Chronic kidney disease as cardiovascular risk factor in routine clinical practice
ERA Council; Ortiz, Alberto; Wanner, Christoph; Gansevoort, Ron

Published in:
European journal of preventive cardiology

DOI:
10.1093/eurjpc/zwac186

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2022

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Chronic kidney disease as cardiovascular risk factor in routine clinical practice: a position statement by the Council of the European Renal Association

Alberto Ortiz 1,2, Christoph Wanner 3, and Ron Gansevoort 4*, ERA Council

1IIS-Fundacion Jimenez Diaz- UAM, Madrid, Spain; 2Department of Medicine, Universidad Autonoma de Madrid, Madrid, Spain; 3Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany; and 4Department of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands

Received 23 April 2022; revised 31 July 2022; accepted 20 August 2022; online publish-ahead-of-print 23 August 2022

Abstract

The European Society of Cardiology 2021 guideline on cardiovascular (CV) disease (CVD) prevention in clinical practice has major implications for both CV risk screening and kidney health of interest to primary care physicians, cardiologists, nephrologists, and other professionals involved in CVD prevention. The proposed CVD prevention strategies require as first step the categorization of individuals into those with established atherosclerotic CVD, diabetes, familiar hypercholesterolaemia, or chronic kidney disease (CKD), i.e. conditions that are already associated with a moderate to very-high CVD risk. This places CKD, defined as decreased kidney function or increased albuminuria as a starting step for CVD risk assessment. Thus, for adequate CVD risk assessment, patients with diabetes, familiar hypercholesterolaemia, or CKD should be identified by an initial laboratory assessment that requires not only serum to assess glucose, cholesterol, and creatinine to estimate the glomerular filtration rate, but also urine to assess albuminuria. The addition of albuminuria as an entry-level step in CVD risk assessment should change clinical practice as it differs from the current healthcare situation in which albuminuria is only assessed in persons already considered to be at high risk of CVD. A diagnosis of moderate or severe CKD requires a specific set of interventions to prevent CVD. Further research should address the optimal method for CV risk assessment that includes CKD assessment in the general population, i.e. whether this should remain opportunistic screening or whether systematic screening.

Keywords

GFR • albuminuria • cardiovascular risk • risk prediction • prevention

Introduction

The recent publication of the European Society of Cardiology (ESC) 2021 Guideline on cardiovascular (CV) disease (CVD) prevention in clinical practice introduces chronic kidney disease (CKD) risk categories that are based on the integration of estimated glomerular filtration rate (eGFR) and urinary albumin-to-creatinine ratio (UACR) data. Furthermore, this guideline indicates that assessment of eGFR and UACR (i.e. a urine analysis) are needed for correct patient categorization according to CVD risk that will guide preventive measures. This has major implications for CVD risk screening as well as kidney health, which is of interest to primary care physicians, cardiologists, nephrologists, and other professionals involved in CVD prevention. In this Position Paper, we first provide an overview of the concept and disease burden of CKD and of the key messages on CKD embedded in the 2021 ESC guideline and then provide a call for action to implement this guideline in order to improve the outcomes of patients with CKD.
The concept of chronic kidney disease

In the 2012 KDIGO (abbreviation for Kidney Disease: Improving Global Outcomes), the global organization developing clinical practice guidelines for nephrology, defined CKD as abnormalities of kidney structure or function present for \(\geq 3 \) months, with implications for health.\(^1,2\) In clinical practice, the main diagnostic criteria for CKD are the presence of an eGFR below 60 mL/min/1.73 m\(^2\), and/or elevated albuminuria, i.e. UACR over 30 mg/g. Chronic kidney disease is staged according to six eGFR and three UACR categories (Figure 1), with higher categories being associated with increased risk of adverse outcomes including CKD progression, kidney failure, and fatal and non-fatal CVD. Combinations of specific eGFR and UACR cells are used to define three global risk classes: CKD with mildly increased risk, CKD with moderately increased risk, and CKD with severely increased risk (Figure 1).

A key message from the 2012 KDIGO guideline was that a low eGFR is not a prerequisite for CKD diagnosis; for example, a person with normal eGFR can be diagnosed with CKD if albuminuria is elevated. This enables CKD identification at an early stage, and thus allows timely start of effective prevention of CKD progression towards kidney failure.

Current and future burden of chronic kidney disease

Globally, around 10–12% of the general population has CKD, implying that this involves 850 million persons.\(^3\) Despite being largely preventable and treatable, the prevalence of CKD as well as mortality due to CKD are increasing.\(^4\) The Global Burden of Disease study projects that worldwide by 2040, CKD will become the fifth most common cause of death.\(^5\) The years of life lost due to CKD will double. This represents the fastest predicted increase among the major causes of death, after Alzheimer’s disease.\(^5\) Notably, the increasing burden of CKD may be magnified in countries with changing demographics due to an ageing population, as is the case for several European countries. For example, it is projected that CKD will become the second leading cause of death in Spain before the end of the century.\(^6\)

KDIGO 2012 guideline and the concept of chronic kidney disease

Awareness of the concept of CKD, and of the possible consequences, is key to promoting both CV and kidney health. However, in routine clinical practice, the implementation of diagnosing CKD is far from desirable. For instance, in several countries screening for eGFR and albuminuria in patients at high risk for CKD lags seriously behind what is advised in guidelines.\(^7\) Currently, the invisibility of CKD as a clinical diagnosis is a barrier to the implementation of CV risk mitigation strategies as CKD patients are not identified as such. In recent cohort studies, only 23–39% of patients with CKD actually had a CKD diagnosis registered in the electronic health records by their treating physician.\(^8,9\) This has consequences, as for instance patients lacking CKD diagnoses were more frequently prescribed nephrotoxic medications.\(^8\)

Notably, there is still confusion regarding the concept of CKD among some physicians. For instance, as recently as 2018, a seminal medical journal published a manuscript that referred to all patients with an eGFR above 60 mL/min/1.73 m\(^2\) as having CKD G1/G2.
although in most albuminuria or structural kidney abnormalities were not assessed.2

ESC 2021 guideline on cardiovascular disease prevention in clinical practice

In 2021, the ESC issued an update of its seminal guideline on CVD prevention in clinical practice.10 This update was made in consensus with 12 medical societies, including the European Renal Association (ERA).10 As the prior 2016 edition, the 2021 guideline recognizes CKD diagnosed as a low eGFR (<60 mL/min/1.73 m²), as a CV risk factor.11 However, from the perspective of the ERA, this guideline incorporates four main novelties:

1. The concept of moderate and severe CKD is expanded by incorporating albuminuria into the definition. Thus, moderate CKD is no longer limited to persons with an eGFR 30–59 mL/min/1.73 m² and severe CKD is no longer limited to an eGFR <30 mL/min/1.73 m², as they were in 2016. Rather, moderate, and severe CKD now follow the KDIGO global risk classes to encompass a combination of eGFR and UACR values that is associated with high or very-high CVD risk (Figure 1). Thus, now CKD diagnosed by not only low eGFR, but also high UACR is acknowledged as a strong and independent risk factor for CVD. Although the 2016 guideline mentioned albuminuria, it did not integrate it into an integrated CV risk score.

2. Assessment of CKD, based on either elevated albuminuria (>30 mg/g) or low eGFR (<60 mL/min/1.73 m²), should be part of routine CV risk assessment (see below).

3. When CKD is present, not only an ACE inhibitor or an ARB, but also an SGLT2 inhibitor should be considered if non-diabetic and is recommended if the patient has Type 2 diabetes to prevent progression of CKD and CV events (Table 1). This advice was based on the results of the DAPA-CKD trial, in which patients with CKD and with or without Type 2 diabetes were included.12 Recently, the EMPA-KIDNEY Trial, that included a similar patient population, was stopped early because of positive efficacy that met the study’s pre-specified threshold for early termination.13 This has strengthened the evidence supporting this advice.

4. Nomenclature for CKD classes is proposed, which is easier to understand than the original one by KDIGO. It is based on the associated overall risk of adverse health outcomes: mild CKD, moderate CKD (associated with high CV risk), and severe CKD (associated with very-high CV risk) (Figure 1). This simplified nomenclature may facilitate uptake of the CKD concept, and its incorporation into clinical diagnostic codes and risk assessment tools.

Implications for screening

The ESC 2021 guideline on CVD Prevention in Clinical Practice has major implications for both CV risk screening and kidney health, stating that not only blood pressure, cholesterol, and glucose should be assessed to estimate CV risk in an individual, but also albuminuria and eGFR. This goes beyond the traditional view that eGFR and UACR values are only low eGFR, but also high UACR is acknowledged as a strong and independent risk factor for CVD. Although the 2016 guideline mentioned albuminuria, it did not integrate it into an integrated CV risk score.

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Interventions suggested or recommended for primary prevention in persons with chronic kidney disease according to the ESC 2021 guideline on cardiovascular disease prevention in clinical practice</th>
</tr>
</thead>
<tbody>
<tr>
<td>In persons with moderate or severe CKD, there is no need to estimate 10-year fatal and non-fatal cardiovascular disease risk with either SCORE2 or SCORE2-OP. The CVD risk is already high (moderate CKD) or very high (severe CKD), respectively, warranting preventive interventions according to the level of risk, such as:</td>
<td></td>
</tr>
<tr>
<td>• For all patients with CKD:</td>
<td></td>
</tr>
<tr>
<td>• Lifestyle advice including diet and appropriate weight.</td>
<td></td>
</tr>
<tr>
<td>• Blood pressure control, preferably by RAS inhibitors.</td>
<td></td>
</tr>
<tr>
<td>• For CKD patients with specific conditions:</td>
<td></td>
</tr>
<tr>
<td>• LDL-cholesterol reduction to target [LDL-C <1.8 mmol/L (70 mg/dL) in high-risk patients and <1.4 mmol/L (55 mg/dL) in very-high-risk patients].</td>
<td></td>
</tr>
<tr>
<td>• RAS inhibition in case of severely elevated albuminuria, independent of blood pressure.</td>
<td></td>
</tr>
<tr>
<td>• SGLT2 inhibition for those with Type 2 diabetes, or with diabetic as well as non-diabetic kidney disease and an eGFR higher than 25 mL/min/1.73 m², or with heart failure.</td>
<td></td>
</tr>
<tr>
<td>• In addition, for consideration to prevent CVD in specific patients (not part of the ESC guideline): (nonsteroidal) mineralocorticoid receptor antagonists and/or PCSK9 inhibitors.</td>
<td></td>
</tr>
</tbody>
</table>
A call to action by the Council of the European Renal Association

The ESC emphasizes in their guideline that subjects with CKD are at high risk for CVD, and has given CKD a prominent place in CVD prevention. The guideline now requires several stages of dissemination and implementation into clinical practice. If correctly planned this may also generate novel information regarding the optimal implementation strategies:

(1) Wide dissemination of the concept that assessment of serum creatinine (eGFR) and albuminuria (UACR) should be part of any evaluation of CV risk. The message should reach all key stakeholders: healthcare system payers, healthcare personnel, patients, and the general population. To achieve this goal, nephrologists should liaise with primary care physicians, CVD physicians, and cardiologists as key healthcare stakeholders. For instance, they could work out this concept in national guidelines for management of CKD and for CVD prevention, develop educational tools, and organize post-graduate medical education for the various specialties involved. To reach other healthcare personnel, healthcare system payers and the general population the organization of CKD awareness campaigns are indicated. The ERA has templates for such campaigns, for instance to be organized around World Kidney Day.

(2) Europe-wide evaluation of optimal screening strategies to identify CKD. Given the differences in baseline risk for CVD and CKD, and the different healthcare systems, it is unlikely that a single strategy fits all and that the type of screening will depend on local financial resources and logistic possibilities. On a national level initiatives should be started how to best screen for CKD, as for instance the THOMAS study in the Netherlands that investigates the cost-effectiveness of two different ways of home-based albuminuria screening of the general population. A prospective pan-European evaluation of different screening strategies may allow definition of the optimal strategy for local conditions. This could be achieved via the organization of an invitational conference on this topic to be organized by the ERA, KDIGO, and/or ESC. (3) Chronic kidney disease patients should be included in CVD trials yet to be started. Integration of cohorts into registries may generate pragmatic trials that test novel CV protective strategies identified through clinical trials from which CKD patients were excluded. Conversely, clinical trials focused on CKD populations should also have CV end points as CVD constitutes a major proportion of morbidity and mortality in this patient population.

In conclusion, the ESC 2021 guideline on CVD Prevention in Clinical Practice identifies albuminuria and eGFR as CV risk factors that need assessment. Amplification of this guideline among primary care physicians and specialists offers the opportunity for an earlier diagnosis and treatment of CKD and is expected to improve both CV and kidney outcomes in affected subjects.

Supplementary material

Supplementary material is available at European Journal of Preventive cardiology online.

Conflict of interest: none declared.

ERA council

Alberto Ortiz1,2, Christoph Wanner3, Ron T. Gansevoort4, Mario Cozzolino5, Danilo Fiser6, Giovanni Gambaro7, Albert Ong8, Alexander R. Rosenkranz9, Ivan Rychkíl10, Pantelis Sarafidis11, Roser Torra12, Serhan Tuglular13

1IIS-Fundacion Jimenez Diaz- UAM, Madrid, Spain.
2Department of Medicine, Universidad Autonoma de Madrid, Madrid, Spain.
3Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany.
4Department of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
5Department of Health Sciences, University of Milan, Renal Division, ASST Santi Paolo e Carlo, Milan, Italy.
6Internal Medicine IV, Renal and Hypertensive Disease, University Medical Center, Homburg, Saar, Germany.
7Division of Nephrology and Dialysis, Department of Medicine, Ospedale Maggiore, Verona, Italy.
8Kidney Genetics Group, Academic Nephrology Unit, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, Sheffield, UK.

Downloaded from https://academic.oup.com/eurjpc/article/29/17/2211/6673938 by University of Groningen user on 02 March 2023
Chronic kidney disease as cardiovascular risk factor in routine clinical practice

References

