Quadrupole boson structure form factors for proton scattering from the IBA model and electron scattering

De Leo, R; Pignanelli, M; Borghols, WTA; Brandenburg, S; Harakeh, MN; Lu, HJ; van der Werf, SY; de Jager, CW; van der Laan, JB; de Vries, H

Published in:
Physics Letters B

DOI:
10.1016/0370-2693(85)91048-2

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
1985

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Inelastic proton scattering from 110Pd has been measured at $E_p = 30.7$ MeV.Angular distributions for three low-lying 2^+ states are satisfactorily reproduced by employing reduced matrix elements from the IBA model and form factors evaluated from two quadrupole transition charge densities (determined from electron scattering) folded with a nucleon–nucleon interaction. The relative phase between these two transition charge densities could be determined because of coupled channel effects in inelastic proton scattering. This leads to boson structure form factors for proton scattering resembling a Woods–Saxon first derivative for the d-boson non-conserving part and a Woods–Saxon second derivative with a reduced radius for the d-boson conserving part.

The success of the interacting boson approximation model [1] (IBA) in describing the “static” properties of low-lying collective states of even–even medium and heavy-mass nuclei, has been demonstrated by a large number of recent studies. For example, Van Isacker and Puddu [2] have shown that the IBA model can reproduce many properties of Pd and Ru isotopes, such as level sequences, $B(E2)$ values, magnetic moments and two-neutron separation energies.

More recently attempts have been made to use information from the IBA model to describe the “dynamic” properties of nuclei [3], such as transition densities for inelastic excitations induced by external probes, e.g. electrons [4,5]. In refs. [4,5] transition charge densities for the first two 2^+ states in an even–even nucleus were determined from electron scattering experiments. These were further used to calculate, by means of the IBA model, the transition charge densities for other 2^+ states. A similar attempt to use the IBA model to reproduce proton inelastic scattering data, was reported by PignaneUi et al. [6]. In these calculations only the reduced matrix elements (rme), i.e. numbers that contain the nuclear structure information, were obtained from the IBA model. Shapes of boson structure form factors (here form factor refers to the radial part of the transition potential for proton scattering) which yield good fits to the data in a coupled channel (CC) analysis were, however, assumed. In a different approach, Saha et al. [7] used the IBA mod-
el to calculate M_N and M_Z, the neutron and proton transition strengths for the excitation of the first 2^+ states of Pd isotopes. After some normalizations, equivalent to the introduction of effective charges, these values were found to account for π^+ and π^- inelastic scattering cross sections.

For Pd isotopes the ground state (gs) charge distribution and transition charge densities for the excitation of low-lying 2^+ states have been determined in a model-independent way in a recent electron scattering experiment [5] at NIKHEF. In this paper we present elastic and inelastic proton scattering data from 110Pd which we fit with CC analyses in which rme obtained from the IBA model are used in a more involved way. In particular, making use of two transition charge densities deduced from electron scattering for the lowest two 2^+ states [5] folded with a nucleon–nucleon (N–N) interaction, we calculate, using the IBA predicted rme's, all the form factors involved in a 0^+(gs.), $2^+_1 (0.374\text{ MeV})$, $2^+_2 (0.814\text{ MeV})$, and $2^+_3 (1.470\text{ MeV})$ CC calculation.

A self-supporting 110Pd target of approximately 1 mg/cm2 thickness was bombarded with a 30.7 MeV analysed beam of protons from the KVI cyclotron. Scattered protons were detected using the QMG/2 magnetic spectrograph [8] and its detection system [9] with an overall energy resolution of 18 keV. The differential cross sections for the 2^+_1, 2^+_2 and 2^+_3 states of 110Pd which are the first three 2^+ states predicted in the IBA calculations of ref. [2], are presented in fig. 1. The 2^+_3 state which can not be described in IBA is assumed [2] to be an intruder state.

In version two of the IBA model, which distinguishes between neutron and proton bosons, the quadrupole transition between two levels can be expressed [1] with the generalized rme's:

$$Q_{\pi, \nu} = \alpha_{\pi, \nu} A_{\pi, \nu} + \beta_{\pi, \nu} B_{\pi, \nu} ,$$

where

$$A_{\pi, \nu} = \langle J_f | (d^{\dagger} \bar{d} + s^{\dagger} \bar{s})_{\pi, \nu} | J_i \rangle ,$$

$$B_{\pi, \nu} = \langle J_f | (d^{\dagger} \bar{d})_{\pi, \nu} | J_i \rangle ,$$

are the d-boson non-conserving and d-boson conserving rme's, respectively.

The $\alpha_{\pi, \nu}$ and $\beta_{\pi, \nu}$ are the boson coupling constants that are assumed to be identical for all transitions of equal multipolarity in one nucleus. A straightforward generalization [3] of the above operators to “dynamic” properties for quadrupole transition densities can be made by replacing the boson coupling constants with boson structure functions $\alpha_{\pi, \nu}(r)$ and $\beta_{\pi, \nu}(r)$ which represent the transition densities for the transitions between s- and d-bosons and two d-bosons, respectively:

$$\rho_{\pi, \nu}(r) = \alpha_{\pi, \nu}(r) A_{\pi, \nu} + \chi_{\pi, \nu} \beta_{\pi, \nu}(r) B_{\pi, \nu} ,$$

where $\chi_{\pi, \nu}$ can be set equal to one or to $\beta_{\pi, \nu}/\alpha_{\pi, \nu}$ as will be discussed later. The associated quadrupole moment is
\[Q_{\pi, \nu} = \int \rho_{\pi, \nu}(r) r^4 \, dr. \] (3)

The overall electric transition strength \(M_Z \) induced by the electromagnetic field between levels whose wavefunctions have been calculated in a truncated basis space, is defined after the introduction of the effective nucleon charges, \(e_\pi \) and \(e_\nu \), which account for the truncation of the basis space:

\[M_Z = e_\pi Q_\pi + e_\nu Q_\nu. \] (4)

\(M_Z \) is linked to the reduced transition probability by:

\[B_{em}(E2, J_i \rightarrow J_f) = \frac{|M_Z|^2}{(2J_i + 1)}. \] The effective electric transition density associated with this is

\[\rho(r) = e_\pi \rho_\pi(r) + e_\nu \rho_\nu(r), \] (5)

where \(\rho_\pi \) and \(\rho_\nu \) are given by eq. (2).

For Pd isotopes the rme's in eqs. (1), (2) have been calculated in ref. [2]. As nucleon effective charges and boson coupling constants we can use the empirical values \(e_\pi = e_\nu = 1 \) determined in ref. [2] [in such a case our analyses will be labeled (V)], or the nucleon effective charges \(e_\pi = 1.35 \) and \(e_\nu = 0.49 \) of Saha et al. [7] [analyses (S)] who used the boson coupling constants calculated by Scholten [10] in a generalized seniority scheme. A check of the two sets of nucleon effective charges and boson coupling constants can be made through the comparison of evaluated \(B_{em}(E2) \)'s (by means of eqs. (1)–(4)) and the experimental \(B_{em}(E2) \) values [11] (see table 1) for all the transitions examined here. We note that those calculated with the S procedure (column 8) show in general bad agreement; in particular the \(B(E2) \)-value from the \(2^+ \) level to the gs is overestimated.

For probes which are also sensitive for neutrons one can also define an effective neutron transition matrix element \(M_N \) similar to the effective proton transition matrix element \(M_Z \). In the Pd case where the core is self-conjugate, \(M_N \) is given by [7]

\[M_N = e_\pi Q_\pi + e_\nu Q_\nu. \] (6)

Analogous to eqs. (4) and (5), one can then define effective proton and neutron transition densities. In the case of proton scattering, the transition potential \(\Delta U_{tt} \) is obtained from these effective transition densities by folding with a p–p and p–n interactions, respectively. Thus:

\[\Delta U_{tt} = e_\pi \int \rho_\pi(r) v_{p-p}(|r - r'|) \, d^3r' \]
\[+ e_\nu \int \rho_\nu(r) v_{p-n}(|r - r'|) \, d^3r' \]
\[+ e_\pi \int \rho_\pi(r) v_{n-n}(|r - r'|) \, d^3r'. \] (7)

Table 1

<table>
<thead>
<tr>
<th>(J_i \rightarrow J_f)</th>
<th>VAP a)</th>
<th>SAM a)</th>
<th>VAM a)</th>
<th>VBM a)</th>
<th>EXP b)</th>
<th>IBA c)</th>
<th>Saha d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0^+_1 \rightarrow 2^+_1)</td>
<td>-8770</td>
<td>-8870</td>
<td>-8770</td>
<td>-8770</td>
<td>9100 ± 600</td>
<td>-9100</td>
<td>-9446</td>
</tr>
<tr>
<td>(0^+_1 \rightarrow 2^+_2)</td>
<td>-149</td>
<td>+149</td>
<td>+149</td>
<td>+149</td>
<td>128 ± 11</td>
<td>+143</td>
<td>+506</td>
</tr>
<tr>
<td>(0^+_1 \rightarrow 2^+_2)</td>
<td>+1.8</td>
<td>+11</td>
<td>+15</td>
<td>+18</td>
<td>+18</td>
<td>+9</td>
<td></td>
</tr>
<tr>
<td>(2^+_1 \rightarrow 2^+_1)</td>
<td>-2360</td>
<td>-1078</td>
<td>-1015</td>
<td>-1047</td>
<td>1037</td>
<td>-1111</td>
<td>-763</td>
</tr>
<tr>
<td>(2^+_1 \rightarrow 2^+_1)</td>
<td>-1030</td>
<td>-1571</td>
<td>-1725</td>
<td>-1740</td>
<td>1800 ± 300</td>
<td>-1790</td>
<td>-2007</td>
</tr>
<tr>
<td>(2^+_1 \rightarrow 2^+_2)</td>
<td>+26</td>
<td>-5</td>
<td>-1.1</td>
<td>-0.05</td>
<td>+0.2</td>
<td>+20</td>
<td></td>
</tr>
<tr>
<td>(2^+_2 \rightarrow 2^+_1)</td>
<td>+716</td>
<td>+548</td>
<td>+531</td>
<td>+564</td>
<td>+592</td>
<td>+533</td>
<td></td>
</tr>
<tr>
<td>(2^+_2 \rightarrow 2^+_2)</td>
<td>+626</td>
<td>+309</td>
<td>+308</td>
<td>+289</td>
<td>+304</td>
<td>+227</td>
<td></td>
</tr>
<tr>
<td>(2^+_2 \rightarrow 2^+_2)</td>
<td>-2280</td>
<td>-769</td>
<td>-670</td>
<td>-782</td>
<td>-835</td>
<td>-435</td>
<td></td>
</tr>
</tbody>
</table>

a) The symbols VAP, SAM, VAM, and VBM refer to the (p,p') analyses described in the text.
b) Experimental \(B_{em}(E2) \) values from ref. [11].
c) Calculated \(B_{em}(E2) \) values (ref. [21]), normalized arbitrarily to reproduce the experimental \(B(E2, 0^+_1 \rightarrow 2^+_1) \) of ref. [11].
d) Calculated \(B_{em}(E2) \) values from parameters in ref. [7].
where \(\rho_n(r) \) and \(\rho_v(r) \) are given by eq. (2).

In the present analysis, as in those of refs. [4,5], only two experimental charge transition densities are well determined. To reduce the number of the unknown quantities it is useful, in eq. (2), to assume \(\alpha_n(r) = \alpha_v(r) = \alpha(r) \) and \(\beta_n(r) = \beta_v(r) = \beta(r) \). This seems reasonable because of the expected strong polarization of the self-conjugate proton and neutron core. However, the above hypothesis does not completely restrict the analysis to an IBA-1 calculation since the effective charges and the probe interaction with the protons and neutrons of the target still remain different.

In the following our \((p,p')\) analyses that make use of eqs. (5) and (7) will be labeled (A). When applied to the experimental results from \((e,e')\) scattering to deduce \(\alpha(r) \) and \(\beta(r) \), the (A) analyses utilize only the IBA-rme numbers in eq. (2) and do not use the quantitative information given by the boson coupling constants \(\alpha \) and \(\beta \) in eq. (1) since no restriction is placed on the quadrupole moments of the deduced boson structure functions \(\alpha(r) \) and \(\beta(r) \); i.e. \(\chi_{n,v} \) is set equal to 1 in eq. (2). The ratio of the quadrupole moments of the boson structure functions \(\alpha(r) \) and \(\beta(r) \) can, however, be constrained to the ratio of the above boson coupling constants \(\alpha_{n,v} \) and \(\beta_{n,v} \) in eq. (1) as deduced from either the analysis of Van Isacker and Puddu [2] or of Saha et al. [7]. This is implemented by taking \(\chi_{n,v} = \beta_{n,v}/\alpha_{n,v} \) in eq. (2). In this case we have (B) analyses. The influence on the boson structure functions resulting from the use of (A) or (B) analyses is moderate (see fig. 2a). In particular \(\beta(r) \) flips its sign and changes its absolute value to compensate the differences in \(\beta_v \) and \(\beta_n \). This change in sign takes place because \(\chi_v \) has a different sign from \(\chi_n \) in the analyses of refs. [2,7]. All the results shown in fig. 2a were obtained using effective charges of Van Isacker and Puddu [2], but similar results have been obtained using those of Saha et al. [7]. In general we expect no big differences in the CC calculations from the use of procedures (A) or (B) since the transition densities produced by these procedures will be about the same.

An uncertainty in the use of eqs. (5) and (7) is connected to the choice of the relative sign of the experimental transition charge densities that cannot be determined experimentally from \((e,e')\) data. As shown in fig. 2a, this choice influences noticeably the shape of

Fig. 2. (a) Quadrupole boson structure functions in \(^{110}\text{Pd}\) as extracted from the experimental \(0^+_1 \rightarrow 2^+_1 \) and \(0^+_1 \rightarrow 2^+_2 \) charge transition densities of ref. [5] and effective charges rme's and boson coupling constants from ref. [2]. (b) Diagonal potentials and quadrupole boson transition form factors for the \(^{110}\text{Pd}(p,p')\) deduced from the VAM curves of the upper part, folded with the JLM potential. Full and dashed lines refer to the real and imaginary parts of the diagonal and transition potentials, respectively. Dotted curves for \(\tilde{\alpha}(r)\) and \(\tilde{\beta}(r)\) refer to Woods-Saxon first- and second-derivative form factors, respectively.
\(\beta(r) \) which changes from an approximate Woods–Saxon second derivative shape when \(\rho_2^1(r) \) and \(\rho_2^2(r) \) from \((e,e')\) are taken with opposite sign [(M) analyses], to an almost Woods–Saxon first-derivative shape when they are assumed to have the same sign [(P) analyses]. In the following three symbols (such as VAM, VAP etc.) will be used together to indicate the various choices and procedures used to perform the calculations.

The boson structure functions thus obtained from electron scattering data and also the \(^{110}\text{Pd}\) gs charge density have been employed in the analysis of proton scattering. In principle, the point densities should first be calculated from these by deconvoluting out the finite-charge distribution of the proton, after which the form factors should be obtained by folding a N–N interaction. However, equivalent results have been obtained by folding the determined transition charge densities with a N–N interaction of a slightly shorter range. The N–N potential of Jeukenne et al. [12] (JLM) has been used here with the range suggested by Mellema et al. [13]. The density dependence of the JLM interaction leads to different shapes of the real and imaginary potentials (full and dashed lines, respectively, in fig. 2b). As shown in ref. [13], the choice of the local approximation influences, to a great extent, only the imaginary parts. Here, as nuclear density, the average of the densities at the positions of the projectile and of the target nucleon is taken. The values obtained do not need any further renormalization and the volume integrals of the diagonal potentials (shown in the upper part of fig. 2b) were found to be very similar to those used in ref. [6]. The obtained form factors (summed over the proton and neutron components; see eq. (7)) are also plotted in fig. 2b. The \(\tilde{\alpha}(r) \) real part closely resembles a Woods–Saxon first derivative (dotted line in the middle part of fig. 2b), while the \(\tilde{\beta}(r) \) part is similar to a Woods–Saxon second derivative (dotted line in the lower part of fig. 2b) with a reduced radius. We conclude, therefore, that the shapes found here are indeed very near to the phenomenological form factors used in ref. [6]. The strengths of the form factors in fig. 2b depend upon the N–N interaction range. These become larger or smaller for shorter (as also for the M3Y interaction [14] or longer ranges, respectively.

The final results of our CC calculations are reported in fig. 1. When Van Isacker and Puddu’s [2] parameters are used, the \(2^+ \) and \(2^+ \) calculations are independent of whether method (A) or (B) is used, and those for the \(2^+ \) are only slightly affected. The \(2^+ \) cross section is reproduced well by the (M) method and reasonably by the (P) method, but the \(2^+ \) and the \(2^+ \) calculations suggest that choice (P) should be avoided since it fails in reproducing the experimental cross section shapes. The \((e,e')\) data for the \(2^+ \) cross section are insensitive to the choice (P) or (M) since two-step effects are negligibly small. Similar conclusions can be drawn from the use of effective charges of ref. [7]. A comparison between the (V) and (S) calculations suggests that the latter overestimate all cross sections, reflecting their generally larger neutron transition matrix elements \(M_N \) contributions which increases their sensitivity to the p–n effective interaction.

We would like to stress the point that all the curves in fig. 1 have been obtained without free parameters. In table 1 the \(B(E2) \) values between the four coupled levels examined here are reported. Those obtained from our present \((p,p')\) analyses have been determined from the effective electric transition strengths, i.e. from formulas 4, 3 and 2, using the effective charges and boson structure functions employed in the various analyses. We also include the \(B_{em} \) values calculated in ref. [2] and those calculated using the parameters of Saha et al. [7], and the existing experimental \(B_{em} \) values [11]. We note that all VAM and VBM calculations, which reproduce the data better, also reproduce all the known experimental \(B_{em}(E2) \)-values of ref. [11]. Even the SAM calculations which yield bad fits to the \((p,p')\) data because of their higher \(M_N \) values, reproduce the \(B(E2) \)-values reasonably well. Only the VAP results which reproduce the \(B(E2, 0^+_1 \rightarrow 2^+_1) \) and \(B(E2, 0^+_1 \rightarrow 2^+_2) \) values as they should, fail badly in reproducing the other known experimental \(B(E2) \)-values as well as the experimental \((p,p')\) data.

In summary, we have shown that quadrupole excitations in proton scattering can be satisfactorily reproduced from rme’s evaluated from the IBA model and form factors given by an IBA-weighted sum of two parts evaluated from two quadrupole transition charge densities deduced from \((e,e')\) scattering folded with a N–N interaction. The d-boson non-conserving form factor is similar in shape to a Woods–Saxon first derivative, and the d-boson conserving one comes out similar to a second derivative with a smaller radius. At
the moment the only remaining uncertainty in the calculations results from the use of neutron—boson structure functions equal to those of protons. To eliminate such uncertainty the \((e,e')\) scattering to four \(2^+\) states should be measured.

We would like to acknowledge fruitful discussions with F. Iachello. This work was performed as part of the research program of the “Stichting voor Fundamenteel Onderzoek der Materie” (FOM) with financial support from the “Nederlandse Organisatie voor Zuiver Wetenschappelijk Onderzoek” (ZWO).

References