Intrinsic charge transport properties of an organic single crystal determined using a multiterminal thin-film transistor

W. A. Schoonveld, J. Vrijmoeth, and T. M. Klapwijk

Citation: Appl. Phys. Lett. 73, 3884 (1998); doi: 10.1063/1.122924
View online: https://doi.org/10.1063/1.122924
View Table of Contents: http://aip.scitation.org/toc/apl/73/26
Published by the American Institute of Physics

Articles you may be interested in

Effect of impurities on the mobility of single crystal pentacene

Anisotropic field effect mobility in single crystal pentacene

Gated four-probe measurements on pentacene thin-film transistors: Contact resistance as a function of gate voltage and temperature

Soluble and processable regioregular poly(3-hexylthiophene) for thin film field-effect transistor applications with high mobility
Applied Physics Letters 69, 4108 (1996); 10.1063/1.117834

Patterning solution-processed organic single-crystal transistors with high device performance
AIP Advances 1, 022149 (2011); 10.1063/1.3608793

Influence of the gate dielectric on the mobility of rubrene single-crystal field-effect transistors
Intrinsic charge transport properties of an organic single crystal determined using a multiterminal thin-film transistor

W. A. Schoonveld, J. Vrijmoeth, and T. M. Klapwijk
Department of Applied Physics and Materials Science Center, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands

(Received 3 August 1998; accepted for publication 21 October 1998)

We present an experimental approach to determine the intrinsic field-effect mobility in an organic single crystal as a function of the in-plane crystal-axis direction. Using a multiterminal geometry the experiment also excludes the effects of the contact resistances on the transport properties. We have applied the method to quaterthiophene thin films. At gate voltages above the threshold voltage, the channel conductance varies linearly with the applied gate voltage. The resulting charge carrier mobility is \(1.2 \times 10^{-3}\ \text{cm}^2\text{V}^{-1}\text{s}^{-1}\). This value is constant over a period of weeks of continuous operation and does not vary from sample to sample, in contrast to the typically observed lower mobilities of polycrystalline quaterthiophene thin-film transistor devices. These results emphasize the need for well-characterized model systems to study the intrinsic transport properties of organic materials. © 1998 American Institute of Physics. [S0003-6951(98)01052-3]

Organic semiconducting materials used as active layer in thin film transistors (TFT) have recently received considerable interest. In this relatively new research area, further progress requires better materials control for devices. The problem of grain boundaries and contact resistances on the transport properties is not a new one for the semiconductor industry, in which the orientation of the crystallite in the thin film is known. In the latter area, Torsi et al. interpreted their experimental results in terms of the intrinsic transport mechanisms and suggested that the charge carrier transport could be interpreted as a hopping motion of a small molecular polaron as predicted by the Holstein model.

Although these results have been obtained on highly ordered sexithiophene (\(\alpha\)-6T) TFTs, large sample to sample variations complicate the interpretation of the results. Despite the formation of molecular crystallites, the active layer itself is polycrystalline. As a consequence, the electrical characteristics are an ensemble average over all the individual single crystallites, with each its specific orientation together with the influences of the grain boundaries and contact resistances.

The polaronic nature of the charge carrier together with the \(\alpha\)-symmetric unit cell of these rod like molecules, require a study of the transport properties as a function of the crystal orientation. Ideally, one would like to measure on a single crystallite, which is large enough to completely fill one gap, resulting in a single crystalline TFT, in which the orientation of the crystallite with respect to the drift field is known.

In this letter, we demonstrate a novel experimental approach to measure the mobility of a charge carrier in an organic medium as a function of the in-plane crystal-axis direction. This experiment excludes the effects of grain boundaries and contact resistances on the transport properties, thereby reliably obtaining the field-effect mobility in the organic crystal. The method is applied to quaterthiophene thin films. As a result of this work, we find that the measured mobilities are reproducible and do not vary from sample to sample.

The sample layout is shown in Fig. 1(a). The substrate is a highly doped Si wafer, acting as a gate contact, which is thermally oxidized in a dry atmosphere. The gold contacts are lithographically defined with gap diameters ranging from 3 to 30 \(\mu\text{m}\) [see Fig. 1(b)]. A second photore sist layer is deposited to electrically isolate the transistor from neighboring devices. The quaterthiophene oligomer thin film is deposited in the last fabrication step by thermal evaporation in a high vacuum environment (1 \(\times\) 10\(^{-7}\) mbar). To obtain large crystallites within a polycrystalline thin film, the substrate is held at a temperature of 80 °C during evaporation (rate \(\sim\) 0.6 nm/s). With these settings the individual crystallites can grow up to 40 \(\mu\text{m}\) in diameter, which is large enough to completely fill one gap, resulting in a single crystal TFT [see Fig. 1(b)]. The orientation and thickness of the crystal within the eight gold electrodes can be obtained by an optical polarization microscopy technique. The method determines the azimuthal orientation of the single crystal, which corresponds to the tilt direction of the molecules with respect to the substrate normal and to the \(b\) axis of the unit cell [see Figs. 1(b) and 1(c)].

After evaporation the samples are handled in air and measured in an ambient and/or high-vacuum environment. The measurements are done using a Hewlett-Packard 4156A semiconductor parameter analyzer together with an additional home-built module containing four electrometer type voltage probes (input impedance \(\sim\) 10\(^{14}\) \(\Omega\)). All measurements are executed in the “guarded mode” with triaxial cables in order to minimize leakage currents. With this setup, the source and drain current together with the potentials of the remaining six terminals can be simultaneously measured.

To determine the charge carrier mobility in a certain crystal direction, the in-plane square conductivity of a crystal is measured as a function of gate voltage in the linear regime, i.e., the applied gate field is much larger than the

---

aElectronic mail: W.A.Schoonveld@phys.rug.nl
in-plane drift field which results in a uniform density of charge carriers in the active channel. The gate voltage is defined with respect to the average potential of the active medium, as is measured by the two additional voltage probes. The multiterminal geometry allows for the conductivity to be probed as a function of the in-plane crystal-axis direction by assigning a different set of terminals as the source and drain terminals.

By applying a source-drain bias, a current will flow and consequently a potential distribution will arise within the single crystal. The channel current in the linear regime \[ I_{ds} = G \mu C_i (V_g - V_t) V_{diff} \] after applying a fixed source-drain potential \( V_{ds} \) is given by

\[
I_{ds} = G \mu C_i (V_g - V_t) V_{diff}.
\]

Here \( C_i \) is the insulator capacitance, \( \mu \) the charge carrier mobility, \( V_t \) the threshold voltage, \( V_g \) the gate voltage, \( V_{diff} \) the transverse potential difference observed by the two voltage measuring electrodes and \( G(\mu, \phi) \) a correction factor resembling the \( Z/L \) ratio for rectangular shaped sample structures. Due to the structure of the unit cell\(^{11} \) the mobility should be described by a tensor\(^2 \) \( \mu_{ij} \), which relates the drift velocity to the applied electric field \( (u_j = \mu_{ij} E_i) \).

The actual value of \( G \), however, is sample geometry specific and depends not only on the symmetry of the active medium, which is described by the mobility tensor \( \mu_{ij} \), but also on the used contact geometry and contact dimensions [see Fig. 1(b)] with respect to the orientation of the crystal (angle \( \phi \)). For a certain in-plane mobility anisotropy \( \mu_{ij} \), the correction factor can be numerically calculated, for a specific set of terminals as the measuring pads and for a specific angle \( \phi \) by solving the continuity relation \( \text{div} J = 0 \) under biased conditions. The resulting correction factor \( G \) is then given by the ratio of the calculated conductance \( (I_{ds}/V_{diff}) \) and the assumed square conductance \( \sigma_{C} \) of the medium.

A typical measurement result is shown in Fig. 2. At a set gate voltage, the linearity of the channel conductance and the electrical behavior of the source and drain contacts are checked by plotting the channel current versus the observed potential difference \( V_{diff} \), for each applied source-drain potential \( V_{ds} \) (see inset Fig. 2). The channel conductance \( g_D \) is then calculated by taking the derivative of the channel current with respect to \( V_{diff} \):

\[
g_D = \frac{\partial I_{ds}}{\partial V_{diff}} = G \mu C_i (V_g - V_t).
\]

Possible leakage currents appear as a general offset in this plot and do not affect the obtained slope and therefore the channel conductance. This procedure applied at every gate potential, results in the channel conductance as a function of gate voltage. The charge carrier mobility is obtained from the slope of the channel conductance versus the applied gate potential.

The electrical characteristics as shown in Fig. 2 are obtained on a single crystalline quaterthiophene TFT with a gap diameter of 5 \( \mu \)m. The measuring geometry with respect to the crystal orientation is shown in Fig. 1(b). At terminals 7 and 3, the source and drain current is measured and the trans-
verse potential difference is probed between contacts 4 and 6. The remaining four terminals are connected to the elec-
trometer probes in order to minimize leakage currents. In this
geometry, the conductivity is probed in a direction almost
parallel (φ~10°) to the b axis of the unit cell.

In practice, the measurement sequence consists of sev-
eral gate sweeps ranging from −12 to −22 V in steps of 0.1
V (dV_{step}) for a series of subsequently applied drain voltages
(0, −4, −8, 0, +4, +8 V). In each gate step an amount of
charge δQ = CδV_{step} must be transferred to the gold contacts
due to the capacitive coupling with the gate electrode. A
delay time of 4 s per gate step is maintained for the system to
relax to the equilibrium potential distribution at the new gate
potential.

The inset of Fig. 2 demonstrates how the shown channel
conductances are obtained. The source-drain current is plot-
ted as a function of the transverse potential difference V_{diff}
for all applied drain potentials at a fixed gate potential. The
small channel current (few pA) at V_{diff} = 0 shows that we can
also experimentally exclude leakage currents. From the lin-
ear relation we conclude that, although the current injecting
contacts have a strong non-ohmic behavior, the medium can
indeed be described by one channel conductance g_D. This
non-ohmic behavior is demonstrated by the observed small
potential difference after applying the source drain potential
and the nonlinear increase of V_{diff} with V_{ds}. A voltage drop
of 1 to 2 V, depending on the bias conditions of the transis-
tor, is typically observed at the quaterthiophene-gold inter-
face. Note that despite this nonlinearity the channel current is
perfectly linear with V_{diff}, which clearly demonstrates the
power of the multiterminal technique.

Two independent, hardly distinguishable, measurements of
the channel conductance are plotted in Fig. 2 with a time
interval of several days. At high gate voltages, a linear in-
crease of the channel conductance is observed, from which the
current carrier mobility and the threshold voltage can be
derived [see Eq. (2)]. Assuming an isotropic medium, the
correction factor G was calculated to be 2.1, which results in
a charge carrier mobility of 1.2×10^{-3} cm^2/V s for both mea-
surements. Typically, the reproducibility is within 5% for
multiple measurements on one sample with the same contact
geometry with only a slight negative shift in the threshold
voltage.\textsuperscript{12,13} Measurements on several different samples,
with a varying orientation of the crystallite with respect to
the contact geometry and/or with different pads assigned as
the source and drain contacts yield similar plots as is shown
in Fig. 2 and result in charge carrier mobilities with a maxi-
mal spread of a factor of 2. This might be an indication for
the in-plane anisotropy, but additional measurements on one
and the same sample need to be done in order to accurately
determine the in-plane components of the mobility tensor
\(\mu_{ij}\). The sample to sample variations of these single crystal
thin-film devices are negligible compared to what is gener-
ally found for polycrystalline devices,\textsuperscript{14} and are therefore
believed to be representative for our 4T on SiO\textsubscript{2} TFTs.
The mobility value is still low compared to the observed values
of the FET structures based on macroscopically grown quater-
thiophene single crystals (\(\mu \approx 0.05\) cm^2/V s). Clearly,
defects and impurities are likely to play a role in this ob-
served difference in the measured field-effect mobilities.

This experiment also shows that the extremely high mo-
tility observed in, i.e., pentacene TFTs is not entirely due
to increased size of the single crystal domains. Although we
measure on a true single crystal, the observed mobility is still
three orders of magnitude less than in the pentacene case.
This indicates that, next to the size of the crystal domains,
the crystal structure together with the electronic structure of
the molecules are the main parameters determining the
charge carrier mobility.

We have fabricated several single crystal quater-
thiophene TFTs with a multiterminal contact geometry,
which excludes extrinsic effects such as grain boundaries and
contact resistances on the measured mobilities. The single
crystal can be described by one channel conductance at every
measured gate potential, despite the strong nonlinear behav-
or of the current injecting contacts. We find a charge carrier
mobility of 1.2×10^{-3} cm^2/V s. This value is constant over
a period of weeks of operation and does not vary from sample
to sample, in contrast to the typically observed lower mobili-
ties of polycrystalline quaterthiophene thin-film transistor
devices.

The authors thank Minte Mulder for his crucial role in
developing the sample fabrication, and M. Matters and D. M.
de Leeuw for scientific discussions. This work was supported
by the Nederlandse Organisatie voor Wetenschappelijk
Onderzoek (NWO) through the Stichting voor Fundamenteel
Onderzoek der Materie (FOM).

\textsuperscript{1} L. Torsi, A. Dodabalapur, L. J. Rothberg, A. W. P. Fung, and H. E. Katz,
\textsuperscript{2} L. Torsi, A. Dodabalapur, L. J. Rothberg, A. W. P. Fung, and H. E. Katz,
\textsuperscript{3} S. F. Nelson, Y.-Y. Lin, D. J. Gundlach, and T. J. Jackson, Appl. Phys.
\textsuperscript{5} K. Waragai, H. Akimichi, S. Hotta, and H. Kano, Phys. Rev. B \textbf{52}, 1786
\textsuperscript{6} A. R. Brown, A. Pomp, C. M. Hart, and D. M. de Leeuw, Science \textbf{270},
\textsuperscript{7} Organic Molecular Crystals, edited by E. A. Silinsh V. Capes (AIP, New
York, 1994).
\textsuperscript{8} Quaterthiophene material was obtained from Syncom B.V. Groningen,
The Netherlands.
\textsuperscript{9} J. Vrijmoeth, R. W. Stok, R. Veldman, W. A. Schoonveld, and T. M.
\textsuperscript{11} W. Porzio, S. Destri, M. Mascherpa, and S. Brückner, Acta Polym. \textbf{44},
266 (1993).
\textsuperscript{12} The global threshold voltage shift between two subsequent measurements,
of the channel conductance versus gate bias, with identical contact geomet-
ries is about 1 V. This shift complicates the determination of the charge
carrier mobility since it affects the density of free charge carriers. The
nature of the threshold shift is at this moment not exactly known, but there
are indications of charge trapping at the SiO\textsubscript{2} gate dielectric interface (See
Ref. 13).
\textsuperscript{13} W. A. Schoonveld, J. B. Oostinga, J. Vrijmoeth, and T. M. Klapwijk,
Proceedings of the International Conference on Science and Technology of
Synthetic Metals at Montpellier 1998, to be published in Synthetic
Metals.
\textsuperscript{14} H. E. Katz, L. Torsi, and A. Dodabalapur, Chem. Mater. \textbf{7}, 2235 (1995);
R. Hajlaoui, G. Horowitz, F. Garnier, A. Arce-Brouchet, L. Laigre, A. E.