Asynchronous Implementation of Distributed Coordination Algorithms: Conditions Using Partially Scrambling and Essentially Cyclic Matrices

Yao Chen ‡, Member, IEEE, Weiguo Xia ‡, Member, IEEE, Ming Cao ‡, Senior Member, IEEE, and Jinhu Lü ‡, Fellow, IEEE

Abstract—Given a distributed coordination algorithm (DCA) for agents coupled by a network, which can be characterized by a stochastic matrix, we say that the DCA can be asynchronously implemented if the consensus property is preserved when the agents are activated to update their states according to their own clocks. This paper focuses on two central problems in asynchronous implementation of DCA: which class of DCA can be asynchronously implemented, and which other cannot. We identify two types of stochastic matrices, called partially scrambling and essentially cyclic matrices, for which we prove that DCA associated with a partially scrambling matrix can be asynchronously implemented, and there exists at least one asynchronous implementation sequence, which fails to realize consensus for DCA associated with an essentially cyclic matrix.

Index Terms—Asynchronous implementation, distributed coordination algorithm (DCA), essentially cyclic matrix, partially scrambling matrix.

I. INTRODUCTION

Distributed coordination algorithms (DCA) belong to a typical class of algorithms, which gives rise to emerging collective behavior in complex systems through local interactions [13], [19]. Using such an algorithm, each agent updates its state through averaging those of its neighbors, making the states of all agents converge to some identical value, called consensus [4], [15], [17], [30]. Due to the special distributed converging property of DCA, it can be used not only in solving practical engineering problems, such as distributed gradient-descent for large-scale convex optimization problems [16], but also for explaining interesting social phenomena, such as opinion formation in social networks [9].

The convergence of DCA relates closely to the convergence of products of stochastic matrices [6], [7], [20]–[23], [25]–[28], [29], the analysis of which is difficult since the commonly used smooth Lyapunov function cannot be easily found [18]. An effective method for the analysis of DCA is evaluating the ergodic coefficient of the corresponding matrix products [10], [20], [21], [25], based on which many interesting results have been reported [1], [2], [12], [22], [23]. It should be noted that the constructed ergodic coefficients for DCA are generally nonsmooth, the magnitude of which has strong connection with the structure of the corresponding graphs describing how the agents are coupled together. Based on this observation, the graphical approach, rather than the algebraic approach, usually plays a critical role in the analysis of DCA [4], [27]. Specifically, all the existing results only focus on some specific types of matrices, since the analysis on products of general stochastic matrices is much harder [24] and in fact is an open problem in the field of DCA. In this paper, we will use the graphical approach to study the asynchronous implementation of DCA with some special graphical structures.

The asynchronous implementation of DCA means that the state updating of each agent follows an independent clock, and it has been proved that asynchronous updating of states also guarantees consensus if self-loops are preserved in the graph [3]. However, for general DCA without self-loops in the graph, the dynamics of asynchronous implementation are rather complicated, and an important fact is that asynchronous updating may not lead to consensus even if the corresponding synchronous updating does [26]. Based on this observation, an interesting question for DCA is what type of DCA reaches consensus when implemented asynchronously. As a step toward answering this question, Xia and Cao proved that any asynchronous updating achieves consensus if the associated graph is neighbor-shared [26] (i.e., the associated stochastic matrix is scrambling), where by a neighbor-shared graph it is meant that any two nodes in the graph share a common neighbor [4]. For a further step, it is natural to ask: Can we find a larger set of graphs in which any associated DCA guarantees consensus for any asynchronous implementation? Besides this problem, this paper also tries to address the corresponding inverse question: What kind of DCA cannot be asynchronously implemented in the sense that there always exists an asynchronous implementation for the given DCA, which cannot lead to consensus? In this paper, we will report two sets of stochastic matrices that have been constructed for the first time, giving answers to the above two questions.

The rest of the paper is organized as follows: Section II formulates the asynchronous implementation problem; Section III proposes a set of stochastic matrices, called partially scrambling matrices, and proves that any partially scrambling matrix can be asynchronously implemented; Section IV gives a set of stochastic matrices, called essentially cyclic matrices, and proves that each essentially cyclic matrix cannot
be asynchronously implemented; Section V presents some examples and corollaries; Section VI concludes this paper.

II. PROBLEM FORMULATION

Any stochastic matrix $A = (a_{ij})_{i,j=1}^N$ can be described by a graph $\mathcal{G}(A) = (\mathcal{V}, \mathcal{E})$, where $\mathcal{V} = \{1, 2, \ldots, N\}$ is the set of nodes and \mathcal{E} is the set of edges: $(i, j) \in \mathcal{E}$ if and only if $a_{ij} > 0$. Given a set $\mathcal{S} \subseteq \mathcal{V}$, \mathcal{G}_S is defined as the induced subgraph of \mathcal{G} over \mathcal{S}.

A directed path in $\mathcal{G}(A)$ is a sequence of distinct nodes i_1, \ldots, i_k such that $(i_s, i_{s+1}) \in \mathcal{E}$ for $1 \leq s < k - 1$. $\mathcal{G}(A)$ is rooted if it contains a node, called a root, that has a directed path to every other node. If $\mathcal{G}(A)$ is rooted, we define root(A) as the set of all the roots of $\mathcal{G}(A)$.

We specifically define the following function $N(\cdot, \cdot)$ for any stochastic matrix:

$$N(A, S) = \{j : a_{ij} > 0, i \in S\}$$

where $A \in \mathbb{R}^{N \times N}$ is stochastic and S is a subset of \mathcal{V}.

Stochastic matrices can be used to describe the distributed coordination algorithm in the form

$$x_{k+1} = Ax_k, \quad k \geq 1$$

where $x_k \in \mathbb{R}^N$ and $A \in \mathbb{R}^{N \times N}$ is a stochastic matrix. If A is SIA (i.e., stochastic, indecomposable, and aperiodic) [25], then for any $x_1 \in \mathbb{R}^N$, there exists $\xi \in \mathbb{R}$ such that $\lim_{k \to \infty} x_k = 1\xi$, where $1 \in \mathbb{R}^N$ is the all-one vector [3].

Given a stochastic matrix $A = (a_{ij})_{i,j=1}^N$ and a $k \in \{1, 2, \ldots, N\}$ denote its kth row. Define the following matrix:

$$A_k = (e_1, \ldots, e_{k-1}, a_{k1}^*, e_{k+1}, \ldots, e_N)^T$$

where $e_k \in \mathbb{R}^N$ is the unit vector with the kth entry being 1. Since matrix A is stochastic, one can verify that $A_k (k = 1, 2, \ldots, N)$ is also stochastic. The matrix A_k is called the asynchronous implementation of A on the kth node.

Given a stochastic matrix $A \in \mathbb{R}^{N \times N}$, a sequence of matrices $\{A_{\sigma(k)}\}_{k=1}^{\infty}$ (where $\sigma(\cdot) \in \mathcal{V}$) is called an asynchronous implementation sequence of matrix A if $\bigcup_{j=1}^{\infty} \{\sigma(k)\} = \mathcal{V}$ for all $j \geq 1$. An asynchronous implementation sequence $\{A_{\sigma(k)}\}_{k=1}^{\infty}$ of matrix A is said to realize consensus if for any initial condition $x_1 \in \mathbb{R}^N$, it holds

$$\lim_{k \to \infty} x_k = \lim_{k \to \infty} A_{\sigma(1)} \cdots A_{\sigma(k)} A_{\sigma(1)} x_1 = 1\xi$$

where $\xi \in \mathbb{R}$ is a scalar depending on the initial value x_1 and the sequence $\{A_{\sigma(k)}\}_{k=1}^{\infty}$. If any asynchronous implementation sequence $\{A_{\sigma(k)}\}_{k=1}^{\infty}$ of matrix A realizes consensus, we say matrix A can be asynchronously implemented. If there exists at least one asynchronous implementation sequence $\{A_{\sigma(k)}\}_{k=1}^{\infty}$ of matrix A that cannot realize consensus, we say matrix A cannot be asynchronously implemented.

A stochastic matrix $A = (a_{ij})_{i,j=1}^N$ is called scrambling if for any $i, j \in \mathcal{V}$ ($i \neq j$), there exists k such that $a_{ik} \cdot a_{jk} > 0$. According to Chen et al. [8], one knows that A is rooted if and only if it is a scrambling matrix. In this paper, we use \mathcal{Q}_s to denote the set of scrambling matrices.

Define the ergodic coefficient of a stochastic matrix $A = (a_{ij})_{i,j=1}^N$ to be

$$\tau(A) = 1 - \min_{1 \leq i < j \leq N} \sum_{k=1}^N \min(a_{ik}, a_{jk}).$$

Based on the definition of scrambling matrices, it is easy to verify that a stochastic matrix A is scrambling if and only if $\tau(A) < 1$. This ergodic coefficient further satisfies the following proposition.

Proposition 1 ([21]): For any two stochastic matrices $A_1, A_2 \in \mathbb{R}^{N \times N}$, it holds that

$$\tau(A_1 A_2) \leq \tau(A_1) \cdot \tau(A_2).$$

Specifically, the function $N(\cdot, \cdot)$ and the ergodic coefficient $\tau(\cdot)$ have the following relationship.

Proposition 2: Given a stochastic matrix $A = (a_{ij})_{i,j=1}^N$, if for any two vertices $i, j \in \mathcal{V}$, it holds $N(A, i) \cap N(A, j) \neq \emptyset$, then $\tau(A) \leq 1 - \min_{a_{ij} \neq 0} a_{ij}$.

In 2014, Xia and Cao proved the following important property for scrambling matrices.

Proposition 3 ([26]): Given a matrix $A \in \mathcal{Q}_s$, any asynchronous implementation sequence of A realizes consensus.

The above result motivates us to study the following two interesting problems.

P1) Find a set of stochastic matrices that is larger than \mathcal{Q}_s, in which any asynchronous implementation of each matrix realizes consensus.

P2) Find a set of stochastic matrices in which there exists an asynchronous implementation sequence for each matrix that cannot realize consensus.

In the subsequent two sections, we find two sets of stochastic matrices, called partially scrambling and essentially cyclic matrices, for the solutions of the above two problems, respectively.

III. SET OF MATRICES WHICH CAN BE ASYNCHRONOUSLY IMPLEMENTED

In what follows, we will introduce the concepts of the absorbing set and partially scrambling matrix first.

For any stochastic matrix $A = (a_{ij})_{i,j=1}^N \in \mathbb{R}^{N \times N}$, a set $\mathcal{S} \subseteq \mathcal{V}$ is called absorbing with respect to A if

1) $\mathcal{G}(A)$ is rooted and $\mathcal{S} \cap \text{root}(A) \neq \emptyset$;

2) for any $i \in \mathcal{S}$, $N(A, i) \cap \mathcal{S} \neq \emptyset$.

Based on the above definition, one knows that if $\mathcal{G}(A)$ is rooted, then \mathcal{V} is absorbing with respect to A. Specifically, if $a_{ik} > 0$ and $k \in \text{root}(A)$, then the singleton $\{k\}$ is absorbing with respect to A.

A matrix $A = (a_{ij})_{i,j=1}^N$ is called partially scrambling if there exists $\nu \in \text{root}(A)$ and an absorbing set $\mathcal{I} \subseteq \mathcal{V}$ that satisfies: for any $i \in \mathcal{I}$, there exists $k \in \mathcal{I}$ such that $a_{ik} a_{jk} > 0$.

A simple example of partially scrambling matrix is

$$A = \begin{pmatrix}
0 & 0.5 & 0.5 \\
0 & 1 & 0 \\
0.5 & 0 & 0
\end{pmatrix}$$

whose graph $\mathcal{G}(A)$ is given in Fig. 1. One can easily verify that A is partially scrambling by letting $\nu = 3$ and $\mathcal{I} = \{1, 2\}$.

Let \mathcal{Q}_p, be the set of partially scrambling matrices and we will show that \mathcal{Q}_p is larger than \mathcal{Q}_s.

1In this paper, when we say a matrix is stochastic, we mean this matrix is right stochastic in which the sum of each row equals 1.
Proposition 4: \(Q \subseteq \mathcal{Q}_p \).

Proof: For any \(A \subseteq Q \), since any scrambling matrix is rooted [8], one can choose \(v \in \text{root}(A) \). Furthermore, \(v \) is absorbing with respect to \(A \) since \(G(A) \) is rooted. For any \(i \in V \), since \(A \) is scrambling, there exists \(k \in V \) such that \(a_{ik} a_{jk} > 0 \). Hence, the two conditions of partially scrambling matrices are both satisfied and \(A \subseteq Q_p \).

The main result of this section is given as follows.

Theorem 1: Given any matrix \(A \subseteq Q_p \), any asynchronous implementation sequence of matrix \(A \) realizes consensus.

The proof of Theorem 1 relies on the following Proposition 5 and Lemmas 1–5. In Proposition 5 and Lemmas 1–5, we assume that \(A \subseteq Q_p \), \(\{A_k(k)\}_{k=1}^\infty \) is an asynchronous implementation sequence of \(A \), \(q \) is the constant given in the definition of an asynchronous implementation sequence, \(\mathcal{I} \) is an absorbing set of \(V \) with respect to \(A \), and \(\nu \in \text{root}(A) \).

The basic idea of the proof of Theorem 1 can be summarized as follows: At first, we divide the asynchronous implementation sequence \(A_{T-1} = A_{T-1}(A_{T-1}) \) into two parts for some large \(T \), one is \(A_{T-1}(r+1) = A_{T-1}(A_{T-1}) \), and the other is \(A_{T-1}(1) = A_{T-1}(A_{T-1}) \); second, we show that for any two vertices \(i \) and \(j \), the function \(\mathcal{N}(A_{T-1}, r) \) makes \(i \) accessed by \(\nu \) and \(j \) accessed by one of the nodes in \(\mathcal{I} \) (Lemma 3); third, we show that for any \(k' \in \mathcal{I} \), \(\mathcal{N}(A_{T-1}, (k')) \) and \(\mathcal{N}(A_{T-1}, j) \) share a common element (Lemma 4); finally, we combine the above two steps and demonstrate that \(\mathcal{N}(A_{T-1}, i) \) and \(\mathcal{N}(A_{T-1}, j) \) share a common neighbor (Lemma 5), which implies that \(A_{T-1} \) is scrambling (Proposition 2) and the convergence can be obtained via Proposition 1.

Proposition 5 ([11]): For any \(k \geq 1 \) and \(S \subseteq V \), it holds
\[
\mathcal{N}(A_{(k+1)}(k), S) = \mathcal{N}(A_{(k)}, \mathcal{N}(A_{(k+1)}, S)).
\]

Lemma 1: If \(j \in \mathcal{I} \), then for any \(T \geq 1 \), we have
\[
\mathcal{N}(A_{(T)}(k), A_{(T-1)}(k), j) \bigcap \mathcal{I} \neq \emptyset.
\]

Proof: According to the definition of \(\mathcal{I} \), one knows that for any \(\sigma(k) \in \mathcal{I} \), \(\mathcal{N}(A_{(T)}(k), i) \bigcap \mathcal{I} \neq \emptyset \). Applying Proposition 5 on \(\mathcal{N}(\cdot, \cdot) \) we arrive at the conclusion.

Lemma 2: For any \(i, j \in \mathcal{I} \), if
\[
\mathcal{N}(A_{(T)}(k), A_{(T-1)}(k), i) \bigcap \mathcal{N}(A_{(T)}(k), A_{(T-1)}(k), j) \neq \emptyset
\]
for some \(r \geq 0 \) and \(T \geq r + 1 \), then
\[
\mathcal{N}(A_{(T)}(k), A_{(T-1)}(k), i) \bigcap \mathcal{N}(A_{(T)}(k), A_{(T-1)}(k), j) \neq \emptyset.
\]

Proof: It follows directly from Proposition 5.

Lemma 3: Given \(T \geq 2Nq + 2 \), for any \(i, j \in \mathcal{I} \), there exists \(r \) which satisfies \(T - r \leq 2Nq + 1 \) and \(\nu \in \mathcal{N}(A_{(T)}(k), A_{(T-1)}(k), i) \)
\[
\mathcal{N}(A_{(T)}(k), A_{(T-1)}(k), i) \bigcap \mathcal{I} \neq \emptyset.
\]

Proof: Since \(\mathcal{I} \) is an absorbing set, \(\mathcal{I} \bigcap \text{root}(A) \neq \emptyset \). Letting \(j_m \in \mathcal{I} \bigcap \text{root}(A) \), there exists a directed path from \(j_m \) to \(j \) in \(G(A) \) denoted by \(j_m \rightarrow j_{m-1} \rightarrow \cdots \rightarrow j_1 \rightarrow j \), where \(m \leq N \).

Denote
\[
t^{(0)} = \max\{k : \sigma(k) = j, 1 \leq k \leq T\}
\]
\[
t^{(1)} = \max\{k : \sigma(k) = j_1, 1 \leq k < t^{(0)}\}
\]
\[
\cdots
\]
\[
t^{(m-1)} = \max\{k : \sigma(k) = j_{m-1}, 1 \leq k < t^{(m-2)}\}
\]
from which one obtains that
\[
j_1 \in \mathcal{N}(A_{(T)}(k), A_{(T-1)}(k), \cdots \cdot A_{(t^{(0)})}, j)
\]
\[
j_2 \in \mathcal{N}(A_{(T)}(k), A_{(T-2)}(k), \cdots \cdot A_{(t^{(2)})}, j_1)
\]
\[
\cdots
\]
\[
j_m \in \mathcal{N}(A_{(T)}(k), A_{(T-1)}(k), \cdots \cdot A_{(t^{(m-2)})}, j_{m-1}).
\]

According to Proposition 5, one derives that \(j_m \in \mathcal{N}(A_{(T)}(k), A_{(T-1)}(k), \cdots \cdot A_{(t^{(m-1)})}, j) \) and \(j_m \in \mathcal{I} \). According to the absorbing property of \(\mathcal{I} \), for any \(k \leq t^{(m-1)} \), we know that
\[
\mathcal{N}(A_{(T)}(k), A_{(T-1)}(k), j) \bigcap \mathcal{I} \neq \emptyset.
\]
Specifically, from the property that \(\bigcup_{l=0}^{m-1} A_{(l)}(j) = \mathcal{V} \) \((k \geq 0) \), one knows
\[
T - t^{(0)} \leq q
\]
\[
t^{(i)} - t^{(i+1)} \leq q, \text{ for } 0 \leq i \leq m - 2
\]
and hence, \(T - t^{(m-1)} \leq mq \leq Nq \).

Consider another path \(i_p \rightarrow i_{p-1} \rightarrow \cdots \rightarrow i_1 \) in \(G(A) \), where \(i_p = \nu, p \leq N \), and
\[
i_1 \in \mathcal{N}(A_{(T)}(k), A_{(T-1)}(k), \cdots \cdot A_{(t^{(m-1)})}, i)
\]
for which the fact that \(\nu \in \text{root}(A) \) guarantees the existence of such a path. Similar to the above deductions, one can find some \(d \leq Nq \) such that
\[
\nu \in \mathcal{N}(A_{(T)}(k), A_{(T-1)}(k), \cdots \cdot A_{(t^{(m-1)})}, i)
\]
Combining (4) and (5) together leads to
\[
\nu \in \mathcal{N}(A_{(T)}(k), A_{(T-1)}(k), \cdots \cdot A_{(t^{(m-1)})}, i)
\]
Let \(T = t^{(m-1)} - d - 1 \), and one knows
\[
T - r = (T - t^{(m-1)}) + t^{(m-1)} - r \leq Nq + d + 1 \leq 2Nq + 1.
\]
Combining (3) and (6), the proof is, hence, completed.

Lemma 4: Given an absorbing set \(\mathcal{I} \) and any \(k' \in \mathcal{I} \), if \(r \geq q(N + q + 1) \), there exists \(k'' \in \mathcal{V} \) such that
\[
k'' \in \mathcal{N}(A_{(k)}(k), A_{(k)}(k), \cdots \cdot A_{(t^{(k)})}, \nu) \bigcap \mathcal{N}(A_{(k)}(k), A_{(k)}(k), \cdots \cdot A_{(t^{(k)})}, k') \neq \emptyset.
\]

Proof: Since \(r \geq q(N + q + 1) \), one can define
\[
t_\nu = \max\{k : \sigma(k) = \nu, 1 \leq k \leq r\}
\]
\[
t_k' = \max\{k : \sigma(k) = k', 1 \leq k \leq r\}
\]
and the property of asynchronous implementation sequence guarantees that \(r - t_\nu \leq q - 1 \) and \(r - t_k' \leq q - 1 \).

We make the following discussions

CASE a): \(t_k' = t_\nu \).

In this case, one knows \(k' = \nu \), the result holds naturally.
CASE b): $t_{k'} > t_v$.

Denote
\begin{align*}
s_1 &= \{k'\} \\
s'_1 &= \{k : \sigma(k) \in s_1, t_{k'} < k \leq r\} \\
t^{(1)} &= \max s'_1, \text{ if } s'_1 \neq \emptyset \\
k_1 &= \sigma(t^{(1)})
\end{align*}

where k_1 also satisfies $k_1 = k'$.

Furthermore, for any $p \geq 2$, we construct the following iterative formulas:
\begin{align*}
s_p &= N(A_{p-1}(t^{(p-1)})\cdots A_{p-1}(t^{(1)}), k_{p-1}) \cap I \\
s'_p &= \{k : \sigma(k) \in s_p, t_{k'} < k < t^{(p-1)}\} \\
t^{(p)} &= \max s'_p, \text{ if } s'_p \neq \emptyset \\
k_p &= \sigma(t^{(p)})
\end{align*}

where $t^{(p)} = r + 1$.

Since $t_{k'} < t^{(p)} < t^{(p-1)}$, one knows the condition of $t_{k'} < k < t^{(p-1)}$ will not be satisfied after several times of iteration, and hence, there exists p such that $s'_p = \emptyset$.

Denote $m = \min \{p : s_p \neq \emptyset \text{ and } s'_p = \emptyset\}$, and then the above iterations imply that
\begin{align*}
k_2 &\in N(A_{p-1}(t^{(0)})\cdots A_{p-1}(t^{(1)}), k_1) \cap I \\
k_3 &\in N(A_{p-1}(t^{(1)})\cdots A_{p-1}(t^{(2)}), k_2) \cap I \\
&\vdots \\
k_{m-1} &\in N(A_{p-1}(t^{(m-2)}), A_{p-1}(t^{(m-3)}), k_{m-2}) \cap I \\
\emptyset &\neq N(A_{p-1}(t^{(m-3)}), A_{p-1}(t^{(m-2)}), k_{m-1}) \cap I.
\end{align*}

Consider the pair of indices k_{m-1} and ν, due to the fact that $k_{m-1} \in I$, there exists $k^* \in I$ such that $a_{k_{m-1}, k^*} > 0$ and, hence, $k^* \in N(A, k_{m-1}) \cap N(A, \nu) \cap I$, which leads to
\begin{align*}
k^* &\in N(A_{p-1}(t^{(m-2)}), A_{p-1}(t^{(m-3)}), k_{m-1}) \cap I \\
k^* &\in N(A_{p-1}(t^{(m-2)}), A_{p-1}(t^{(m-3)}), k_{m-1}) \cap I.
\end{align*}

If $k^* \neq \nu$, due to the fact that $s'_m = \emptyset$, one further knows
\begin{align*}
k^* &\in N(A_{p-1}(t^{(m-1)}), A_{p-1}(t^{(m)}), k_{m-1}) \cap I
\end{align*}

which indicates
\begin{align*}
k^* &\in N(A_{p-1}(t^{(m-1)}), A_{p-1}(t^{(m)}), k_{1}) \cap I.
\end{align*}

Therefore,
\begin{align*}
k^* &\in N(A_{p-1}(t^{(m-1)}), A_{p-1}(t^{(m)}), k_{1}) \cap I \\
&\in N(A_{p-1}(t^{(m-1)}), A_{p-1}(t^{(m)}), k_{1}) \cap I.
\end{align*}

According to Lemma 2 and using the absorbing property of I, one derives that there exists k'' such that
\begin{align*}
k'' &\in N(A_{p-1}(t^{(m-1)}), A_{p-1}(t^{(m)}), k_{1}) \cap I \\
&\in N(A_{p-1}(t^{(m-1)}), A_{p-1}(t^{(m)}), k_{1}) \cap I
\end{align*}

which in view of $k_1 = k'$ completes the discussion.

If $k^* = \nu$, one derives $\nu \in N(A_{p-1}(t^{(m-1)}), A_{p-1}(t^{(m)}), k_{1})$, which indicates $
\nu \in N(A_{p-1}(t^{(m-1)}), A_{p-1}(t^{(m)}), k_{1})$.

Since $\nu \in N(A_{p-1}(t^{(m-1)}), A_{p-1}(t^{(m)}), k_{1})$, there also exists k'' such that
\begin{align*}
k'' &\in N(A_{p-1}(t^{(m-1)}), A_{p-1}(t^{(m)}), k_{1}) \cap I \\
&\in N(A_{p-1}(t^{(m-1)}), A_{p-1}(t^{(m)}), k_{1}) \cap I.
\end{align*}

CASE c): $t_{k'} < t_v$.

Since $\nu \in \text{root}(A)$, one can find a cycle from ν to ν with length l ($l \leq N$), repeating this cycle for $\lceil \frac{\nu}{\nu} \rceil + 1$ times generates a cycle with length $l = l(\lceil \frac{\nu}{\nu} \rceil + 1) > q$. Specifically, the length of the merged cycle also satisfies $l \leq \lceil \frac{\nu}{\nu} \rceil + 1 \leq N + q$. Let the merged cycle be $i_1 = \nu \rightarrow i_2 \rightarrow \cdots \rightarrow i_k = \nu$. Similar to the techniques in the proof of Lemma 3, one can find $1 < r' \leq r$ such that
\begin{align*}
\nu &\in N(A_{p-1}(t^{(m-1)}), A_{p-1}(t^{(m)}), k_{1}) \cap I \\
&\in N(A_{p-1}(t^{(m-1)}), A_{p-1}(t^{(m)}), k_{1}) \cap I.
\end{align*}

where $q < r < r' \leq q(N + q)$.

Based on the definition of r', one further defines
\begin{align*}
t'_r &\in \max \{k : \sigma(k) = \nu, 1 \leq k \leq r'\}
\end{align*}

then $t'_r \leq r' < r < r' - q + r - q + 1 \leq t_{k'}$. The remaining proof is similar to that of CASE b) and, hence, omitted.

Summarizing the above-mentioned three cases, the proof is, hence, completed.

Lemma 5: For any $i, j \in V$, if $T \geq (3N + q)q + 2$, then
\begin{align*}
N(A_{p-1}(t^{(m-1)}), A_{p-1}(t^{(m)}), k_{1}) \cap I \\
&\in N(A_{p-1}(t^{(m-1)}), A_{p-1}(t^{(m)}), k_{1}) \cap I.
\end{align*}

Proof: According to Lemma 3, one can find some $k' \in V$ and r, which satisfies $T - r \leq 2Nq + 1$ such that
\begin{align*}
\nu &\in N(A_{p-1}(t^{(m-1)}), A_{p-1}(t^{(m)}), k_{1}) \cap I \\
&\in N(A_{p-1}(t^{(m-1)}), A_{p-1}(t^{(m)}), k_{1}) \cap I.
\end{align*}

Since $T \geq (3N + q)q + 2$, one knows $r \geq (N + q)q + 1$. According to Lemma 4, one further derives
\begin{align*}
N(A_{p-1}(t^{(m-1)}), A_{p-1}(t^{(m)}), k_{1}) \cap I \\
&\in N(A_{p-1}(t^{(m-1)}), A_{p-1}(t^{(m)}), k_{1}) \cap I.
\end{align*}

Summarizing the above two facts leads to the completion of the proof.

Based on the above lemmas, we are ready to present the proof of the main theorem.

Proof of Theorem 1: Given a sequence of implementation matrices $\{A_{p-1}(i)\}_{i=1}^{\infty}$, denote
\begin{align*}
Q_k = A_{p-1}(i) \cdots A_{p-1}(k-1)A_{p-1}(k-2) \cdots A_{p-1}(1) A_{p-1}(0)
\end{align*}

where $T = (3N + q)q + 2$.

According to Lemma 5 and Proposition 2, one knows that Q_k is scrambling and, hence, $\tau(Q_k) \leq 1 - a^2$, where a is the minimal positive entry of A. Since $\prod_{k=0}^{\infty} A_{p-1}(i) = \prod_{k=1}^{\infty} Q_k$ and $\tau(\prod_{k=1}^{\infty} Q_k) \leq \prod_{k=1}^{\infty} \tau(Q_k)$, we arrive at the conclusion.

2If $q \leq q(N + q)$, the existence of r' may not be guaranteed.
IV. SET OF MATRICES WHICH CANNOT BE ASYNCHRONOUSLY IMPLEMENTED

To facilitate the description of the following problem, given a graph \(G = (V, E) \) and a set \(S \subseteq V \), we define the two functions
\[
\partial^-(S) = \{ k : (i, k) \in E, i \in S, k \notin S \} \\
\partial^+(S) = \{ k : (k, i) \in E, i \in S, k \notin S \}.
\]

Given a graph \(G = (V, E) \), let \(\{V_i\}_{i=1}^r \) be a partition of \(V \) such that \(\bigcup_{i=1}^r V_i = V \) and \(V_i \cap V_j = \emptyset \) for \(i \neq j \). The reduced graph of \(G \) with respect to \(\{V_i\}_{i=1}^r \) is defined by \(\tilde{G} = (V, \tilde{E}) \), where \(V = \{1, 2, \ldots, r\} \) and \((i, j) \in \tilde{E} \) if and only if there is a link from a node in \(V_i \) to a node in \(V_j \).

A graph \(G = (V, E) \) is called a directed acyclic graph (DAG) if \(G \) contains no cycle. Based on this definition, one knows that a DAG may not be rooted.

A stochastic matrix \(A = (a_{ij})_{i,j=1}^n \) is called essentially cyclic if there exists a partition \(\{V_i\}_{i=1}^r \) of \(V \) with \(r \geq 3 \) such that the following hold:
1) The subgraph \(G_{V_1} \) is a DAG.
2) The reduced graph with respect to \(\{V_i\}_{i=1}^r \) is a directed cycle.

The above definition of essentially cyclic matrices is inspired by the definition of periodic matrices [21]: a stochastic matrix \(A = (a_{ij})_{i,j=1}^n \) is called periodic if there exists an equivalent partition \(\{V_i\}_{i=1}^r \) of \(V \), which makes the corresponding reduced graph a directed cycle, and makes each subgraph \(G_{V_i} \) a null graph.

Given any connected graph \(G \), one can decompose it into several strongly connected components with the corresponding reduced graph being a DAG [14]; such a property is exactly opposite to the decomposition of an essentially cyclic graph, in which each decomposed component contains no cycle but the reduced graph is cyclic.

Based on the definition of essentially cyclic matrices, one knows the following.

Proposition 6: Any SIP (stochastic, indecomposable, and periodic) matrix is essentially cyclic.

Furthermore, since the equivalent partition satisfies \(r \geq 3 \), any cycle in the corresponding graph of an essentially cyclic matrix has length greater than 3, which leads to the following proposition.

Proposition 7: Given a stochastic matrix \(A \), if \(G(A) \) contains \(K_r \) as a subgraph, then \(A \) is not essentially cyclic.

We use \(Q_{r,n} \) to denote the set of essentially cyclic matrices.

For any SIP (stochastic, indecomposable, and periodic) matrix is essentially cyclic.

Fig. 2. Example of essentially cyclic graph with \(r = 3 \): The subgraph of \{3, 4\} contains no cycle, and the reduced graph is a cycle.

Fig. 3. Essentially cyclic graph with \(r = 2 \); however, this graph is also partially scrambling as shown in Fig. 1.

\(^3K_n\) is the fully connected graph with \(n \) nodes.
Proof: By reordering the indices of V_k, matrix A can be written as

$$A = \begin{pmatrix} 0 & A_{12} & 0 \\ A_{21} & 0 & 0 \\ \times & \times & \times \end{pmatrix}$$

where each “\times” means a block matrix with appropriate dimensions. The structure of A implies that for any $k \geq 1$, there holds

$$A^{2k} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ \times & \times \end{pmatrix}, \quad A^{2k+1} = \begin{pmatrix} 0 & 0 \\ \times & \times \end{pmatrix}.$$

Hence, for a sufficiently large k, any column of A^k cannot be completely positive, which indicates A is not SIA. \(\Box \)

The following Lemma 7 defines an ordering function $f(\cdot)$ on a DAG, which is critical for the consequent Lemma 8.

Lemma 7: There exists a topological ordering $f(k)$ associated with each node k of a DAG $G = (V, E)$, i.e., if (i, j) is an edge of G, then $f(i) > f(j)$.

Proof: We define the following function $f(\cdot)$ associated with each node of V:
1) set $k := 1$, $G_1 = G$;
2) set $V_k = \{j : \text{the out degree of } j \text{ in } G_k \text{ is zero}\}$;
3) set $f(k) = k$ for each $j \in V_k$;
4) set G_{k+1} be the subgraph of G with node set $V \setminus \{V_t\}^k$;
5) if G_{k+1} is not null, set $k := k + 1$ and go to step 2).

One can verify that the above function $f(\cdot)$ is a topological ordering of G. \(\Box \)

Lemma 8: Given a stochastic matrix $A \in R^{n \times n}$ and a set $S \subseteq V$, if $f(S) \neq \emptyset$ and the subgraph G_S contains no cycle, there exists an asynchronous realization sequence $A_{s(k)} (k = 1, 2, \ldots, s)$ such that

$$\mathcal{N}(A_{s(1)}A_{s(2)} \cdots A_{s(1)}, S) \subseteq f^+(S)$$

where $s = |S|$ and $\bigcup_{k=1}^{s} \{k\}$.

Proof: For the set of nodes S, since G_S is a DAG, there exists a topological ordering $f(k)$ for each node k of S. Based on the ordering function $f(\cdot)$ in Lemma 7, we define a sequence $\{i_t\}_{k=1}^{s}$ that satisfies $f^+(S) = S$ and $f(i_1) \leq f(i_2) \leq \cdots \leq f(i_s)$. Then, we will show that $\mathcal{N}(A_{i_1}A_{i_2} \cdots A_{i_s}) \subseteq f^+(S)$.

For these nodes i_1, i_2, \ldots, i_s, without loss of generality, suppose that

$$f(i_1) = f(i_2) = \cdots = f(i_k) \neq f(i_{k+1})$$

for i_1, i_2, \ldots, i_k, and

$$f(i_{k+1}) = f(i_{k+2}) = \cdots = f(i_s) \neq f(i_{s+1})$$

where $k_{s+1} = s$ and set $k_0 = 1$.

For nodes i_1, i_2, \ldots, i_k according to the definition of $f(\cdot)$ in Lemma 7, there is no direct connections among them, and hence, the implementations $A_{i_1}, A_{i_2}, \ldots, A_{i_k}$ are independent and these implementations map the nodes from i_1, i_2, \ldots, i_k to some subset of $S \setminus \{i_1, i_2, \ldots, i_k\}$, which leads to $\mathcal{N}(A_{i_k}A_{i_{k+1}} \cdots A_{i_s}, S) \subseteq S \setminus \{i_1, i_2, \ldots, i_k\}$. Similarly, it holds

$$\mathcal{N}(A_{i_{k+1}}A_{i_{k+2}} \cdots A_{i_s}, S) \subseteq S \setminus \{i_1, i_2, \ldots, i_k\}$$

and the corresponding graph $G(A)$. One can easily check that $A \in \mathcal{Q}_{SIA}$.

Since $G(A)$ contains K_2 as a subgraph, then $A \notin \mathcal{Q}_{SIA}$ from Proposition 7.

V. DISCUSSIONS AND EXAMPLES

According to Theorems 1 and 2, one knows the two sets of matrices Q_{SIA} and Q_{SIA} do not intersect with each other. Denote Q_{SIA} as the set of SIA matrices, and an interesting question is whether Q_{SIA} and Q_{SIA} are complementary in Q_{SIA}, which is answered in the following proposition.

Proposition 8: It holds $Q_{SIA} \cup (Q_{SIA} \cap Q_{SIA}) \subseteq Q_{SIA}$.

Proof: Consider the matrix

$$A = \begin{pmatrix} 0 & 1/2 & 0 & 1/2 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

and the corresponding graph $G(A)$. One can easily check that $A \in \mathcal{Q}_{SIA}$.
In graph $G(A)$, one finds that only node 1 and 3 share a common neighbor 2. If $A \in Q_{ps}$, then the absorbing set I can be set as $I = \{1\}$ or $I = \{3\}$. However, since neither node 1 nor node 3 contains a self-loop, $\{1\}$ and $\{3\}$ cannot be the absorbing sets, which is a contradiction and, hence, $A \notin Q_{ps}$. ■

In what follows, we will give some corollaries and examples of Theorems 1 and 2.

Corollary 1: Given a stochastic matrix $A \in \mathbb{R}^{N \times N}$, if $G(A)$ is rooted with the diagonal entry corresponding to a root is positive, then $A \in Q_{ps}$.

Proof: Set $I = \{\nu\}$, where $\nu \in \text{root}(A)$ with the corresponding diagonal entry of A positive in A. One can check that all the conditions of partially scrambling matrices are satisfied.

Corollary 2: Given a stochastic matrix $A = (a_{ij})_{i,j=1}^{N} \in \mathbb{R}^{N \times N}$, if there exists $I \subseteq V$ such that
1. for $i \in I$, it holds $a_{ii} > 0$;
2. for each $j \in V / I$ and $i \in V$, there exists $k \in V$ such that $a_{ik} a_{kj} > 0$;
3. $A(G)$ is rooted, then $A \in Q_{ps}$.

Proof: If the root ν of $G(A)$ belongs to I, then $A \in Q_{ps}$ from Corollary 1. If the root of $G(A)$ belongs to V / I, then considering that set V is absorbing, A still belongs to Q_{ps} from Theorem 1. ■

In the definition of asynchronous implementation in Section II, each $\sigma(k)$ is only an element of set V, and in fact, $\sigma(k)$ can be generalized to a subset of V, which is called multiple asynchronous implementation defined below.

Multiple asynchronous implementation of DCA associated with a stochastic matrix A is defined as: for any sequence of matrices $(A_{\sigma(k)})_{k=1}^{\infty}$, which satisfies $\sigma(k) \subseteq V$, $\bigcup_{k=1}^{\infty} \sigma(k) = V$ for all $j \geq 1$, it holds that
\[
\lim_{k \to \infty} A_{\sigma(k)} \cdots A_{\sigma(2)} A_{\sigma(1)} x_1 = 1_{\xi}
\]
where $x_1 \in \mathbb{R}^{N}$ and $\xi \in \mathbb{R}$ is decided by x_1 and the sequence $(A_{\sigma(k)})_{k=1}^{\infty}$. Matrix $A_{\sigma(k)} (\sigma(k) \subseteq V)$ is a direct generalization of $A_{\sigma(k)} (\sigma(k) \subseteq V)$ by preserving multiple rows $\sigma(k)$ of $A_{\sigma(k)}$.

Corollary 3: If $A \in Q_{ps}$, then any multiple asynchronous implementation of A guarantees consensus.

Proof: The proof of Corollary 3 requires a slight modification of Lemma 4, and we omit the details since the basic ideas of them are quite similar.

Since synchronous implementation is a special case of multiple asynchronous implementation (let $\sigma(k) = V$ for each $k \geq 1$), one derives the following.

Corollary 4: If $A \in Q_{ps}$, then A is SIA.

Example 1: Given the two matrices
\[
A = \begin{pmatrix}
0 & 0 & 1 & 1 \\
0 & 2 & 1 & 2 \\
0 & 0 & 2 & 1 \\
1 & 2 & 0 & 1
\end{pmatrix}, B = \begin{pmatrix}
0 & 1 & 2 & 0 \\
1 & 2 & 0 & 1 \\
1 & 2 & 0 & 1 \\
1 & 0 & 0 & 0
\end{pmatrix}
\]
are also satisfied. According to Theorem 1, one knows that both A and B can be asynchronously implemented.

In order to verify Theorem 1, we choose $q = 8$ and generate the corresponding asynchronous dynamics of x_k defined in (2) with respect to A and B are given in Fig. 4, and one can see both of them realize consensus.

Example 2: Adding edges within clusters.

![Fig. 4. Asynchronous implementation of matrices A and B given in (8).](image)

![Fig. 5. Example 2: Adding edges within clusters.](image)
whose graph $G(A)$ is on the right of Fig. 5. According to the proof of Theorem 2, one can construct the following periodic indices:

$$\sigma(k) = \begin{cases} 4, & \text{when } k \equiv 1 \pmod{5} \\ 5, & \text{when } k \equiv 2 \pmod{5} \\ 3, & \text{when } k \equiv 3 \pmod{5} \\ 1, & \text{when } k \equiv 4 \pmod{5} \\ 2, & \text{when } k \equiv 0 \pmod{5}. \end{cases}$$

Given a set of random initial values, the dynamics of x_k driven by the above $\sigma(k)$ are given in Fig. 6, and one can see that such an implementation does not realize consensus.

VI. CONCLUSION

This paper discussed two problems on asynchronous implementation of DCA: what type of stochastic matrices can be asynchronously implemented, and what type cannot. We have found two types of stochastic matrices, called partially scrambling and essentially cyclic matrices, based on which we have proved that any partially scrambling matrix can be asynchronously implemented, while any essentially cyclic matrix cannot. Since the identified two types of stochastic matrices are not complementary, our future research will focus on identifying the maximal subclass of SIA matrices in which any asynchronous implementation sequence of each realizes consensus.

REFERENCES