)
from the participants and/or their personal thera-
pists (N = 29): no other comorbid disorders
(N = 13), somatoform disorder (N = 2), depres-
sion (chronic N = 1, recurrent N = 10), dysthymic
disorder (N = 1), specific phobias (N = 3), panic
disorder (N = 3), anxiety disorder (N = 1), obses-
sive–compulsive disorder (N = 1), personality dis-
orders [not otherwise specified (N = 2), mixed
(N = 2), borderline personality disorder (N = 5),
dependent and histrionic (N = 1)], eating disorder
(N = 3), sleeping disorder (N = 2), catalepsy
(N = 1), psychogenic seizures (N = 1), and atten-
tion deficit disorder (N = 1).

The DID and control group were carefully
matched for demographics including age, gender,
years of education, and Western European ances-
try (see Table 1). All HC were free of medication
and psychiatric disorders. They scored below a
critical cutoff of 25 on the DES and 29 on the
SDQ-20. We had excluded HC with potentially
traumatizing experiences as measured by the TEC
from participation. All participants gave informed
written consent in accordance with ethics approval
by the Declaration of Helsinki.

MRI data acquisition

Data were obtained on 3-T Philips whole-body
MRI scanners (Philips Medical Systems, Best, NL,
USA). An optimized structural MRI protocol with
highly reproducible anatomical measures between
centers was used (33) at all three centers, and T1-
weighted anatomical MR scans were acquired (3D
MPRAGE, TR = 9.95 ms, TE = 5.6 ms, flip-
angle = 8°, 1 9 1 9 1 mm3 voxels, number of
slices = 160, total scan-time = 10m 14s). Approxi-
mately equal ratios of patients to controls were
acquired in an interleaved manner within centers
(10 : 17 at the UMCG, 7 : 11 at the AMC, 15 : 15
in Zurich; patients: controls respectively). The
number of participants in each group did not differ
across centers (chi-square = 1.01, P = 0.603).

Cortical surface reconstruction using FREESURFER

The FREESURFER analysis suite (vFS5.3.0 release,
http://surfer.nmr.mgh.harvard.edu/) was used to
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derive models of the cortical surface in each T1-
weighted image. These well-validated and fully
automated procedures have been extensively
described elsewhere (34–37). In brief, a single filled
white matter volume was generated for each hemi-
sphere after intensity normalization, skull strip-
ping, and image segmentation using a connected
components algorithm. Then, a surface tessellation
was generated for each white matter volume by

fitting a deformable template. This resulted in a tri-
angular cortical mesh for gray and white matter
surfaces consisting of approximately 150 000 ver-
tices (i.e. points) per hemisphere. Following stan-
dard FREESURFER preprocessing, each
reconstructed surface was then visually inspected
for reconstruction errors.

A spatially unbiased vertex-wise approach pro-
vides measures of CT, SA, and CV at several thou-
sand points, that is, vertices, across the cortical
surface. Measures of CT were computed as the
closest distance from the gray and white matter
boundary to the gray matter and cerebrospinal
fluid boundary at each vertex on the tessellated
surface and vertex-based estimates of SA were
derived (38). Vertex-wise estimates of CV were
derived as the product of CT and SA at each cere-
bral vertex. We also computed mean CT, total SA,
and total CV (across hemispheres) for each partici-
pant. To improve the ability to detect population
changes, each parameter was smoothed using a 13-
mm surface-based smoothing kernel. Of note, this
cortical surface reconstruction method does not
include subcortical and (para)hippocampal
regions.

Statistical analysis

We first examined between-group differences in
global brain measures (i.e., total gray and white
matter volume, total SA, and mean CT) using a
multivariate general linear model (GLM) with
diagnostic group and site as categorical fixed-
effects factors and age as continuous covariate
(P < 0.05, two-tailed). To examine the relative
contribution of differences in CT and SA to regio-
nal differences in CV, a vertex-wise statistical anal-
ysis was subsequently conducted using the SurfStat
toolbox (http: //www.math.mcgill.ca/keith/surfs-
tat/) for MATLAB (MATLAB Release 2014a; The
MathWorks, Inc., Natick, MA, USA). Parameter
estimates for vertex-based measures of CT, SA,
and CV were estimated by performing a linear
regression at each vertex i and subject j, with (1)
group and site as categorical fixed-effects factor;
and (2) age as continuous covariates, so that

Yi ¼ b0 þ b1Groupj þ b2Sitej þ b3Agej þ ei:

Between-group differences were estimated from
the fixed-effect coefficient b1 normalized by the
corresponding standard error. Corrections for
multiple comparisons across the whole brain were
performed using random-field theory (RFT)-based
cluster-corrected analysis for non-isotropic images
using a P < 0.05 (two-tailed) cluster-significance

Table 1. Participant demographics and clinical characteristics

All

Mean (SD)
t-test

DID (n = 32)
Healthy

controls (n = 43) P-value

Demographics
Age 43.56 (9.34) 42.28 (11.57) .608
Education 14.31 (2.04) 14.84 (1.63) .220

Medication†
Antipsychotics:
n (typical, atypical)

(4, 12) 0 NA

Anti-epileptics: n 5 0 NA
Antidepressants: n 21 0 NA

Dissociative measures
Dissociative symptoms

Psychoform (DES) 50.14 (17.94) 6.31 (5.07) <.001*
Somatoform (SDQ-20) 52.77 (16.32) 22.45 (2.41) <.001*

Depersonalization symptoms (CDS)
Frequency 1.72 (0.67) 0.22 (0.16) <.001*
Duration 2.28 (1.11) 0.34 (0.35) <.001*
Total 117.47 (48.60) 16.60 (13.87) <.001*

TEC
TEC: All

Emotional neglect 12.28 (2.58) 2.60 (4.39) <.001*
Emotional abuse 11.86 (3.26) 1.53 (3.23) <.001*
Physical abuse 11.69 (3.63) 0.60 (1.99) <.001*
Sexual harassment 10.07 (4.29) 0.52 (1.57) <.001*
Sexual abuse 10.38 (4.41) 0.07 (0.34) <.001*
Total 18.45 (3.97) 3.14 (2.78) <.001*

TEC: 0–6 years‡
Emotional neglect 5.00 (0.00) 1.05 (1.94) <.001*
Emotional abuse 4.75 (0.97) 0.35 (1.29) <.001*
Physical abuse 4.75 (1.00) 0.30 (1.12) <.001*
Sexual harassment 3.57 (1.97) 0.05 (0.31) <.001*
Sexual abuse 4.36 (1.57) 0.00 (0.00) <.001*

TEC: 7–12 years‡
Emotional neglect 4.00 (0.00) 1.02 (1.61) <.001*
Emotional abuse 3.79 (0.79) 0.65 (1.41) <.001*
Physical abuse 3.82 (0.86) 0.42 (1.18) <.001*
Sexual harassment 2.79 (1.57) 0.19 (0.76) <.001*
Sexual abuse 3.21 (1.55) 0.00 (0.00) <.001*

TEC: 13–18 years‡
Emotional neglect 3.71 (1.05) 0.77 (1.48) <.001*
Emotional abuse 3.75 (0.84) 0.53 (1.28) <.001*
Physical abuse 3.57 (1.26) 0.16 (0.75) <.001*
Sexual harassment 2.89 (1.47) 0.37 (0.90) <.001*
Sexual abuse 3.18 (1.54) 0.12 (0.45) <.001*

DES, Dissociation Experience Scale; SDQ-20, Somatoform Dissociation Question-
naire; CDS, Cambridge Depersonalization Scale; DID, dissociative identity disorder;
TEC, Traumatic Experiences Checklist.
†Past and present medication use.
‡For 4 DID participants, the age-specific information was missing.
*P-value < .05.
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threshold (39). Between-group differences in global
brain measures were examined using the same
GLM as formalized above.

To compare frequencies of unique or overlap-
ping differences in each morphometric parameter,
the resulting spatially distributed binary patterns
of differences unique to CT and/or SA, as well as
their overlap regardless of the sign (i.e., based on
their statistical threshold), were then compared
using a chi-square test (i.e., contingency table) test-
ing the null hypothesis that differences in CT and
SA are equally distributed. Furthermore, a simula-
tion strategy was used to assess whether the
observed degree of overlap between differences in
CT and SA is consistent with the idea of two spa-
tially independent patterns. This hypothesis was
tested on the basis of N = 5000 randomly gener-
ated difference maps (i.e., maps containing random
t values, thresholded at P < 0.05) for CT and SA.
The extent of overlap between groups (i.e., number
of vertices with differences in CT and SA) was then
assessed in each of the 5000 overlapping patterns
to derive a probability value of obtaining a given
percentage of overlap on the basis of randomly
varying patterns of differences.

The relationship between cortical thickness, surface area and
cortical volume, and dissociative symptoms and traumatization

General linear model analyses were performed to
investigate associations between neuroanatomical
features and composite clinical scores, that is, dis-
sociative symptoms and traumatization respec-
tively. Corrections for multiple comparisons across
the whole brain were performed using RFT-based
cluster-corrected analysis for non-isotropic images
using a P < 0.05 (two-tailed) cluster-significance
threshold (39). Correlations between neu-
roanatomical features and measures of dissociative
symptom severity (see Table 1) were explored
using composite clinical dissociation scores
because the three questionnaires are closely
related. To this end, the SDQ-20, DES, and CDS

scores were subjected to a principal component
analysis (PCA) (4) and an eigenvalue of 1 was used
as the cutoff (16, 40–42). This resulted in one prin-
cipal component explaining 71.5% of the variance
in clinical measures of dissociation, which was
used in the analyses. Correlations between neu-
roanatomical features and measures of traumatic
experiences (see Tables 1 and 2) were explored
using composite clinical scores of the three devel-
opmental periods, that is for 0–6, 7–12, and 13–19,
in three separate analyses.

Results

Participant demographics and total brain measures

Overall, the DID and control groups did not differ
significantly in age (t73 = 0.08, P = 0.608) or years
of education (t73 = �1.23, P = 0.220). As
expected, individuals with DID differed signifi-
cantly from controls in depersonalization and psy-
choform as well as somatoform dissociative
symptom scores, which were significantly higher in
the DID group as compared to the HC group
(P < 0.001) (see Table 1). DID patients scored sig-
nificantly higher compared to HC on all five
adverse event categories, namely emotional
neglect, emotional abuse, physical abuse, sexual
abuse, and sexual harassment (see Table 2). This
was the case for the total TEC scores as well as for
the three childhood age ranges 0–6, 7–12, and 13–
18 years. Notably, TEC scores for none of the five
categories were significantly different between the
childhood age ranges 7–12 and 13–18. On the other
hand, TEC scores from the age range 0–6 differed
significantly on all five categories when compared
to both older age ranges. These results are indica-
tive of early childhood traumatization.

Individuals with DID had significantly reduced
total gray matter volume relative to HC
(F1 = 6.169, P = 0.015). There were no significant
between-group differences in total SA (F1 = 3.18,
P = 0.079) or average CT (F1 = 1.71, P = 0.196).

Table 2. Experience trauma scores during different stages of childhood in dissociative identity disorder (DID) patients

DID (n = 28)

Mean (SD) Paired t-test comparisons: P-values

Age 0–6 Age 7–12 Age 13–18 Age 0–6 vs. 7–12 Age 0–6 vs. 13–18 Age 7–12 vs. 13–18

Emotional neglect 5.00 (0.00) 4.00 (0.00) 3.71 (1.05) x <.001* .16
Emotional abuse 4.75 (0.97) 3.79 (0.79) 3.75 (0.84) <.001* <.001* .79
Physical abuse 4.75 (1.00) 3.82 (0.86) 3.57 (1.26) <.001* <.001* .13
Sexual harassment 3.57 (1.97) 2.79 (1.57) 2.89 (1.47) <.001* .008* .33
Sexual abuse 4.36 (1.57) 3.21 (1.55) 3.18 (1.54) <.001* <.001* .88

x = Paired t-test was not calculated since standard deviation of the two variables was zero.
*P-value < .05.
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Between-group differences in cortical thickness

We initially examined vertex-wise between-group
differences in CT. Individuals with DID had sig-
nificantly decreased CT (P < 0.05) in several spa-
tially distributed clusters across the cortex, see
Table 3 and Fig. 1a. The clusters included (1) the
left insular cortex, extending into the dorsolateral
orbitofrontal cortex [Brodmann area (BA) 44/45/
47], (2) the cingulate cortex, (3) the left temporo-
parietal junction (BA 19/39), (4 & 5) the left pre/
postcentral gyrus, and (6) the right temporal
lobe. There were no brain regions where individ-
uals with DID had significantly increased CT rel-
ative to HC.

Between-group differences in surface area

Individuals with DID had significantly reduced SA
(P < 0.05) in the left superior temporal sulcus
(STS), the cingulate sulcus, extending into the
medial superior frontal lobe (BA 6/8), and in the
right dorsolateral orbital prefrontal cortex. Statis-
tical details for regions of significantly between-
group differences are listed in Table 3 and depicted
in Fig. 1b. We did not observe any clusters of sig-
nificantly increased SA in DID as compared to
controls.

Spatial overlap between differences in surface area and cortical
thickness

Table 4 lists significant spatial overlap between
differences in CT and SA, which are presented in
Fig. 1c. Across both hemispheres, the largest pro-
portion of all between-group differences (either
CT or SA or both) resulted from differences in
CT only (66.80%), while vertices with a signifi-
cant reduction in SA only explained about
29.47% overall. Thus, there were two times as
many differences in CT only as there were in SA
only (66.80% vs. 29.47%, v2df¼2 = 27.45,
P < 0.001).

The patterns of significant differences in CT
and SA were largely non-overlapping and shared
only 3.53% of all different spatial locations on
the cerebral surface. The probability of any one
vertex displaying a difference in both CT and SA
was therefore very low. Simulations revealed that
the probability of obtaining the same degree of
overlap of 3.53% or lower by chance is >99%.
The observed percentage of overlap is hence con-
sistent with the hypothesis that differences in CT
and SA are spatially independent, and may con-
tribute in a unique way to between-group differ-
ences in CV.

Between-group differences in vertex-wise estimates of cortical
volume

Individuals with DID had extensive volumetric
reductions (P < 0.05) in regional gray matter
across the cerebral hemispheres (see Table 3 and
Fig. 2a). Significant clusters of between-group dif-
ferences in CV were found in (1 and 2) the left and
right insula extending to the dorsolateral and orbi-
tofrontal prefrontal cortex (BA 11/45/47), (3) the
left superior and inferior temporal lobe, (4) the left
cingulate sulcus, (5) the right medial superior fron-
tal cortex, (6) the left postcentral gyrus, (7) the
right anterior cingulate cortex, and (8) the right
fusiform gyrus. There were no clusters of signifi-
cantly increased CV in DID as compared to
controls.

Contribution of cortical thickness and surface area to volumetric
differences

Only 44.05% of the differences in CV could be
explained by significant differences in CT, SA, or
both (see Table 4 and Fig. 2b). There was also no
statistical difference between the contribution of
CT (24.45%) and SA differences (17.35%) to the
observed differences in CV. The remaining differ-
ences in CV (55.94%) could not be explained by
differences in either SA or CT or both and must
therefore be due to a combination of subthreshold
variations in both of these features.

Correlations between cortical thickness, surface area and cortical
volume, and dissociative symptoms and traumatization

In many regions with a significant between-group
difference in SA and/or CV, we also found a sig-
nificant negative correlation between neuroana-
tomical deficits and measures of dissociative
symptom severity. These are listed in Table S1
and depicted in Figure S1. Significant correla-
tions were predominantly observed in bilateral
frontal lobe regions for both SA and CV, includ-
ing the orbitofrontal cortex, and in the right pos-
terior temporal lobe and precuneus for measures
of CV. There were no clusters of significant cor-
relations between clinical composite scores and
measure of CT.

The regression analyses of CT, SA, and CV with
the total trauma composite scores per developmen-
tal period, that is, for 0–6, 7–12, and 13–18, did
not provide any significant results. Lowering the
threshold to explore uncorrected significance levels
did not reveal any neuroanatomical correlates of
traumatization for any of the three developmental
periods.
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Fig. 1. Between-group differences for measures of cortical thickness (CT) and surface area (SA). (a) Clusters with significantly
reduced CT [random-field theory (RFT)-based, cluster-corrected, P < 0.05] in dissociative identity disorder (DID) compared to con-
trols while controlling for the effects of site and age. (b) Clusters with significantly reduced SA (RFT-based, cluster-corrected,
P < 0.05) in DID compared to controls. (c) Percentage overlap between differences in CT and SA, where orange denotes significant
differences in both CT and SA, green denotes significant differences in CT only, and cyan denotes a significant difference in SA only.
[Colour figure can be viewed at wileyonlinelibrary.com]
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Discussion

This is the first study, to our knowledge, to exam-
ine regional differences in CT and SA, the two
components of CV, in a large sample of women
with DID, using a novel spatially unbiased vertex-
wise approach. We found that, relative to HC,
women with DID presented distributed neu-
roanatomical changes in cortical morphology.
Women with DID showed significant and exten-
sive volumetric reductions of regional gray matter
in the insula, the cingulate cortex, the dorsolateral,
superior, medial, and orbitofrontal prefrontal cor-
tex, and the superior and inferior temporal lobe.
Furthermore, differences in CT and SA were lar-
gely non-overlapping and CT and SA contributed
differently to differences in CV. These findings are
important from a neurodevelopmental perspective
as CT and SA represent distinct aspects of cortical
architecture, which are likely modulated by distinct
epigenetic and neurobiological mechanisms.

Spatially distributed differences in CT and SA
were virtually non-overlapping. This finding is
consistent with the notion that variations in CT
and SA are spatially independent, and reflect inde-
pendent sources of neuroanatomical variability (9)
and possibly different phylogenetic processes,
which could be affected by early life stress. Our
findings also concur with reports suggesting that
CT and SA are distinct neuroanatomical features
that are mediated by different sets of genes (19)
and—in the mature brain—reflect distinct aspects
of the cortical architecture (18). For instance, the
radial unit hypothesis [RUH (43)] links the size of
the cortical surface to the number of radial units
(or mini-columns) in the brain, while CT is more
closely related to the number of cells within

mini-columns (18). CT and SA may therefore
result from distinct neurodevelopmental trajecto-
ries (21) that are possibly modulated by different
neurobiological mechanisms under the influence of
the early life environment (8, 44).

Furthermore, we found that CT and SA con-
tributed similarly to the differences we observed in
CV (Table 4, bottom part). Moreover, given a
cluster-threshold of P < 0.05, 56% of vertices
within the cluster(s) of significant differences in CV
could not be explained by (i.e., did not overlap
with) vertices within clusters of significant differ-
ences in SA and/or CT (or both). While this find-
ing limits the interpretability of our results in terms
of identifying a specific neural mechanism for the
volumetric structural abnormalities associated in
DID, it remains a very important finding suggest-
ing that non-genetic, environmental factors affect
multiple aspects of brain development in DID that
cannot be linked unanimously to a specific molecu-
lar and/or developmental pathway. DID is thus
unlike other neurodevelopmental conditions that
are associated with specific neuroanatomical
abnormalities. For example, autism spectrum dis-
order (ASD), a neurodevelopmental condition, has
been shown to be associated with an accelerated
expansion of the cortical surface, rather than an
increase in CT (45). In the future, it will therefore
be important to link specific neuroanatomical
alterations to specific neurodevelopmental mecha-
nisms and their respective sets of genes (21), pat-
terns of gene expression (7), and/or altered stress
reactivity following childhood trauma in DID.

As expected, the areas affected included parietal
and insular regions as well as the limbic-prefrontal
circuitry of the brain, previously shown to be
implicated in emotion regulation in DID (16).
DID is considered an early-onset form of PTSD
(1–5), and therefore, one could reasonably expect
to find similarities in abnormality of cortical mor-
phology. In fact, PTSD is accompanied by abnor-
malities in brain anatomy and connectivity, which
are correlated with symptom severity (46, 47). A
meta-analysis showed that PTSD is related to
decreased regional GM volume in the anterior cin-
gulate cortex, the ventromedial prefrontal cortex,
and the left temporal pole/middle temporal gyrus
compared to individuals who lived adverse events
but who did not have PTSD (48), or relative to HC
(49). The present study revealed neuroanatomical
alterations in similar regions in DID: spatially dis-
tributed reductions in CT and/or SA in a variety of
cortical regions, including the anterior and poste-
rior cingulate cortex, dorsolateral, and medial pre-
frontal regions (DLPFC, MPFC), as well as the
STS and the temporo-parietal junctions. In many

Table 4. Spatial overlap between differences in CT and SA, and relative contribu-
tion of differences in CT and SA to differences in cortical volume

Measure

Number of vertices (%)*

Left hemisphere Right hemisphere Across hemispheres

Overlap CT and SA
CT only 20954 (67.35) 9095 (65.98) 30049 (66.80)
SA only 8703 (27.96) 4554 (33.04) 13257 (29.47)
CT & SA 1454 (4.67) 135 (0.98) 1589 (3.53)
Total† 31111 (100) 13784 (100) 44895 (100)

Contribution of CT and SA to CV
CV 43040 (100) 26059 (100) 69099 (100)
CT only 13330 (30.97) 3567 (13.68) 16897 (24.45)
SA only 7985 (18.55) 4004 (15.36) 11989 (17.35)
CT & SA 1423 (3.30) 135 (0.51) 1558 (2.25)
CV explained 22738 (52.82) 7706 (29.57) 30444 (44.05)
CV unexplained 20302 (47.17) 18353 (70.42) 38655 (55.94)

CT, cortical thickness; SA, surface area; CV, cortical volume.
*All vertices with significant difference in CT or SA.
†Total number of vertices with significant difference in either CT or SA.
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of these regions, there also was reduction in regio-
nal cortical gray matter volume (CV) relative to
HC. These similarities support the notion that
DID is a severe form of PTSD. This needs empiri-
cal confirmation as we could not directly compare
DID with PTSD, but the indications that DID
overlaps with PTSD and the involvement of
early life trauma in developing DID can help
tailor treatment of individuals suffering from this
disorder.

Whole-brain correlation analyses revealed signifi-
cant associations between dissociative symptoms in
SA and CV in several cortical regions, but not CT,
including the bilateral prefrontal cortex, specifically
the orbitofrontal cortex. This area has a pivotal role
in the ‘orbitofrontal model’ (50) of DID, which pro-
poses the involvement of the orbitofrontal cortex in
the development of DID based on the maturation
of the orbitofrontal cortex in an early abusive

environment. It is also important to note that the
orbitofrontal cortex plays an important role in the
excitatory and inhibitory mechanisms of the limbic
system (51). Our results suggest that early childhood
traumatization alters brain anatomy targeting the
prefrontal cortex and the maturation of the limbic
system (52), which might be mediated by gene
expression in the adult prefrontal cortex (7). We
speculate that in DID, the orbitofrontal cortex has
matured differently under the influence of an abu-
sive environment which consequently affects emo-
tion regulation in the limbic system (16, 53). In sum,
considering the orbitofrontal cortex’s role in emo-
tion processing and regulation, the SA reduction in
this region and negative association with dissocia-
tive symptoms provide clinically relevant implica-
tions for the treatment of DID.

Other studies have reported positive correlations
between dissociative phenomenology and gray

Fig. 2. Between-group differences for vertex-wise estimates of cortical volume (CV). (a) Clusters with significantly reduced CV (ran-
dom-field theory-based, cluster-corrected, P < 0.05) in dissociative identity disorder compared to controls while controlling for the
effects of site and age. (b) Contribution of differences in cortical thickness (CT) and surface area to the observed differences in CV.
[Colour figure can be viewed at wileyonlinelibrary.com]
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matter volume. A voxel-based morphometry
(VBM) study reported a significant positive correla-
tion between dissociation severity [depersonaliza-
tion/derealization as measured by items 29 and 30
of the Clinician Administered PTSD Scale (CAPS)]
and gray matter volume in the right middle frontal
gyrus but did not report any significant negative
correlation (23). However, this study is different in
several aspects from our study, namely in the rela-
tively low number of individuals with dissociative
PTSD (n = 15), dissociative symptom severity, only
including depersonalization/derealization as a disso-
ciative symptom, and data analysis methodology.
Another study applying a region-of-interest
approach found a positive correlation between
depersonalization and the dorsal anterior cingulate
cortex (dACC) in child maltreatment-related PTSD
(24). However, in the latter study, the dACC thick-
ness did not differ between patients and controls,
and only 16 patients with PTSD were included.

We did not find any significant bivariate correla-
tions between measures of traumatization and
morphometric features for any of the three devel-
opmental periods. This is most likely due to the
lack of sufficient variance in the TEC scores, which
precludes the examination of significant associa-
tions (see Table 2). However, as it is important to
link our main results to early traumatization, we
proceeded with a post hoc exploratory analysis. We
further reduced the earliest developmental period
to a period from 0 to 3 years. Importantly, this did
increase the variance in the data [emotional neglect
(M = 4.11, SD = 1.95), emotional abuse (M =
3.64, SD = 2.16), physical abuse (M = 3.50, SD =
2.28), sexual harassment (M = 1.82, SD = 2.33),
and sexual abuse (M = 3.25, SD = 2.30)]. After
performing regression analyses with this earliest
developmental period we did not find any
significances following corrections for multiple
comparisons. However, we did find significant neu-
roanatomical correlates of early childhood trauma
at an uncorrected, vertex-wise threshold of
P < 0.02 (two-tailed). These results are now pre-
sented in Table S2 and Figure S2. While these
results need to be interpreted with care due to
uncorrected significance levels, it is important to
note that the neuroanatomical correlates of very
early traumatization overlap with many brain
areas previously noted in many functional MRI
studies examining atypical brain functioning in dis-
sociative personality state during emotion regula-
tion, such as parietal regions and prefrontal
regions (16, 17), as well as with previously found
neuroanatomical aberrations (4).

Future research should detail the environmental
risk factors associated with abnormal brain

development in DID, determine the neural mecha-
nisms that underlie the involved anatomical defi-
cits, and establish epigenetic markers that identify
interindividual differences in susceptibility to sev-
ere and chronic adversity starting in early life. Our
study includes several limitations. First, findings
suggest that the neuroanatomical differences of
DID resemble the neural substrates underlying
common PTSD, which is not surprising because all
patients met criteria for PTSD, past or current.
Unfortunately, we were not able to perform a
regression analysis with PTSD severity as we did
not have CAPS scores for the overall sample.
Approximately half of the participants did not
report any other comorbid disorders. Depression
was the second most reported comorbidity with
one participant reporting chronic depression, and
10 participants reported recurrent depression.
Some overlap between our findings and atypical
cortical gray matter in depression seems to be pre-
sent (54), and future studies are therefore required
to establish whether—and to what degree—disso-
ciative symptoms contribute to findings in studies
including depressed participants and vice versa.
Dissociative symptoms are also present in other
psychiatric disorders, such as depression (55–57),
borderline personality disorder (58), and PTSD
(53). We thus recommend that it is crucial to assess
dissociative symptoms across psychiatric disorders
to aid cross-diagnostic comparison of the neural
correlates of dissociative symptoms. Second, we
employed a multicenter acquisition protocol to
overcome single-site recruitment limitations. How-
ever, the MRI acquisition parameters were
matched across sites using a study optimized scan-
ning sequence (33). We also accounted for intersite
effects in the statistical model. The detected
between-group differences thus cannot fully be
explained by this limitation. Third, while there was
no significant between-group difference in total SA
or average CT, we did observe a significant reduc-
tion in total gray matter volume in DID. However,
as the purpose of our study was to determine what
drives the volumetric differences in the brain in
DID (i.e., differences in CT and/or SA), it was
essential to utilize the same GLM consistently
across morphometric features. We therefore did
not covary for total gray matter volume in the ver-
tex-wise analysis. Notably, we were not able to
recruit males with DID as part of the study.
Although we suspect similar results in males with
DID, it will be crucial to replicate out findings in
an independent sample of males with DID in the
future. However, by focusing on females exclu-
sively, our study design also minimized the neu-
roanatomical and clinical heterogeneity that could
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have been introduced by analyzing data across
gender categories.

In summary, DID is accompanied by neu-
roanatomical deficits in both CT and SA, which—
in turn—lead to significant reductions in regional
and total brain volume. Whole-brain correlation
analyses revealed significant associations between
abnormal brain morphology, dissociative symp-
toms and early traumatization in SA and CV, but
not CT. The spatially largely non-overlapping dis-
tributed patterns for CT and SA indicate distinct
neurodevelopmental pathways that are likely mod-
ulated by different neurobiological mechanisms
and environmental factors, such as childhood
traumatization.
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Supporting Information

Additional Supporting Information may be found in the online
version of this article:
Figure S1. (a) Clusters with significant negative correlations
between measures of SA and the severity of DID symptoms as
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obtained via principal component analysis (RFT-based, clus-
ter-corrected, P < 0.05). (b) Clusters of significant negative
correlations between measures of CV and the severity of DID
symptoms as assessed using principal component analysis
(RFT-based, cluster-corrected, P < 0.05).
Figure S2. (a) Clusters of negative and positive correlations
between measures of SA and the severity of early traumatiza-
tion between the age of 0 and 3, using a composite score. (b)

Clusters of negative and positive correlations between mea-
sures of CV and the severity of early traumatization between
the age of 0 and 3, using a composite score.
Table S1. Clusters with significant negative correlations
between measures of SA and CV, and dissociative symptoms.
Table S2. Clusters with negative or positive correlations
between measures of SA and CV, and early traumatization
between the age of 0 and 3, using a composite score.
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