Novel pharmacological targets for the inhibition of inflammation and airway remodeling in asthma
Rahmawati, Siti Farah

DOI:
10.33612/diss.569857035

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2023

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Rahmawati, S. F. (2023). Novel pharmacological targets for the inhibition of inflammation and airway remodeling in asthma. [Thesis fully internal (DIV), University of Groningen]. University of Groningen. https://doi.org/10.33612/diss.569857035

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
CHAPTER 2

Hot off the press: downregulation of PRMT1 for long-lasting effects of bronchial thermoplasty

Siti Farah Rahmawati1,2, Reinoud Gosens1,*

1Department of Molecular Pharmacology and GRIAC Research Institute, University of Groningen, Groningen, The Netherlands.
2Department of Pharmacology-Clinical Pharmacy, School of Pharmacy, Institut Teknologi Bandung, Bandung, Indonesia.
*Corresponding author

Asthma is broadly defined as a group of clinical symptoms with reversible expiratory airflow limitation or bronchial hyperresponsiveness with or without airway inflammation (1). These symptoms are associated with airway remodeling, particularly in severe asthma patients which is characterized by alterations of the tissue structure and cells within the airway, including increased submucosal extracellular matrix (ECM) deposition, reticular basement membrane (RBM) thickening, airway smooth muscle (ASM) hyperplasia and hypertrophy, bronchial microvascular remodeling and mucous cell metaplasia (2–4).

Bronchial thermoplasty (BT) is an endoscopic procedure with a localized delivery of radiofrequency waves leading to heating (65°C) of the airway tissue (5). This procedure has been described as the first asthma treatment that targets airway remodeling directly instead of indirectly by modulating airway inflammation and airway hyperresponsiveness (6). Long term follow up studies of 3 randomized controlled trials pointed out that BT reduces the patient’s asthma exacerbations, emergency department visits and hospitalization up to 5 years after BT treatment (7–9). This suggests that the improvement in lung function by BT might be a long-lasting effect. Indeed, BT decreased ASM mass and type I collagen deposition within the RBM (10). In addition, BT lowered submucosal nerve density, ASM-associated nerve density and the number of epithelial neuroendocrine cells. These results were associated with several clinical outcomes, including the asthma control test (ACT) scores, the number of exacerbations and emergency department visits at 3 and 12 months after BT (11). The effect on the reduction in airway remodeling is likely not merely explained by a direct acute effect of thermal injury and must be due to an alternative biological mechanism triggered in response to BT (12). Although these clinical and histopathological findings have significantly expanded our knowledge on BT, and revealed that its mode of action most likely goes well beyond the originally proposed selective impact on airway smooth muscle, we still lack a detailed mechanistic understanding of how BT regulates the remodeling process.

Epithelial mesenchymal communication is a major mechanism that regulates airway remodelling. In this issue of the European Respiratory Journal, Sun et al. hypothesized that crosstalk between epithelial cells and fibroblasts would underpin the beneficial effects of BT. They hypothesized that epithelial secreted factors would control epigenetic mechanisms in the fibroblast to drive long-lasting effects of BT. In their studies, they direct their attention primarily to protein arginine methyltransferase 1 (PRMT1). PRMT1 is the predominant PRMT enzyme in mammalian cells that methylates arginine residues on histones and other proteins. PRMT1 has been shown to have roles in the pathogenesis of lung cancer, pulmonary fibrosis, pulmonary hypertension, COPD and asthma (14). Deletion of PRMT1 in mouse embryonic fibroblasts (MEFs) leads to DNA damage and reduced cell proliferation (15). Therefore, it is of interest to study the role of PRMT1 in fibroblast proliferation leading up to airway remodelling in patients with severe asthma before and after undergoing BT.

In this study, they collected bronchoalveolar lavage fluid (BALF) from 8 patients and primary bronchial epithelial cells (PBECs) from 62 patients with severe asthma before and after undergoing BT treatment. The PBECs were grown and collected. The supernatant from PBECs culture and BALF from patients was applied to primary fibroblasts. In these airway fibroblasts, they found increased PRMT1 expression, cell proliferation and mitochondria mass in response to BALF collected before BT which were not observed in response to BALF collected after BT. In parallel, they observed down-regulation of miR-19a as well as increased ERK1/2 activity in response to BALF collected before BT, whereas BALF collected after BT did not show such changes. This is of importance as miR-19a is a repressor of ERK1/2 activity and PRMT1 expression (16). C/EBP-β in turn is a negative regulator of miR-19a (17).

The authors further report that culture supernatant from airway epithelial cells collected after BT reduced C/EBP-β expression, ERK 1/2 activity, PGC-α, HSP60, PRMT1 and mitochondria mass in airway fibroblasts compared to culture supernatant from epithelial cells obtained before BT. These results confirm that cellular crosstalk between epithelial cells and fibroblasts is key to some of the persistent changes observed after BT. Furthermore, down regulation of PRMT1 by siRNA reduced the expression C/EBP-β and the proliferative effect of culture supernatant from epithelial cells before BT indicating a crucial role of PRMT1 in this response. Collectively, these results show that both BALF and epithelial culture supernatant after BT decreased the proliferation of fibroblasts through a mechanism involving upregulation of miR-19a leading to downregulation of ERK1/2, PRMT1 and C/EBP-β.

To elucidate the secreted factor that initiates this communication, the authors performed proteomic analysis on BALF and transcriptomic analysis on epithelial cells. They found that heat shock protein 60 (HSP60) expression was downregulated after BT. HSP60 is a chaperone protein expressed in mitochondria that is involved in the transportation and refolding of proteins from the cytoplasm into the mitochondrial matrix. In addition, HSP60 is a type of protein that is induced after subjecting cells to a stress response such as heat (18). HSP60 released into the extracellular space has described to function as a danger signal associated with autoimmune diseases, cancer, and inflammation as well as having direct interactions with molecules in...
various cell compartments (19). Direct stimulation of lung fibroblasts with human recombinant HSP60 significantly increased the expression of C/EBP-β, PRMT1 and PGC-α, confirming the crucial role of this intercellular signaling intermediate. Taken together, this indicates that there is an epithelial-mesenchymal interaction governed by HSP60 regulated PRMT1 expression that plays a role in airway remodeling and is reversed by BT.

In this study, it was also found that PBECs obtained from asthma patients proliferated significantly faster after BT compared to those obtained before BT. This is in apparent contrast with previous study by Pretolani et al. (11) who did not observe any effect of BT on regenerating epithelium. This difference is likely explained by the difference in measurement methods and timing. Pretolani et al. (11) utilized histopathologic evaluation of epithelium in situ whereas Sun et al. (13) used a method for quantifying proliferation of epithelial cells ex vivo. In the clinical study in situ, the first follow-up measurement was taken after 3 months, which exceeds well the time window involved in cell proliferation of airway epithelial cells. Thus, it is not possible to infer from the Pretolani et al. (11) study whether there were changes in epithelial cell proliferation as captured in vitro by Sun et al. (13).

The study by Sun et al. (13) is the first one that shows the role of BT on PRMT1 expression, highlighting its role in airway remodeling. Further intriguing questions arise from this study and need to be explored. The first one is related to the mechanism of epithelial secreted HSP60 and the effects of BT hereon. It has been previously shown that stimulation by H2O2 to induce oxidative stress in cells increased HSP60 expression by epithelial cells into the extracellular medium through NFkB-p65 (20). It would be of interest to study whether this is also the case with BT stimulation. It is also interesting to study the epithelial secreted HSP60 signaling pathway as this appears to be a primary regulatory route towards PRMT1 expression in fibroblasts. For example, which receptors and signaling effectors are involved in fibroblast signaling in response to HSP60 and are these potential targets for drugs?

The second question is about uncovering the role of PRMT1 activity in regulating fibroblast responses. Other studies have shown that PRMT1 is responsible for modulating epithelial to mesenchymal transition (EMT) through regulation of ZEB1 expression by histone modification of H4R3me2 (21) and through arginine 34 methylation of Twist1 resulting in E-cadherin repression (22). In addition, PRMT1 methylates the epidermal growth factor receptor (EGFR) (23). It would be of interest to also identify these possible pathways and the substrate(s) that are methylated by PRMT1 in fibroblasts explaining its effects on airway remodeling. Collectively, the study of Sun et al. (13) contributes to our understanding of the mechanisms involved in the beneficial effects of BT. They report sustained effects on epithelial-mesenchymal interactions in response to BT, characterized by a downregulated HSP60-PRMT1 signaling pathway. These new findings inspire not only further investigations into the pathways and epigenetic mechanisms regulated by BT, but also other potential therapeutic approaches on this signaling pathway, such as inhibition of HSP60 or PRMT1 that could potentially reduce the fibroblasts responses associated with airway remodeling in asthma.

Conflict of interest
S.F. Rahmawati has nothing to disclose.
R. Gosens reports grants from Boehringer Ingelheim, Chiesi Farmaceutici and Aquilo, outside the submitted work.

Support statement
This work was supported by the Lembaga Pengelola Dana Pendidikan/Indonesia Endowment Fund for Education (LPDP).

Severe asthma before bronchial thermoplasty

Severe asthma after bronchial thermoplasty

Figure 1. Schematic representation of the effect of bronchial thermoplasty on airway epithelial mesenchymal communication. Bronchial thermoplasty reduces the release of HSP60 from epithelial cells, which in turn diminishes the expression of ERK1/2, PRMT1 and C/EBP-β, whereas the expression of miR-19a is restored.
References