MULTIPOLARITY OF QUASICONTINUUM γ-RAYS FROM COLLECTIVE HIGH-SPIN STATES IN 152Dy

Kernfysisch Versneller Instituut, Zernikelaan 2, 9747 AA Groningen, The Netherlands

Received 17 June 1986

Measured internal conversion coefficients for quasicontinuum transitions in 152Dy in the spin range of 30–50 establish their predominantly stretched E2 character. Those transitions are attributed to triaxial bands near the yrast line as calculated in terms of the cranking approximation using the Woods–Saxon potential.

The nucleus 152Dy has been the subject of many experimental as well as theoretical investigations since the discovery of a high-spin (17^+) isomer in 1976. The nearly spherical shapes at low spin have been inferred from the irregular energy level scheme established up to spin 38 already in 1979. The presence of several isomers established the predominantly non-collective nuclear motion at low and moderately high spins; see ref. [1] for a summary of the early investigations on 152Dy. An extensive experimental study [2] of the quasicontinuum (qc) spectrum did not reveal any evidence for collective behaviour up to spin 30. Therefore the exciting possibility of a drastic shape change from oblate to prolate has been searched for in the domain of very high spins [3,4]. Recently a discrete SD band has been located [5] up to spin 60 in 152Dy. Some evidence for spherical to deformed shape changes has also been deduced [6–8] for 152Dy from the behaviour of “bumps” in the γ-ray spectra and from the derived multiplicity-energy correlations.

We report predominantly stretched E2 transitions in the spin range 30–50, measured with a mini orange spectrometer [9], which are interpreted in terms of near-yrast triaxial bands employing the cranking approximation.

The quasicontinuum high-spin states in 152Dy were selected after 180 MeV 40Ar induced reactions by using a sum spectrometer and by applying the catcher-foil technique. As a cross-check the experiment was repeated with a 12C beam of 82 MeV. The maximum angular momentum transferred in the first reaction is $I_{\text{max}} = 70\hbar$ and in the second reaction $= 40\hbar$, as deduced from measured multiplicities.

Self-supporting targets of 700 μg/cm² enriched 144Nd and 116Cd were used. Transitions deexciting the 17^-, 60 ns, isomer in 152Dy were detected in an array of four 7.6×5.1 cm \varnothing NaI detectors located near the catcher. The target was placed in the center of a 40×40 cm \varnothing NaI sum spectrometer divided into halves of three segments each. The sum energy (efficiency ~ 55%) and segment-fold were also used to select the entry region as well as to decrease the contribution of 151Dy, in which also isomeric transitions occur, to less than 10%. We measured the energy and angular distributions of prompt gamma rays from states above the isomer with three 15.1×12.6 cm \varnothing NaI detectors placed at 50 cm distance from the target at angles of 90°, 135° and 165° to determine the γ-ray
energies and angular distributions. Neutrons were rejected by time-of-flight discrimination. Two Ge detectors, surrounded by BGO anti-Compton shields, were used to check the exit channel selectivity and to measure the yields of discrete lines. Prompt conversion electrons were measured with a mini orange spectrometer [9] placed in the gap between the two halves of the sum spectrometer at 60° with respect to the beam direction.

The unfolded γ-ray spectra measured in the 144Nd(12C, 4n) and 116Cd(40Ar, 4n) reactions are shown in fig. 1a. The corresponding γ-ray anisotropies (fig. 1b) in the 40Ar experiment are close to the value expected for stretched quadrupole transitions between fully aligned high-spin states ($a_2 = 0.38$, $a_4 = -0.13$), when the (isotropic) statistical E1 contribution is subtracted. The statistical distribution is approximated by $E^3 \exp(E/kT)$ with $kT = 0.38$ MeV (full line in fig. 1a). In the case of the 12C experiment only small fractions, < 20%, of stretched quadrupole transitions are present. The conversion detectors were measured with two different magnet configurations of the mini orange spectrometer.

One setting with 5A type magnets (5A) had maximum transmission around 1150 keV, the other with the 6A type magnet (6A) around 1750 keV. The distance of the Si(Li) detector from the target was 70 mm in the 5A setting and 90 mm in the 6A setting. The background resulting from γ-rays and neutrons from the target and also from secondary electrons emitted by the surrounding material (such as the magnets and central absorber) was determined in a separate inbeam measurement with the same magnet configurations, but with a transmission setting outside the regions of interest (cf. ref. [10]). The ICC deduced after electron background subtraction are presented in fig. 2a along with the theoretical values for E1, E2 and M1. The consistency of the method was checked by determining the ICC of two discrete lines with energies of 968 keV (E1) and 991 keV (E2) (crossed data points in the figure). The prompt electron spectrum and the corresponding corrected and smoothed background curve measured with the 40Ar induced reaction are shown in fig. 2b. The 5A transmission curve is plotted in fig. 2c. In the 40Ar reaction the total ICC are quite close to the values expected for E2 transitions, particularly in the energy region around $E_\gamma \approx 1$ MeV. Note that also E1/M1 admixtures can explain the measured ICC. The observed anisotropies (fig. 1), however, would then be consistent only if non-stretched M1 transitions were assumed, which seems unlikely for high energy γ rays ($E_\gamma > 1$ MeV). The results obtained with the 12C beam indicate a nearly pure E1 character of the medium spin qc with less than 25% contribution coming from radiation with higher ICC, like E2. We can therefore attribute the high ICC observed with 40Ar beam to the deformed structures in the high-spin region of 152Dy.

The total prompt multiplicity of the qc bump

Fig. 1. (a) Unfolded γ-ray spectra of the 144Nd(12C, 4n) and the 116Cd(40Ar, 4n) reactions producing 152Dy. (b) The corresponding γ-ray anisotropies defined as the γ-ray yield at 165° divided by the corresponding yield at 90°. Triangles show the anisotropy of the qc transitions for the 40Ar reaction with the statistical transitions subtracted from the total γ-ray yield.
MINI ORANGE TRANSMISSION
5A, t=35, g=35

180 MeV
40Ar + 116Cd
e -SPECTRUM b

COUNTS/CHANNEL

CONVERSION COEFFICIENT
152Dy

Icc (kA-2)

ENERGY (KEV)

Fig. 2. (a) Measured internal conversion coefficients for the
116Cd(40Ar, 4n) reaction (squares for the 5A mini orange
setting and triangles for the 6A setting) and for the 144Nd(12C,
4n) reaction (open circles). Positions and measured ICC of the
968 keV (E1) and 990 keV (E2) are indicated for the 40Ar
induced reaction. (b) The electron spectrum measured with the
Si(Li) detector and the deduced background (solid curve) are
shown in the center part while the 5A transmission curve is
shown in the top part (c); f denotes the distance between
target and the center of the magnet and g that between the
detector and that center.

deduced from the decomposition of the γ-ray
spectrum in the 40Ar induced reaction into statistical,
qc and discrete components is about 6 in the
energy region 850–1500 keV. From a recent
measurement [11] it is concluded that only a small
intensity of less than 10% in the collective E2
bump (850–1500 keV) can be accounted for by
superdeformed structures in the high-spin region
of 152Dy. If we assume a similar population of the
discrete SD band in 152Dy as in the experiment of
ref. [5], then only 4% intensity of the collective
bump can be ascribed to that SD band. This
number is derived from the 2.2% intensity of the
SD band, combined with an average multiplicity
of 11 between 850–1500 keV, giving a 2.2 · 11 =
24% probability of one SD transition, compared
to the 6 transitions observed in the qc bump. The
total prompt multiplicity above the 17+ isomer
amounts to 23 for the 40Ar induced reaction. A
detailed check of the known level scheme results
in an average of 10 discrete transitions above the
isomer, which carry a total amount of angular
momentum of 15h. The decomposition of the full
energy spectrum (cf. fig. 1a) results in an average
of 3 statistical transitions and of the remaining 10
qc transitions we find 6 in the collective bump (see
above). We assume for the angular momentum
release 0.5h per statistical transition as well as
0.5h per neutron, 2h per transition in the collec-
tive bump and 1h for the remaining qc transitions.
The total average angular-momentum release in
the 40Ar reaction can now be estimated as

\[\langle l \rangle = (17 + 15 + 3 \cdot 0.5 + 6 \cdot 2 + 4 \cdot 1 + 4 \cdot 0.5) \]
\[= 51.5h. \]

The maximum angular momentum transfer is
estimated as \(l_{\text{max}} = 65h \) within the sharp cut-off
approximation, taking into account a 20% con-
btribution of the cross section of the 5n reaction.
Relaxing the crude sharp cut-off restriction we
may expect a population of states with angular
momenta up to \(\sim 70h \).

Total-energy calculations (not discussed in de-
tail here), which include the temperature effect,
indicate the existence of optimal conditions for
populating SD states. In 152Dy this corresponds to
\(l_{\text{optimal}} = 70h \) in the temperature range of \(T =
600–1000 \text{ keV} \). At that angular momentum a
potential barrier separates the SD configuration
from the non-SD ones. Within that temperature
range a lower angular-momentum limit (\(l_{\text{limit}} =
60h–65h \)) is predicted below which the barrier
disappears. In the reaction with the 40Ar beam we
bring into the compound system \(l_{\text{max}} = 70h \) and
thus we may expect that only a small fraction of
the total population feeds the SD states. This
result is confirmed by the 4% intensity, discussed above.

The \(\gamma \) transitions at the upper edge of the collective bump (cf. fig. 1a) with \(E_\gamma(\text{max}) \approx 1.5 \text{ MeV} \), correspond to \(I_{\text{max}} \approx 48\hbar-56\hbar \), if we assume that they belong to triaxial bands with properties resulting from theory (see below). The energy region of \(E_\gamma = 850-1400 \text{ keV} \), where the high ICC are measured for the stretched E2 transitions, thus corresponds to the angular-momentum range of approximately \(30\hbar-50\hbar \).

We performed total energy calculations using the Woods-Saxon cranking method with the recent extension \[12\] of the shell correction approach generalized to the case of rotation. This enables us to separate individual particle-hole configurations. The quantum numbers characterizing these configurations are the parity \(\pi \), and the signature \(\sigma \). The approach was earlier employed \[13\] to describe the shape evolution in the neutron-deficient Gd, Dy, Er and Yb isotopes. Here, particular attention is paid to the collective structures around \(I \approx 50\hbar \) which are found in the present experimental study.

The results of calculations for the low-lying configurations in \(^{152}\text{Dy} \), are shown in fig. 3. Each rotational band, represented by a single line in the figure, corresponds roughly to a constant deformation. Due to the centrifugal stretching the yrast oblate-shape polarization varies from \(-0.16 \leq \beta_2 \leq 0\) at \(I < 40\hbar \) to \(\beta_2 = -0.3 \) at \(I > 50\hbar \). At spins around 40 the non-collective particle–hole (p–h) yrast states contain usually two \(i_{13/2} \) neutrons and four \(h_{11/2} \) protons. Collective bands illustrated in fig. 3 lie 0.5–1.0 MeV above the p–h states. For \(I \approx 20\hbar \) the near-prolate bands with \(\beta_2 = 0.22 \) and \(\gamma = 0^\circ \) appear close to the yrast states. The second group of collective bands, appearing close to the yrast for \(20 < I < 50 \) are the triaxial configurations \((10^\circ \leq \gamma \leq 25^\circ, 0.15 \leq \beta_2 \leq 0.23) \). These bands contain the same characteristic \(2\nu i_{13/2} \) and \(4\pi h_{11/2} \) configurations as the non-collective yrast

![Fig. 3. Calculated excitation energies of near yrast structures in \(^{152}\text{Dy} \) displayed versus angular momentum. The excitation energies are taken with respect to a smooth reference, \(E_{\text{ref}} = 0.007 I^2 \text{ MeV}^{-1} \hbar^2 \). The single collective bands are indicated by lines and the particle–hole states by dots and triangles. The strongly sloping-down lines on the right represent the superdeformed bands, which extend to lower angular momentum above the yrast. The hatched area indicates the effect of proton pairing (see text). The upper-left inset shows the single-neutron routhians at the SD minimum (\(\beta_2 = 0.65 \)) as functions of rotational frequency. The variation with \(\omega \) of the proton-pairing gap, \(\Delta_p \) (in MeV) at that minimum, is shown in the upper-right inset.]
states in the considered spin interval. With increasing rotational frequency these bands terminate, like those terminating at the non-collective states 36^- and 39^- (see fig. 3). In the spin interval $45 \leq I \leq 70$ the bands with $\beta_2 = 0.35$ and pronounced triaxiality ($\gamma \approx 20^\circ$) appear close to the yrast. They differ from the bands in the previous group by the presence of one $j_{15/2}$ neutron and/or one $i_{13/2}$ proton. The superdeformed bands with $\beta_2 = 0.65$ contain on the average two $j_{15/2}$ neutrons and four $i_{13/2}$ protons. The inset on the left in fig. 3 shows single-particle neutron routhians at deformation $\beta_2 = 0.65$. The large (more than 1 MeV) shell openings at $N = 85, 86$, in the single-neutron routhians (left inset), are the microscopic origin of the particular lowering of superdeformed bands in 152Dy and 154Er [13]. Calculations with pairing included indicate, however, that a significant contribution from the protons should be expected even as high as $I \sim 60\hbar$. This leads to a lowering of one of the superdeformed bands with respect to the others, typically ~ 800 keV, thus producing a significant gap in the band structure (marked by the hatched area in fig. 3). The variation of Δ_p (right inset) follows from the Hartree–Fock–Bogolyubov cranking calculations (cf. ref. [1]) with standard parameter values. At $\hbar \omega = 0.7$ MeV the proton pairing gap is still of the order of 800 keV.

In summary, we observe a predominant amount of stretched E2 radiation at high angular momentum ($\geq 30\hbar$) which is attributed to a number of triaxial rotational bands on the basis of a deformed Woods–Saxon cranking calculation. The stretched E2 character is unambiguously established by combining γ-ray anisotropies with internal conversion coefficients. From the measured intensities it can be concluded that only a minor fraction of the observed E2 bump can be accounted for by superdeformed structures.

The authors would like to thank H. Ho, D. Chmielewsk a and J.F.W. Jansen for their help in data taking. This work is part of the research programme of the Stichting voor Fundamenteel Onderzoek der Materie (FOM) with financial support from the Nederlandse Organisatie voor Zuiver Wetenschappelijk Onderzoek (ZWO). One of the authors (W.N.) wishes to acknowledge support from the Polish Ministry of Science and Education under the project CPBP 01.09.

Note added in proof. We found also a strong deformation-driving effect due to neutrons, when minimizing the total energy with respect to the hexadecapole degree of freedom; a minimum at spin 50, $\beta_4 \approx 0.09$. The proton-energy gap reaches ≈ 700 keV and the static proton pairing collapses, resulting in a gap of also ≈ 700 keV between yrast and non-yrast SD states.

References