Coulomb excitation of 31Mg

M. Seidlitza,*,†, D. Müchera,b,1, P. Reitera,1, V. Bildsteinb,c,1, A. Blazhev a,1, N. Bree d,1, B. Bruyneela,1, J. Cederkäll e,1, E. Clement f,1, T. Davinson g,1, P. Van Duppen d,1, A. Ekströma,1, F. Finke a,1, L.M. Fraile h,i,1, K. Geibela,1, R. Gernhäuserb,1, H. Hess a,1, A. Hollera,1, M. Huyse d,1, O. Ivanov d,1, J. Jolie a,1, M. Kalkühler a,1, T. Kotthaus a,1, R. Krücken b,1, R. Lutter-J f,1, E. Piselli h,1, H. Scheits,1, I. Stefanescud,1, J. Van de Walle h,m,1, D. Voulot h,1, N. Warr a,1, F. Wenander h,1, A. Wiensa,1

a Institut für Kernphysik, Universität zu Köln, 50937 Köln, Germany
b Physik Department E12, Technische Universität München, 85748 Garching, Germany
c Department of Physics, University of Guelph, Guelph ON, N1G 2W1, Canada
d Instituut voor Kern- en Stralingsfysica, Katholieke Universiteit Leuven, 3001 Leuven, Belgium
e Institut für Kern- und Strahlungsfysik, KTH, Stockholm, Sweden
f Grand Accélérateur National d’Îons Lourds (GANIL), 14021 Caen Cedex, France
g School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
h ISOLDE, CERN, Physics Department, 1211 Genève 23, Switzerland
i Grupo de Física Nuclear, Universidad Complutense, 28040 Madrid, Spain
j Department of Physics, Ludwig Maximilian Universität München, 85748 Garching, Germany
k Max-Planck-Institut für Kernphysik, 69029 Heidelberg, Germany
l RIKEN Nishina Center, Wako, Saitama 351-0198, Japan
m Kernfysisch Versneller Instituut, Rijksuniversiteit Groningen, 9747 AA Groningen, Netherland

A R T I C L E I N F O

Article history:
Received 10 March 2011
Received in revised form 29 April 2011
Accepted 5 May 2011
Available online 10 May 2011
Editor: V. Metag

Keywords:
Coulomb excitation
ISOL
Reduced transition matrix element
Island of inversion

A B S T R A C T

The ground state properties of 31Mg indicate a change of nuclear shape at $N = 19$ with a deformed $j^\pi = 1/2^+$ intruder state as a ground state, implying that 31Mg is part of the “island of inversion”. The collective properties of excited states were the subject of a Coulomb excitation experiment at REX-ISOLDE, CERN, employing a radioactive 31Mg beam. De-excitation γ-rays were detected by the MINIBALL γ-spectrometer in coincidence with scattered particles in a segmented Si-detector. The level scheme of 31Mg was extended. Spin and parity assignment of the 945 keV state yielded $5/2^+$ and its de-excitation is dominated by a strong collective $M1$ transition. Comparison of the transition probabilities of 30,31,32Mg establishes that for the $N = 19$ magnesium isotope not only the ground state but also excited states are largely dominated by a deformed pf intruder configuration.

© 2011 Elsevier B.V. All rights reserved.

1. Motivation

Shell structure is one of the most important frameworks for understanding nuclear structure and the properties of atomic nuclei. Recent experimental and theoretical findings indicate that magic numbers are subject to the proton-to-neutron ratio and new magic numbers are revealed when going to more exotic nuclei. Such a new magic number was proposed at $N = 16$ for some nuclei between $Z = 8$ (oxygen) and $Z = 14$ (silicon) [1,2] and confirmed in recent experiments [3]. The shell model modifications and the occurrence of new magic numbers are traced back to the residual nucleon–nucleon interaction. The $(\sigma \sigma)(\tau \tau)$ monopole term of the strongly attractive pairing interaction of protons and neutrons is strongest for $S = 0$ (spin-flip), $\Delta L = 0$ (spin–orbit partner) and $T = 0$ (isospin-flip) [1]. In the case of silicon, protons in the $\pi d_{5/2}$ orbital strongly interact with neutrons in $\nu d_{3/2}$, the $\nu d_{3/2}$ orbital becomes lower in energy, resulting in the classical magic number $N = 20$. By removing protons from the $\pi d_{5/2}$ orbital the residual interaction decreases due to the missing $S = 0$ partner protons and the neutron $d_{3/2}$ orbital is shifted to higher energies. The energy gap to the pf shell becomes smaller, causing a new (sub)shell closure at $N = 16$.

The neutron-rich isotopes of Ne, Na and Mg are located at this transition from a shell closure at $N = 20$ to a shell closure at $N = 16$. Early mass measurements for 31,32Na and 31,32Mg at ISOLDE (CERN) found deviations from the expected values for a closed shell at $N = 20$ [4,5]. Campi et al. suggested a deformed...
Three promising candidates for such a $5/2^+$ state are known between 600 keV and 1400 keV [36], but spin and parity assign-
ments are not available from β-decay experiments. The unknown $5/2^+$ state and the predicted collective properties of the first excited positive-parity states in 31Mg motivated a first Coulomb excitation experiment with a 31Mg beam in inverse kinematics at REX-ISOLDE, CERN. The intruder configurations also at higher excitation energy are the subject of this investigation to clarify the placement of 31Mg inside the island of inversion. Reduced transition probabilities, i.e. $B(E2)$ and $B(M1)$ values, will be presented and compared to recent theoretical results in this work.

2. Experiment

The Coulomb excitation experiment was performed at the REX-ISOLDE facility at CERN [37,38]. The short-lived radioactive 31Mg beam [half-life $t_{1/2} = 232(15)\text{ ms}$] was produced by bombarding a 50 g/cm2 UC$_x$ target with 1.4 GeV protons, provided by the CERN PS Booster, with a maximum intensity of $3.2 \times 10^{13} \text{ p/s}$. The pulse repetition time was $n \times 1.2 \text{ s}$ (n integer), at an average of 2.4 s. The produced Mg atoms diffusing out of the heated primary target material were selectively laser ionized by a threestep laser ionization scheme in the Resonance Ionization Laser Ion Source (RILIS) [39]. The extracted 1^+ ions were mass separated by the ISOLDE High Resolution Separator (HRS) and were guided to REX-ISOLDE. Here the ions were first accumulated, cooled, and bunched in a Penning Trap for up to 28.5 ms before injecting into an Electron Beam Ion Source (EBIS) and charge-breeding to high charge states. After an A/q-separation with $A/q = 3.44$ ($q = 9+$) the radioactive ion beam was post-accelerated by the REX linear accelerator and delivered with a final energy of 3.0 MeV/u and an average intensity of $1 \times 10^4 \text{ ions/s}$ onto the secondary target inside the highly efficient MINIBALL setup. During the Coulomb excitation experiment two enriched 109Ag targets were used with thicknesses of 1.9 mg/cm2 and 4.0 mg/cm2, respectively. The beam on target time added up to 29 hours for the 1.9 mg/cm2 target and 58 hours for the 4.0 mg/cm2 target.

The scattered beam and recoiling target nuclei were detected by a CD-shaped 500 µm thick double sided silicon strip detector (DSSSD), consisting of four identical quadrants [40]. Each quadrant comprised 16 annular strips at the front side and 24 radial strips at the back side for identification and reconstruction of the trajectories of the scattered nuclei. The detector covered forward angles between 16.4° and 53.3° in the laboratory system. De-excitation γ-rays following Coulomb excitation of projectile and target nuclei were detected by the MINIBALL γ-spectrometer, consisting of eight triple cluster detectors in close geometry, each containing three 6-fold segmented HPGe crystals [41]. The photopeak efficiency of the array at 1.3 MeV was 8% after cluster addback. The high segmentation of the setup ensured a proper Doppler correction for in-flight γ-ray emission at $\nu/c \approx 8\%$ by combining the angular information of the γ-ray with the direction and velocity of the scattered beam particle that was detected in coincidence.

Two additional particle detectors were used downstream after the scattering chamber to monitor the position of the beam and...
the beam composition, respectively (Fig. 2). A position sensitive parallel plate avalanche counter (PPAC), could be placed right into the beam axis 1.2 m behind the target for measurement of the beam profile in x and y direction [42]. A Bragg ionization chamber close to the beam dump position allowed permanent monitoring of the beam composition in mass A and charge Z [43]. Data were recorded using particle-γ coincidences with a coincidence window of typically 800 ns.

In Coulomb excitation experiments with radioactive ion beams possible beam contaminations have to be carefully investigated, because all beam components contribute to Coulomb excitation of the target material, which is used for normalization. For the extraction of the transition probabilities it was mandatory to monitor and to determine the exact beam composition during the experiment. Different sources of beam contamination were identified: Isobaric contaminants occur by β-decay of the radioactive 31Mg during accumulation and charge breeding at REX-ISOLDE. The isobaric contaminant 31Al, directly produced in the primary ISOLDE target, was surface ionized due to the high temperature of the hot cavity and was not separated completely in the HRS due to the small mass difference ($\Delta m/m = 1/2460$). An additional beam componentstemmed from residual argon gas in the REX-Trap and EBIS. After charge breeding, the 38Ar had almost the same A/q ratio (q = 11+) and was accelerated together with the 31Mg and 31Al.

The beam composition was carefully monitored during the experiment, using three different techniques: (i) The ratio of laser ionized 31Mg over surface ionized 31Al in the beam was checked by switching the laser on and off periodically every 2.5 hours for about 30 minutes. While the laser was on, 31Mg was elastically scattered into the DSSSD as well as 31Al. When the laser light was blocked, only the surface ionized contaminant was detected. The fraction R of magnesium in the beam was calculated out of the intensities I_{on} with laser on and I_{off} with laser off as $R = (I_{on} - I_{off})/I_{on}$. (ii) The time dependence of the RIB intensity with respect to the proton beam impact on the primary ISOLDE target was analyzed. Due to their fast release out of the primary target [44] and their short lifetime the 31Mg ions showed a high intensity only for the first 800 ms after the proton pulse. For $\Delta t > 800$ ms the contaminants dominated the beam composition. (iii) In addition the exact beam composition was determined with help of the Bragg ionization chamber.

Taking into account the β-decay the accumulated radioactive beam composition of the experiment amounted to 78.9(14)% for 31Mg within a time window of 800 ms after the proton pulse impact, which was applied in the further analysis of the measured γ-intensities. Smaller beam fractions were found to be 17.7(9)% for 31Al and 3.4(5)% for 38Ar.

3. Analysis

Calibration of all DSSSD segments was done with an α-source, containing 239Pu, 241Am, and 244Cm. To calibrate the MINIBALL clusters and to determine their energy dependent efficiency, 60Co and 153Eu sources were mounted onto the target frame at the target position. For Doppler correction, all angles of the cluster detectors had to be known exactly. Therefore an angle-calibration measurement was performed, using Doppler-shifted γ-rays after the neutron pick-up reaction 25Ne(23Ne, 25Ne)p.

Coulomb excitation data analysis commenced by selecting scattered 31Mg ions, which were identified by the CD detector (DSSSD). The kinematics of the scattered beam or target particles is clearly separated by the measured correlation of particle energy and scattering angle. In the center-of-mass system a scattering angle range of $\Theta_{CM} = 21.0^\circ$–66.5$^\circ$ is covered. A time window with $\Delta t_p = 250$ ns between the particle and the γ-ray was applied to select the prompt Coulomb excitation events and to suppress random coincidences from constant room background, i.e. β-decay and bremsstrahlung. The prompt Coulomb excitation spectrum for further analysis is particularly clean of any background lines after background subtraction with a long time window $\Delta t = 3750$ ns. All observed γ lines are due to Coulomb excitation of either beam or target nuclei.

4. Results

Background subtracted γ-ray spectra observed in coincidence with a scattered beam particle in the CD-detector are shown in Fig. 3. Doppler correction was performed for the detected 31Mg projectile and the corresponding recoiling 109Ag target nucleus, respectively. Strong γ-transitions are observed at 311 keV and 415 keV, depopulating Coulomb excited states in 109Ag. Two lines at 50 keV and 895 keV, already observed in β-decay studies of 31Na [33,45], are assigned to the transitions of a known excited state at 945 keV in 31Mg. The small Doppler-broadening of the 50 keV line in the spectrum corrected for 31Mg is due to the long half-life of 16(3) ns [33]. The time of flight between target and CD-detector is only 1.7–3.2 ns, thus these γ-rays were emitted at rest after implantation in the detector. There is evidence for three more transitions de-exciting states in 31Mg. Two lines at 623 keV and 673 keV were already established by the β-decay studies as depopulating transitions of an excited state at 673 keV into the 3/2$^+$ state at 50 keV and the ground state, respectively. The line at 724 keV was observed for the first time in this work. To identify this γ-transition unambiguously and to place it into the level scheme, information on coincident transitions has been evaluated. Multiple γ-events, that are in prompt coincidence with a detected beam particle, have been sorted into a γγ-matrix. The known coincident transitions at 895 keV and 50 keV from a 5/2$^+$ → 3/2$^+$ → 1/2$^+$ cascade are confirmed by coincidence relations. Despite low statistics of 2–3 counts on a mean background of about 0.02 count/keV, which is in good agreement with the MINIBALL γ-efficiency of ~10%, the cut spectrum on the 724 keV transition shows clear evidence for coincident γ-rays at 50 keV, 171 keV and 221 keV (see Fig. 4). These transition energies are all known to belong to the low-energy level scheme of 31Mg [33,45]. The new 724 keV transition can be inserted clearly into the level scheme of 31Mg as de-exciting transition of the 945 keV state, feeding a known 3/2$^+$ state at 221 keV [46,47]. The direct decay of the 945 keV state into the ground state was not observed.
The measured de-excitation yields of the γ-transitions in ^{31}Mg were used to determine the experimental Coulomb excitation cross sections, which depend on the unknown reduced transition probabilities. These cross sections were normalized to the well-known cross sections for exciting the $3/2^-$ and $5/2^-$ states in the ^{109}Ag target. The fit of the experimental data was performed using the coupled channels Coulomb excitation code GOSIA [48]. The electromagnetic transition matrix elements were fitted using a least squares fit. The calculation takes into account: the energy loss of the projectile, the target material, the angular distribution of the emitted γ-rays, internal conversion coefficients, the position and efficiency of each MINIBALL cluster detector, and an integration over the scattering angle range covered by the CD detector.

Due to the unknown spin and parity values of excited states in ^{31}Mg, different scenarios for the spin and parity of the 945 keV state and different excitation modes were assumed: (i) pure 2-step excitation $1/2^+_g \rightarrow 3/2^- \rightarrow (5/2^+, 7/2^+)$ via $M1$ and $E2$, respectively; (ii) $E1$ excitation to $1/2^-$ or $3/2^-$; (iii) $E3$ excitation to $5/2^-$ or $7/2^-$; (iv) $E2$ excitation to $3/2^+$; (v) $E2$ excitation to $5/2^+$. To limit the valence space of the Coulomb excitation calculation a truncated level scheme of ^{31}Mg was used at this point, containing approximately 50 levels.

To determine the excitation probability of the 945 keV state, the main contribution of the excitation comes from direct excitation from the ground state into the 945 keV state. Thus the main contribution of the excitation comes from direct excitation from the ground state into the 945 keV state.

In the case of a 1-step excitation via $E1$ the 945 keV level would have negative parity and the spin would be limited to $1/2$ or $3/2$. For this assumption GOSIA calculated a reduced excitation probability of $B(E1, 1/2^+ \rightarrow 3/2^-) = 0.224 \text{ e}^{-2}\text{mb}$. For de-excitation into the $3/2^+$ state at 50 keV the calculation yielded $B(E1) = 2.13 \text{ e}^{-2}\text{mb}$ and $B(M1) = 127 \mu^2_B$ for de-excitation into the $3/2^-$ state at 221 keV, respectively. For a $1/2^-$ state at 945 keV GOSIA calculated excitation probabilities of the same order. All these values are unreasonably high and scenario (ii) can be excluded. Also an excitation via $E3$ to a $5/2^-$ or $7/2^-$ state would yield a similar disproportionally huge value of $B(E3) > 40000 \text{ e}^{-2}\text{mb}$. Thus a negative parity state, i.e. scenario (iii), can be excluded.

The remaining possibilities to get consistent values for the excitation of the 945 keV state are the scenarios (iv) and (v): direct (1-step) excitation from the ground state via $E2$ to a $3/2^+$ or a $5/2^+$ state. Now the full known level scheme of ^{31}Mg up to 1 MeV and all known and newly observed transitions were taken into account for the calculation, with adopted $B(E1)$, $B(E2)$, and $B(M1)$ values for the states up to 500 keV [36,46]. Predicted spectroscopic quadrupole moments Q_2 and their reduced matrix elements for the $3/2^+$ and $5/2^+$ states [16,35], so called re-orientation matrix elements, were included into the calculation, using [49]

$$Q_s^{ay} = -\frac{16\pi I(2I - 1)}{5(I + 1)(2I + 1)(2I + 3)} M_{a_\alpha,a_\beta}(E2),$$

where $M_{a_\alpha,a_\beta}(E2) = -\langle \alpha | \mathcal{J}_2(E2) | \alpha' \rangle$ is the reduced matrix element.

For the 945 keV state the reduced transition probability was calculated to be $B(E2)^+ = 182 \pm 17_{-13}^{+39} \text{ e}^{-2}\text{mb}$. Both, the $3/2^+$ and $5/2^+$ scenarios coincide within the error bar. The error bar is dominated by the statistical error on the number of counts in the observed γ-transitions and the uncertainty on the beam composition.

De-excitation was investigated using the measured branching ratios [44] for the 895 keV transition, 24(7)% for the 724 keV transition, and an upper limit of $<26.8\%$ for the unobserved direct transition to the ground state. Assuming a $3/2^+$ state at 945 keV its de-excitation would have to proceed via $E2 + M1$ transitions to the ground state and the $3/2^+$ state at 50 keV, respectively. The investigated branching ratios yield a ground state transition via $M1/E2$ with a reduced transition probability that is hindered by a factor of about 10^{-4} compared to the 895 keV transition. This is very unlikely due to the similar $2p3h$ configuration of the ground state and the first $3/2^+$ excited state at 50 keV [16]. Thus, scenario (iv), i.e. a $3/2^+$ state at 945 keV can be rejected.

The only remaining possibility is that the 945 keV is a $5/2^+$ state (scenario (v)). Assuming a pure $E2$ transition to the 50 keV state would imply an unreasonably high $B(E2)$ value of about 2700 $\text{ e}^{-2}\text{mb}$ to reproduce the measured intensities. Thus de-excitation to the 50 keV state proceeds via a strong $M1$ transition with a calculated transition probability range of $B(M1) = 1.0 \ldots 0.5 \mu_B^2$. These limits depend mostly on the multipole mixing ratio δ of the transition and its absolute $E2$ strength. The additional de-excitation to the $3/2^+$ state at 221 keV had to proceed via an $E1$ transition with $B(E1) > 8.9 \times 10^{-4} \text{ e}^{-2}\text{mb}$.

For the 673 keV state, which is a $3/2^+$ state with a 0$p1h$ configuration [47], the analysis yielded a reduced transition probability of $B(E2, 1/2^+ \rightarrow 3/2^-) < 21(8) \text{ e}^{-2}\text{mb}$. Assuming purely $E2$ de-excitation from this state as well, the calculation gives $B(E2) = 11(5) \text{ e}^{-2}\text{mb}$ and $B(E2) = 24(12) \text{ e}^{-2}\text{mb}$ for the 673 keV and 623 keV transitions, respectively. The $B(E2)$ value of the 50 keV transition could not be determined due to feeding and a complex, non-uniform efficiency for these 50 keV γ’s in the MINIBALL detectors.
spherical $0p1h$ configuration [47,35]. A reduced coupling to the deformed $2p3h$ ground state configuration is in very good agreement with a less collective transition with $B(E2, 1/2^+ \rightarrow 3/2^+)$ = 21(8) e^2fm4 observed in this experiment.

The measured properties of the 945 keV state agree well with the predicted $5/2^+$ state of the positive-parity yrast band in 31Mg. Due to its predicted dominant $2p3h$ configuration the $5/2^+$ state has a strong coupling to the deformed ground state with $B(E2, 1/2^+ \rightarrow 5/2^+)$ = 182(20) e^2fm4. Combined with the $1/2^+$ ground state and the first excited $3/2^+$ state at 50 keV these states form a positive parity yrast band with K = 1/2, connected by almost pure M1 transitions. Measured $B(M1, 5/2^+ \rightarrow 3/2^+)$ = 0.1...0.5μ_N^2 and $B(M1, 3/2^+ \rightarrow 1/2^+)$ = 0.019(4)μ_N^2 [36] values agree well with shell model calculations done by Maréchal [16], that yield $B(M1, 5/2^+ \rightarrow 3/2^+)$ = 0.38μ_N^2 and $B(M1, 3/2^+ \rightarrow 1/2^+)$ = 0.06μ_N^2, respectively (see Table 1). For electric quadrupole transitions the shell model calculations do not reproduce the measured values. With $B(E2, 5/2^+ \rightarrow 1/2^+)$ = 127 e^2fm4 [16] it is in fact a factor of 2 bigger than the result of the present measurement, that gives $B(E2) = 61(7) e^2$fm4.

According to the rigid rotor approximation calculations in [35] another comparison with theory is done by assuming a purely rotational $K = 1/2$ band in 31Mg, given by the sequence $1/2^- \rightarrow 3/2^- \rightarrow 5/2^-$. For transitions within such a rotational band the reduced transition probability is linked to the intrinsic quadrupole moment Q_0 by [49]

$$B(E2, I_i \rightarrow I_f)_{\text{rot}} = \frac{5}{16\pi} e^2 Q_0^2 |\langle I_i | 2K0 | I_f K \rangle |^2.$$

For the $5/2^+ \rightarrow 1/2^+$ transition we get $B(E2)_{\text{rot}}$ = 69 e^2fm4 and $B(E2)_{\text{rot}}$ = 114 e^2fm4, calculated with predicted quadrupole moments from shell model and rigid rotor approximation calculations, respectively [16,35]. The result from shell model calculations is in reasonable agreement with the experimental result (see Table 1), whereas the rigid rotor approximation yields a transition strength that is too high by a factor of more than 1.8.

The deduced excitation probability $B(E2, 1/2^+ \rightarrow 5/2^+)$ = 182(20) e^2fm4 can be compared to the $0^+ \rightarrow 2^+$ E2 strengths in the neighboring even–even magnesium isotopes 30,32Mg. While the excitation $B(E2)$ values always strongly depend on the different spins of the initial (ground) states, the transition strengths of the de-excitation process will be compared instead. For 32Mg the experimental results, i.e. $B(E2)$ values, were discussed by [19], including possible feeding contributions. An E2 strength of $B(E2, 2^- \rightarrow 0^+)$ = 89(11) e^2fm4 is reported without a correction for feeding, and $B(E2, 2^- \rightarrow 0^+)$ = 66(9) e^2fm4 includes a correction for feeding from a higher lying state [19], which is consistent with [50]. The new $B(E2, 5/2^+ \rightarrow 1/2^+)$ = 61(7) e^2fm4 of 31Mg compares well with the feeding corrected $B(E2, 2^- \rightarrow 0^+)$ = 66(9) e^2fm4 of 32Mg [19], and exceeds the $B(E2, 2^- \rightarrow 0^+)$ = 48(6) e^2fm4 of 30Mg [26]. This result establishes that deformed pf intruder configurations exist for the ground and low lying states already at N = 19, including a sequence of collective rotational states.

5. Discussion

The measured level scheme and reduced transition probabilities of 31Mg are compared to results from recently published calculations [16,35]. Both publications predicted a $5/2^+$ state at 988 keV [16] and 0.89 MeV [35], respectively, which is in very good agreement with the present results of the 945 keV state in this work (see Fig. 6). Additionally, the 673 keV state is the $3/2^+_2$ state and the head of the $K^\pi = 3/2^+$ band with a dominant $0p1h$ configuration [47,35]. A reduced coupling to the deformed $2p3h$ ground state configuration is in very good agreement with a less collective transition with $B(E2, 1/2^+ \rightarrow 3/2^+_2)$ = 21(8) e^2fm4 observed in this experiment.

The measured properties of the 945 keV state agree well with the predicted $5/2^+$ state of the positive-parity yrast band in 31Mg. Due to its predicted dominant $2p3h$ configuration the $5/2^+$ state has a strong coupling to the deformed ground state with $B(E2, 1/2^+ \rightarrow 5/2^+)$ = 182(20) e^2fm4. Combined with the $1/2^+$ ground state and the first excited $3/2^+$ state at 50 keV these states form a positive parity yrast band with K = 1/2, connected by almost pure M1 transitions. Measured $B(M1, 5/2^+ \rightarrow 3/2^+)$ = 0.1...0.5μ_N^2 and $B(M1, 3/2^+ \rightarrow 1/2^+)$ = 0.019(4)μ_N^2 [36] values agree well with shell model calculations done by Maréchal [16], that yield $B(M1, 5/2^+ \rightarrow 3/2^+)$ = 0.38μ_N^2 and $B(M1, 3/2^+ \rightarrow 1/2^+)$ = 0.06μ_N^2, respectively (see Table 1). For electric quadrupole transitions the shell model calculations do not reproduce the measured values. With $B(E2, 5/2^+ \rightarrow 1/2^+)$ = 127 e^2fm4 [16] it is in fact a factor of 2 bigger than the result of the present measurement, that gives $B(E2) = 61(7) e^2$fm4.

According to the rigid rotor approximation calculations in [35] another comparison with theory is done by assuming a purely rotational $K = 1/2$ band in 31Mg, given by the sequence $1/2^- \rightarrow 3/2^- \rightarrow 5/2^-$. For transitions within such a rotational band the reduced transition probability is linked to the intrinsic quadrupole moment Q_0 by [49]

$$B(E2, I_i \rightarrow I_f)_{\text{rot}} = \frac{5}{16\pi} e^2 Q_0^2 |\langle I_i | 2K0 | I_f K \rangle |^2.$$

For the $5/2^+ \rightarrow 1/2^+$ transition we get $B(E2)_{\text{rot}}$ = 69 e^2fm4 and $B(E2)_{\text{rot}}$ = 114 e^2fm4, calculated with predicted quadrupole moments from shell model and rigid rotor approximation calculations, respectively [16,35]. The result from shell model calculations is in reasonable agreement with the experimental result (see Table 1), whereas the rigid rotor approximation yields a transition strength that is too high by a factor of more than 1.8.

The deduced excitation probability $B(E2, 1/2^+ \rightarrow 5/2^+)$ = 182(20) e^2fm4 can be compared to the $0^+ \rightarrow 2^+$ E2 strengths in the neighboring even–even magnesium isotopes 30,32Mg. While the excitation $B(E2)$ values always strongly depend on the different spins of the initial (ground) states, the transition strengths of the de-excitation process will be compared instead. For 32Mg the experimental results, i.e. $B(E2)$ values, were discussed by [19], including possible feeding contributions. An E2 strength of $B(E2, 2^- \rightarrow 0^+)$ = 89(11) e^2fm4 is reported without a correction for feeding, and $B(E2, 2^- \rightarrow 0^+)$ = 66(9) e^2fm4 includes a correction for feeding from a higher lying state [19], which is consistent with [50]. The new $B(E2, 5/2^+ \rightarrow 1/2^+)$ = 61(7) e^2fm4 of 31Mg compares well with the feeding corrected $B(E2, 2^- \rightarrow 0^+)$ = 66(9) e^2fm4 of 32Mg [19], and exceeds the $B(E2, 2^- \rightarrow 0^+)$ = 48(6) e^2fm4 of 30Mg [26]. This result establishes that deformed pf intruder configurations exist for the ground and low lying states already at N = 19, including a sequence of collective rotational states.

6. Summary

To summarize, we have investigated Coulomb excitation of the unstable odd-N nucleus 31Mg. The properties of a positive-parity yrast band with K = 1/2, built on the $1/2^+$ ground state are in good agreement with a $5/2^+$ state at 945 keV. The determined $B(E2)$ and $B(M1)$ values support this assumption. The increased collectivity is well described by the deformed Nilsson model for excited states in 31Mg. Finally, the quadrupole moment supports
Table 1
Reduced transition probabilities of the positive-parity $K = 1/2^+$ yраст band in 31Mg, compared to recent theoretical predictions. $B(E2)$ values are given in $e^2 fm^4$, $B(M1)$ in $\mu^2 N$. For more details see text.

<table>
<thead>
<tr>
<th>$I_i \rightarrow I_f$</th>
<th>$B(E2)_{exp}$</th>
<th>$B(E2)_{SM}$</th>
<th>$B(E2)_{rot}$</th>
<th>$B(M1)_{exp}$</th>
<th>$B(M1)_{SM}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$5/2^+ \rightarrow 1/2^+$</td>
<td>61(7)</td>
<td>127a</td>
<td>69a/114b</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>$5/2^+ \rightarrow 3/2^+$</td>
<td></td>
<td>20c/32b</td>
<td>0.1–0.5</td>
<td>0.38a</td>
<td></td>
</tr>
<tr>
<td>$3/2^+ \rightarrow 1/2^+$</td>
<td>106a</td>
<td>140a/145b</td>
<td>0.019(4)c</td>
<td>0.06a</td>
<td></td>
</tr>
</tbody>
</table>

a From Ref. [16].
b From Ref. [35].
c From Ref. [36].

the idea that for the $N = 19$ magnesium isotope not only the ground state but also excited states are no longer dominated by a spherical configuration. Although the $E2$ strength of the $5/2^+ \rightarrow 1/2^+$ transition in 31Mg is a bit smaller it is comparable to the corresponding $2^+ \rightarrow 0^+$ transition in 32Mg. The deviation can be explained by the assumption that higher lying states in 31Mg are not dominated by pure intruder configurations [16,35], but contain an admixture of other particle-hole configurations.

Acknowledgements
This work has been supported by the German BMBF under contracts 06K-167, 06KY205I, and 06KY9136.

References