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Summary

The hyperthermophilic archaeon Sulfolobus solfatari-
cus has been shown to exhibit a complex transcrip-
tional response to UV irradiation involving 55 genes.
Among the strongest UV-induced genes was a putative
pili biogenesis operon encoding a potential secretion
ATPase, two pre-pilins, a putative transmembrane
protein and a protein of unknown function. Electron
microscopy and image reconstruction of UV-treated
cells showed straight pili with 10 nm in diameter, vari-
able in length, not bundled or polarized and composed
of three evenly spaced helices, thereby clearly being
distinguishable from archaeal flagella. A deletion
mutant of SSO0120, the central type II/IV secretion
ATPase, did not produce pili. It could be comple-
mented by reintroducing the gene on a plasmid vector.
We have named the operon ups operon for

UV-inducible pili operon of Sulfolobus. Overexpres-
sion of the pre-pilins, Ups-A/B (SSO0117/0118) in Sul-
folobus resulted in production of extremely long
filaments. Pronounced cellular aggregation was
observed and quantified upon UV treatment. This
aggregation was a UV-dose-dependent, dynamic
process, not inducible by other physical stressors
(such as pH or temperature shift) but stimulated by
chemically induced double-strand breaks in DNA. We
hypothesize that pili formation and subsequent cellu-
lar aggregation enhance DNA transfer among Sulfolo-
bus cells to provide increased repair of damaged DNA
via homologous recombination.

Introduction

The ability of Bacteria and Archaea to form multicellular
structures is observed in a variety of biological systems.
This fascinating phenomenon of a collective behaviour
can be manifested in the formation of biofilms from mixed
microbial mats, cellular aggregates or microcolonies.
Multicellular structures represent an essential strategy for
adaptation to changing environmental conditions or even
survival (Shapiro, 1998; Davey and O’Toole, 2000; Battin
et al., 2007). Cells organized in biofilm-like structures
show a higher resistance to toxic compounds, as for
example antimicrobials (Patel, 2005) or to physical stress,
like shifts in temperature or pH, or exposure to UV light
(Ojanen-Reuhs et al., 1997; Roine et al., 1998; Elasri and
Miller, 1999; Martinez and Casadevall, 2007). In addition,
microorganisms benefit from the attachment on sub-
strates like, e.g. suspended particles, which provides a
higher nutrient availability (Davey and O’Toole, 2000).
Also genetic transfer, i.e. DNA exchange via conjugation,
plays an important role in biofilms to disseminate specific
genes of metabolic pathways (Gasson and Davies, 1980;
Molin and Tolker-Nielsen, 2003). The rate of conjugative
DNA exchange in biofilm structures is enhanced and
conjugative pili stabilize the biofilm structure (Gasson
and Davies, 1980; Ghigo, 2001; Molin and Tolker-Nielsen,
2003; Reisner et al., 2006).

Cellular aggregation is mainly reported for organisms
of the domain Bacteria, while comparably few but quite
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diverse examples have been found in the domain of the
Archaea. In anoxic sediments of the ocean anaerobic
methane-oxidizing archaea form synergistic communities
with sulphate-reducing bacteria in the form of structured
consortia (Boetius et al., 2000). An unusual microbial
community organized in string-of-pearls was found in cold
sulphurous water. It is formed by the euryarchaeon SM1
that grows in close association with the bacterium Thio-
thrix sp. and forms complex and unusual cellular append-
ages (Moissl et al., 2003; 2005). Single-strain cultures
of the hyperthermophilic euryarchaeote Archaeoglobus
fulgidus form a protein-, metal- and polysaccharide-
containing heterogeneous biofilm, which is inducible by
various environmental stressors (LaPaglia and Hartzell,
1997). Pyrococcus furiosus can form surface attached
microcolony structures mediated by multifunctional fla-
gella, which can also form cable-like structures to mediate
cell–cell contacts (Näther et al., 2006; Schopf et al.,
2008).

Beside adherent multicellular structures that are found
attached to diverse surfaces, non-adherent floating multi-
cellular structures are also described for archaea. Metha-
nosarcina mazei, for example, forms aggregates during
exponential growth (Mayerhofer et al., 1992) and halo-
philic archaea do so in the presence of divalent cations
(Kawakami et al., 2005; 2007). For the halophilic eur-
yarchaeote Halobacterium volcanii and the hyperthermo-
philic crenarchaeote Sulfolobus sp. cellular aggregation
was observed in context with conjugative DNA transfer
(Rosenshine et al., 1989; Schleper et al., 1995).

Characteristic for all types of cellular aggregation is the
attachment between single cells, mostly mediated or
stabilized by exopolysaccharides (EPS) and/or proteins
as was shown for many bacterial systems (Davey and
O’Toole, 2000; Klemm et al., 2004; Kawakami et al.,
2007). Some microorganisms like Xanthomonas and
Pseudomonas use type IV pili to initiate or mediate the
cellular aggregation (Ojanen-Reuhs et al., 1997; Bhatta-
charjee et al., 2001). A Pseudomonas aeruginosa mutant
defective in the type IV pilus biogenesis was unable to
attach on surfaces and form microcolonies (O’Toole and
Kolter, 1998; O’Toole et al., 2000).

The type IV pili biogenesis pathways of bacteria are
not only closely related to the type II protein secretion
systems (Sauvonnet et al., 2000; Köhler et al., 2004), but
also to the archaeal flagella systems. This was shown by
bioinformatic and biochemical analyses (Faguy et al.,
1994; Bardy and Jarrell, 2002; Peabody et al., 2003). In
addition, it has been shown that the flagella of Halobac-
terium salinarum and Sulfolobus shibatae are in symme-
try and structure more closely related to the bacterial type
IV pili than to bacterial flagella (Cohen-Krausz and Tra-
chtenberg, 2002; 2008). The core components of the bac-
terial and archaeal systems are: (i) a type II/IV secretion

system ATPase, (ii) a multispanning transmembrane
protein, and (iii) the pre-pilin-like proteins with a charac-
teristic N-terminal signal sequence (termed class III signal
peptides) that form the structure of the pilus (Peabody
et al., 2003). In the genome of the crenarchaeote Sulfolo-
bus solfataricus three putative type IV pili loci were iden-
tified (Albers and Driessen, 2005). The operon SSO2316
(named after the central ATPase) codes for the flagellum
of S. solfataricus (Szabó et al., 2007a). The operon
SSO2680 encodes a recently described bindosome
assembly system (Bas) needed for the functional surface
localization of sugar-binding proteins (Zolghadr et al.,
2007). The biological function of the third operon
SSO0120, spanning ORFs sso0117 through sso0121,
was unclear. Using whole-genome microarray studies to
analyse the UV response of S. solfataricus we observed
that the genes sso0117 to sso0121 were among the most
highly induced genes using a UV dose of 75 J m-2 at
254 nm (Fröls et al., 2007). A strong upregulation of
the operon was also observed by an independent study
of White and co-workers using a higher UV dose of
200 J m-2, with S. solfataricus and S. acidocaldarius
(Dorazi et al., 2007; Götz et al., 2007). In parallel to the
strong transcriptional UV response we observed a
massive aggregation of the cells, which disappeared after
regeneration (Fröls et al., 2007).

In this study we demonstrate that extracellular pili-like
structures, thinner than flagella, are formed upon UV light
treatment. They are encoded by the UV-inducible (type
IV-like) pili operon, as shown by targeted gene knockouts.
Furthermore, we show that these pili structures are
essential for the UV-dependent auto-aggregation of
S. solfataricus cells and that this phenomenon is driven by
double-strand breaks (DSB) in the DNA, but not by other
stressors, such as pH or temperature shifts.

Results

UV-inducible expression of the sso0117–sso0121
gene cluster

The induction of the genes sso0118 and sso0117
occurred as one of the strongest and fastest transcrip-
tional reactions detected in an earlier genome-wide
microarray study on the impact of UV light exposure of
S. solfataricus cells (Fröls et al., 2007). These genes
belonged to a cluster, and possibly an operon of five
genes (sso0117 through sso0121) all of which were
strongly induced with a maximal induction of 14-fold for
sso0118 (Fröls et al., 2007). The transcriptional increases
were observed at 1.5–5 h after UV treatment. Over the
time-course of 8.5 h, a similar transcriptional reaction
pattern for these genes was observed, but not for the
upstream or downstream flanking genes (sso0116 and
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sso0115, sso0122). This indicated transcription from a
common promoter, as suggested earlier under non-
inducing growth conditions (Albers and Driessen, 2005).
Only the gene sso0118 deviated from this UV-dependent
pattern and was up to 3.5-fold higher induced, which may
indicate the presence of an additional promoter or alter-
natively, a higher stability of the transcript.

Bioinformatic analysis indicated a putative type IV pili
biogenesis operon, represented by a type II/IV secretion
system ATPase (SSO0120) and an integral membrane
protein (SSO0119) (Fig. 1A). The deduced protein
sequence of the ATPase SSO0120 contained Walker A/B
sites and a VirB11-related ATPase conserved domain
(COG630N). The protein belonged to the TadA subfamily
of type IV ATPases (Planet et al., 2001). SSO0119 con-
tained nine predicted transmembrane helices and a TadC
(COG2064N) conserved domain. Thus both proteins were
homologous to factors of the Tad system (TadA and
TadB/TadC), which conveys non-specific tight adherence
of Actinobacillus on surfaces (Kachlany et al., 2001).
The SSO0118 and SSO0117 proteins harboured an
N-terminal class III secretory signal sequence as found in
type IV pilin precursors. No functional predictions could be
made for the first gene, sso0121, which encoded a highly
hydrophilic protein exclusively found in the genomes of
Sulfolobales.

The putative pili operon was well conserved in the
order Sulfolobales, with the same gene arrangement in
the strains Sulfolobus tokodaii and S. acidocaldarius
(Table S2 and Szabó et al., 2007b). Further similarities
were only found to genes of the hyperthermophilic
crenarchaeon Metallosphera sedula, belonging to a
closely related order. In M. sedula, homologues of
sso0120, sso0119 and sso0117 form an operon structure
whereas sso0118 is located in a different genomic region.

Maturation of pre-pilins

Both SS0117 and SSO0118 encode predicted proteins
of 15 and 16 kDa, respectively. They contain a signal
sequence with the predicted cleavage site for the type IV
pre-pilin peptidase PibD (Albers et al., 2003; Szabó et al.,
2007b). In SSO0117 and SSO0118 only 6 and 16 amino
acids would be cleaved by PibD respectively (Fig. 1B).
The ORFs of SSO0117 and SSO0118 were cloned into an
Escherichia coli expression vector already containing
PibD (Szabó et al., 2007b). Using the in vivo assay the
expression of the pre-pilin proteins was induced for 2 h
before the expression of the peptidase was induced.
Western blot analysis of crude membrane extracts of the
recombinant E. coli cells showed that SSO0118 was pro-
cessed by PibD resulting in a faster running protein
species when compared with the full-length protein
(Fig. 1C, lanes 2 and 3). Cleavage of SSO0118 was
already observed before induction of the expression of
PibD, most likely because the promoter used for the
expression is leaky and the enzyme cleaves the substrate
very efficiently. Cleavage of the signal peptide of
SSO0117 could not be observed, most probably because
the difference between the precursor and the processed
form do not differ enough to be separated on SDS-PAGE.
Experiments to separate these two forms in isoelectric
focusing gel electrophoresis failed.

UV-induced pili formation

To identify pili, cells were analysed by electron micros-
copy after UV treatment. To exclude that any extracellular
structures were not artefacts of flagella we used the
S. solfataricus knockout strain DflaJ that does not produce
flagella (Szabó et al., 2007a). Only on the surface of the
UV-treated cells, pili-like structures were observed
(Fig. 2A). These pili structures were spread over the
whole surface and were not polarized at one cell side.
Most of the cells of a UV-treated culture contained many
pili, some had less or very few (only two to three pili), and
few cells did not express pili on their surfaces at all. A
time-course experiment showed that the first pili-like
structures were observed at 1 h after UV treatment.

Fig. 1. A. Composition and characteristics of the ups operon
(UV-inducible pili operon of Sulfolobus). Transcriptional induction
after UV treatment has been shown in Fröls et al. (2007). TMH,
transmembrane helices.
B. N-termini of UpsA/B (SSO0117/118) with processing site of PibD
indicated by an arrow.
C. Result of in vivo cleavage assay of SSO0118-HA by PibD in
E. coli. Expression of the protein was detected by Western blot
analysis using HA-tag antibodies. Lane 1: expression of
SSO118-HA in the absence of PibD; lane 2: 2 h after arabinose
induction; lane 3: 2 h after induction of PibD by IPTG.
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In comparison with the flexible flagella, the pili showed
a more straight and rigid structure. Pili of up to 16 mm in
length or even longer were observed. However, such long
filaments where only found detached from the cells, which
indicated that they are more fragile than flagella. Because
the pili appeared straight for most of their length, it was
possible to process them by single-particle analysis
selecting straight segments of almost up to 100 nm. About
700 segments were extracted from long pili, aligned and
averaged. The final average projection map is shown in
Fig. 2B. The structure appeared to consist of three evenly
spaced helices. The pitch (repeating unit) of the pili was
15.5 nm and the maximal diameter was about 10 nm.
In the negatively stained samples the single helices
appeared almost uniformly stained without any clear
density differences that could give clues about the hand-
edness (left- or right-handed) of the helices.

Cellular aggregation after UV treatment

The appearance of pili upon UV treatment that could
mediate cell-to-cell contacts inspired us to analyse micro-
scopically the formation of cell aggregates (Fröls et al.,
2007). We have shown earlier that aggregation occurs
with high frequency independent of the S. solfataricus
genotypes, because experiments with four different
strains [P1, PH1, PH1-M16, PH1(SSV1)] showed the
same phenotypic reaction. With increasing time after UV
treatment, an increasing number of cells were found in
aggregates with the highest amount of aggregation found
at 6–8 h after UV treatment (Fröls et al., 2007 and Fig. 6).

The aggregates increased also in size. While three to five
cells were found in the early aggregates, bigger com-
plexes formed at later time points. The shape of the early
aggregates seemed to be random, as variations of pyra-
mids, circle shapes, straight and branching chains were
observed (not shown). In the later stages (6 h) the cells
accumulated to big clusters of > 100 cells. As it was
impossible to count the number of cells in such aggre-
gates, our quantitative data (% cells in aggregates of total
cell count) generally represent an underestimate.

Attempts to destroy the cell–cell connections by shear
force experiments resulted in cell lysis at all stages but
not in disaggregation, indicating a high stability of the
aggregates. The induction of cellular aggregation was
UV-dose-dependent (see Fig. 3). We treated the cells with
seven different UV doses ranging from 5 to 1000 J m-2.
Growth retardation of the respective cultures was directly
proportional to the applied UV dose (data not shown). The
highest cellular aggregation was observed 6 h after UV
treatment, i.e. at the expected maximum. The highest
amount of cellular aggregation was found with 75 J m-2

(up to 50% and sometimes even 70% of cells in aggre-
gates, Fig. 3A and Fröls et al., 2007) and with 50 J m-2 (at
least 40% of the cells were in aggregates of � 3 cells,
Fig. 3A). Even the lowest dose of UV light of 5 J m-2

induced the cellular aggregation, whereas the high UV
doses of 200 and 1000 J m-2 showed a very low and no
significant aggregation reaction respectively. We also
observed a strong correlation between the size and
amount of cellular aggregates (Fig. 3B). Low doses of 5
and 10 J m-2 resulted in cellular aggregates of < 7 cells.

Fig. 2. Electron microscopic analysis of UV-inducible pili in S. solfataricus.
A. DflaJ cells were analysed by electron microscopy 3 h after UV light treatment (I, II and III) and mock treatment for the control.
B. Image processing of pili. Left: projection map obtained after processing 700 non-overlapping fragments of straight pili. Right: Scheme of
three-stranded helical arrangement of the pili overlayed. The horizontal lines indicate the pitch of the structure which is 15.5 nm.
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Only upon a UV dose of 50–75 J m-2, large aggregates of
10–20 cells or many more were generated frequently.
Because cells in these biggest aggregates could not be
counted, our numbers in Fig. 3A represent an underesti-
mate for 50 and 75 J m-2. In the case of the high UV doses
of 200 and 1000 J m-2 no aggregates > 4 cells were
observed.

By using different vital staining techniques (see Experi-
mental procedures), we investigated whether dead cells

accumulate in aggregates (see Table 1). In the case of the
lowest UV dose of 5 J m-2 only 8% of the total cells in
aggregates (� 3 cells) were dead. The amount of dead
cells increased proportionally with the UV dose but was
far lower than the number of living cells. The majority of
the cells (64%) present in the infrequent aggregates at
200 J m-2 were not alive. At lower UV dose, like 75 J m-2,
even large aggregates of > 20 cells were almost uniformly
composed of living cells (Fig. 3C).

Fig. 3. Aggregation of S. solfataricus cells after treatment with different UV doses.
A. Quantitative analysis of cellular aggregation at 6 h after UV treatment. Exponential cultures were treated with 0, 5, 10, 25, 50, 75, 200 and
1000 J m-2. The percentage amount of cells in aggregates (� 3 cells) is given in relation to the total cells. For each UV dose the amount of
cells in and outside aggregates were counted until 500 single cells were found. The bars display the mean of three independent experiments,
except for 5 and 10 J m-2 (see asterisk), where only one experiment was performed.
B. Light micrograph of S. solfataricus cell aggregates at 6 h after UV treatment with different UV doses. The size of the aggregates increased
with the UV dose; the biggest aggregates were found after treatment with 50 and 75 J m-2.
C. Fluorescence micrograph of a S. solfataricus cell aggregate at 6 h after UV treatment at 75 J m-2. Cells were stained with the LIVE DEAD
Baclight (Invitrogen) assay. Living cells are labelled in green and dead cells in red. Big aggregates of > 20 cells were mostly found at 3 h after
treatment. For quantitative analysis of the cell vitality at different UV doses see Table 1.
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Gene knockout in the UV-inducible pili operon abolishes
pili formation and cellular aggregation

To prove that pili were indeed assembled from compo-
nents expressed from the putative pili operon, a deletion
mutant was constructed in which the ATPase (sso0120)
was replaced by insertion of a lacS cassette containing
the lacS gene with its natural promoter and terminator
region via a double cross-over. The successful deletion of
the sso0120 gene was confirmed by Southern analysis
and RT-PCR (see Fig. 4A and B). The RT-PCR showed
that under inducing conditions the sso0120 mRNA was

absent, while the downstream genes of the operon were
still expressed, probably because of readthrough of the
lacS terminator by the RNA polymerase. After UV treat-
ment of the mutant Dsso0120 we could not observe any
pili-like structures on the cellular surfaces by electron
microscopy (Fig. 4C, Ia and Ib). As control, we used the
parent strain PBL2025 (Schelert et al., 2004) which
clearly showed pili-like structures beside the flagella upon
exposure to UV light (Fig. 4C, IIa and IIb). When the
mutant strain Dsso0120 was complemented with pSVA99
containing sso0120 under the control of the araS
promoter, pili were again observed after UV treatment,
but only when the cells were additionally incubated with
arabinose (Fig. 5A). Overexpression of both pilin genes,
sso0117 and sso0118, in the DflaJ strain using the virus-
based vector construct pSVA96 resulted in the assembly
of fewer, but extremely long and irregular pili (Fig. 5B).
The overexpression of the whole operon, sso0121-0117,
using pSVA125 led to the formation of pili around the
whole cell surface (Fig. 5C), whereas the expression of a
cytoplasmic control protein from pSVA31 did not result in
the assembly of surface structures (data not shown).
Together these data demonstrate that formation of the pili
is dependent on expression of sso0120 and that the two
pre-pilins (or one of them) most likely form the subunits of
the UV-inducible pili.

Table 1. Cell vitality of S. solfataricus cells in aggregates formed
after treatment with UV light.

UV dose (J m-2) Vital cells in %a

5 92
10 88
25 83
50 66
75 56

200 36

a. At 6 h after UV treatment a live and dead stain was performed (see
Experimental procedures and also Fig. 3C).
A minimum of 50 aggregates � 3 cells were counted per each UV
dose and the fraction of vital cells is given in relation to the total cells
found in aggregates.

Fig. 4. Analysis of the sso0120 knockout strain.
A. Southern blot analysis of wild-type PBL2025 (B) and the Dsso0120 (A) strain. Genomic DNA was each digested with HindIII or EcoRI
respectively.
B. RT-PCR analysis of PBL2025 (B) and Dsso0120 (A) strain after UV stress. The position of the primers used for the PCR reactions are
indicated by the same number above the gel and the map of the operon.
C. Electron micrographs 3 h after UV treatment. Only long flagellar but no pili can be observed in the Dsso0120 strain (Ia and b) while the
surface of PBL2025 (IIa and b) is covered with pili.

UV-inducible cellular aggregation 943

© 2008 The Authors
Journal compilation © 2008 Blackwell Publishing Ltd, Molecular Microbiology, 70, 938–952



The Dsso0120 strain was further tested for its ability to
form cellular aggregates upon UV exposure. After a treat-
ment with a UV dose of 50 J m-2 no significant cellular
aggregation of more than four cells was observed (Fig. 6).
The amount of cells in aggregates accounted for less than
10% in the UV-treated culture and the control (mock-
treated) culture, similar to the amount of cells in aggre-
gates observed for the mock-treated cultures of the other
four tested S. solfataricus strains. The S. solfataricus
strain P1 and PH1-M16 (P1 DlacS) showed a maximum
aggregation at 6–8 h after treatment, with an average
of 45–50% cells in aggregates. In the same experiment,
the PBL2025 and the DflaJ strains exhibited a shifted
maximum at 8–10 h and a lower amount of aggregation
with an average of 20%. The weaker reaction is most
probably due to the different genotypes of these strains,
which stem from PBL2025, an isolate from Yellowstone

National Park S. solfataricus 98/2s (Schelert et al., 2004).
Comparable results were observed when using a lower
UV dose of 25 J m-2 (see Fig. S1). Again, no significant
cellular aggregation was observed for strain Dsso0120.
The P1 and PH1-M16 strains showed a lower amount of
aggregation with 30–40%, as expected in relation to the
lower UV dose. The amount of cells in aggregates in the
case of the PBL2025 strain stayed the same, whereas
with the DflaJ strain the amount of cells in aggregates
increased to > 30% and the maximum shifted to 6 h.
Based on these results we conclude that the UV induction
of the putative pili operon, the inducible pili production and
the cellular aggregation are functionally linked to each
other. We therefore named the newly identified operon
UPS for UV-inducible (type IV-like) pili operon of Sulfolo-
bus, represented by the genes upsX, upsE (ATPase),
upsF (TM protein), upsA and upsB (pre-pilins).

Fig. 5. Electron micrographs of S. solfataricus cells assembling pili. (A) shows a UV-treated Dsso0120 cell expressing sso0120 under the
control of the araS promoter. (B) depicts a DflaJ cell overexpressing the pilins SSO117/118 and overexpressing the whole operon comprising
SSO0121-117 (C). In (B) two pictures were assembled to show the length of the pilus; in (A) and (C) pili are indicated by the arrows.

Fig. 6. Quantitative analysis of the
UV-induced cellular aggregation of different
S. solfataricus strains at 0–10 h after UV
treatment (UV) and mock treatment (C). The
graph is based on four independent UV
experiments for each strain. Cellular
aggregation was observed at 3, 6, 8 and 10 h
after UV treatment with 50 J m-2 (254 nm).
The bars display the percentage amount of
cells in aggregates (� 3 cells) in relation to
the total amount of evaluated cells (500–1000
single cells were counted).
No UV-induced cellular aggregation was
observed in the knockout strain Dsso0120.
Similar results were observed by using a UV
dose of 25 J m-2 (254 nm) displayed in
Fig. S1.
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Cellular aggregation is not inducible by other
environmental stressors or in late growth phases

To analyse if cellular aggregation can be induced by con-
ditions other than UV exposure, four strains that harbour
the wild type of the ups operon were used: S. solfataricus
strains P1, PH1-M16, PBL2025 and DflaJ. We monitored
and quantified the extent of cellular aggregation after a
temperature shift from 78°C to 88°C (heat shock) and
down to 65°C (Kagawa et al., 2003), which corresponded
to non-lethal heat- and cold-shock conditions that might
be often encountered in hot springs. Shifts from pH 3 to 4
and down to pH 2.5 were similarly investigated. No sig-
nificant cellular aggregation was observed under the
tested conditions in any of the four tested strains. The
amount of cells in aggregates (� 3 cells) was always
below 10% (see Fig. S2). We also monitored the extent of
cellular aggregation in the late growth phases of the cul-
tures, from stationary to dead phase. Only at the begin-
ning of the late stationary phase, i.e. at the start of growth
retardation, a slightly increased cellular aggregation was
noted. For strain P1 up to 24% of the cells were found in
aggregates of four to seven cells at most, while the
amount of cells in aggregates (� 3 cells) were lower than
10% in all other growth phases (see Fig. S2).

Cellular aggregation is induced by treatment with DNA
double-strand breaking-inducing agents

As a response of S. solfataricus to UV light we observed
earlier the formation of DSB in the genomic DNA (Fröls
et al., 2007). Whereas cis-syn-cyclobutane pyrimidine

dimers (CPDs) represent direct DNA damages caused by
the UV light effect, DSB are probably formed as a result of
collapsing replication forks at unrepaired sites in the
genomic DNA. It has been speculated earlier that DSB
might represent an intracellular signal for further cellular
reactions. Therefore we determined whether the forma-
tion of DSB is connected to the formation of cellular
aggregates. The induction of cellular aggregation of the
different S. solfataricus strains P1, PH1-M16, PBL2025
and Dsso0120 in response to the DSB-inducing agents
bleomycin (3 mg ml-1) (Fig. 7) and mitomycin C (5, 10 and
15 mg ml-1) was investigated (Cannio et al., 1998; Reilly
and Grogan, 2002; Kosa et al., 2004) (Table 2). The con-
centrations we applied were non-lethal to the cells as
investigated by plating efficiencies and growth behaviour
in liquid cultures (data not shown). Cellular aggregation
was monitored at 3, 6 and 8 h after the treatment and with
bleomycin additionally at 1 and 10 h. All tested strains,
except for the Dsso0120 strain, showed a significant cel-
lular aggregation in response to the agents. Eight hours
after the treatment with bleomycin, strains P1, PH1-M16
and PBL2025 exhibited 25–35% of cells in aggregates
(Fig. 7), while aggregation in the mock-treated cultures
and the bleomycin-treated strain Dsso0120 remained
below 10%. Similarly, although less strongly, mitomycin C
induced aggregate formation in the ups operon containing
wild-type strains (P1, PBL2025), but not in the knockout
strain (Table 2). These observations indicate that DNA
damage and in particular DSB might be a direct or indirect
signal for inducing aggregate formation.

Discussion

The special living conditions of Archaea in extreme
environments make them interesting objects to study
adaptations and stress responses. In particular hyperther-

Fig. 7. Aggregate formation of different S. solfataricus strains after
treatment with bleomycin (B) (3 mg ml-1) and mock treatment (C).
No significant cell aggregation was observed with the knockout
strain Dsso0120. The bars display the percentage amount of cells
in aggregates (� 3 cells) in relation to the total amount of
evaluated cells (500 single cells were counted).

Table 2. Cellular aggregation in percentage after treatment with
mitomycin C.a

Strain
Mitomycin
C dose

Time in hours after
treatment

3 h 6 h 8 h

P1 (wild-type strain) 5 mg ml-1 5 10 10
10 mg ml-1 8 10 16
Control 1 2 2

PBL2025 5 mg ml-1 1 10 9
15 mg ml-1 6 12 10
Control 1 1 3

PBL2025:Dsso0120 5 mg ml-1 1 1 2
15 mg ml-1 0 0 0
Control 0 1 0

a. The percentage amount of cells in aggregates (� 3 cells) in rela-
tion to the total number of evaluated cells is given (a minimum of 500
single cells were counted).
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mophilic and acidophilic Archaea like S. solfataricus have
to deal with a constant stress and DNA damage in their
harsh environments. Here we present the identification
and characterization of an archaeal pili system that medi-
ates cellular aggregation of S. solfataricus in response to
UV damage. The genes encoding the now called ups
operon for UV-inducible (type IV-like) pili operon of Sul-
folobus had earlier been identified to be UV-dependently
induced in a genome-wide DNA microarray analysis (Fröls
et al., 2007).

To our knowledge this is the first reported study on a
UV-inducible pili-mediated auto-aggregation system. As
discussed below, its induction seems to be coupled to
the DNA DSB caused by UV irradiation. We suspect
that cellular aggregation mediates DNA repair via a
conjugation-like process, as an enhanced exchange of
chromosomal markers has been observed upon UV
irradiation as well as increase in the transcripts levels
of genes involved in homologous recombination.

UV-inducible pili mediate cellular aggregation

By electron microscopic analysis we found a strong cor-
relation between the formation of extracellular pili on the
cellular surface after UV treatment and the expression of
the ups operon, both of which appeared first at 1 h after
UV treatment and reached a maximum within 5–6 h. To
test our hypothesis that the gene products of the ups
operon are responsible for the production of the pili we
used the recently developed genetic system (Albers and
Driessen, 2007) to produce a specific knockout of the
putative secretion ATPase UpsE (SSO0120). No pili
structures were observed on the cellular surface of the
Dsso0120 strain. By testing this strain in a quantitative
cellular aggregation analysis, we proved that the pili are
necessary for the cellular aggregation of S. solfataricus
after UV treatment. Cellular aggregates were as infre-
quent (i.e. lower than 10% of all cells) as in mock-treated
controls of four different S. solfataricus strains. Image
analysis of isolated pili structures showed that the pili are
much thinner in diameter and clearly distinguishable
from the flagella of S. solfataricus (Szabó et al., 2007a).
A detailed structural analysis of another archaeal pilus
has recently been published from a methanogenic
euryarchaeote Methanococcus maripaludis (Wang et al.,
2008).

The pili-like structures of S. solfataricus are spread over
the whole cellular surface. They are not bundled or polar-
ized like the cable-like flagellar bundles of P. furiosus,
which mediate cell attachment (Näther et al., 2006) or the
type IV pili of the Tad system from Actinobacillus species
that mediate non-specific adherence (Kachlany et al.,
2000; 2001). Experiments to disconnect cellular aggre-
gates by shearing forces failed, indicating that the cell–

cell contacts were highly stable once formed and showing
that the cellular aggregates were not a result of an unspe-
cific accumulation. The latter was also ruled out by a
live and dead stain analysis (Fig. 3C and Table 1). The
detailed mechanisms of auto-aggregation is, however, still
unknown. It has been reported that the bacterial type IV
pili are bound with their tip on surface structures or other
cells (Mattick, 2002). So far, we did not observe any
attachment to surfaces. However, our experiments were
performed under moderate shaking in glass flasks, such
that one cannot rule out the possibility of surface attach-
ment under different conditions.

UV-inducible cellular aggregation is highly dynamic

A quantitative assay was developed in this study to
analyse the dynamics of cellular aggregation in more
detail. We showed that the aggregation is a fast process
induced by the UV-dependent reaction of S. solfataricus
and seems to occur in two phases. First, small aggregates
of three to five cells accumulate, which later aggregate to
larger forms. The maximum of aggregation was reached
at 6–8 h after UV treatment, followed by a clear disap-
pearance, interpreted as an active disaggregation. One
has to note that the absolute amount of cellular aggrega-
tion is by far underestimated because cell aggregates of
more than 20 cells were uncountable and the biggest
aggregates with even up to 100 and more cells were
found frequently at 6 h after UV treatment. Furthermore,
cell aggregates of two were not incorporated in the calcu-
lations in order to exclude dividing cells.

In correlation to the cell cycle length of S. solfataricus,
which is around 7 h, the dynamics of this process are
relatively fast. For example, the cellular packets of
M. mazei need 2–6 days to form the lamina structures,
and then remain stable over 6–11 days until the culture
reaches stationary growth phase and the lamina disag-
gregate (Mayerhofer et al., 1992). The stress induced
biofilm formation of A. fulgidus occurs in 2–12 h, but in
this case no disaggregation was reported (LaPaglia and
Hartzell, 1997).

UV light is the only identified stressor to induce
auto-aggregation

It is reported that cells organized in multicellular structures
show a higher resistance to different environmental stres-
sors, like temperature, pH and also UV light (Ojanen-
Reuhs et al., 1997; Roine et al., 1998; Martinez and
Casadevall, 2007). Treatment of the hyperthermophilic
archaeon A. fulgidus, with a high dose of UV light and
other physical or toxic stressors, results in a biofilm
production (LaPaglia and Hartzell, 1997). Mutants of
plant pathogen bacteria Pseudomonas syringae and Xan-
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thomonas campestris defect in the auto-aggregation
showed a higher sensibility to UV irradiation than the wild
type capable of forming multicellular structures (Ojanen-
Reuhs et al., 1997; Roine et al., 1998). A decreased sen-
sitivity to UV light and other environmental stressors was
also reported for biofilms of the yeast-like fungi Crypto-
coccus neoformans (Martinez and Casadevall, 2007).
None of the stressors that we used for S. solfataricus
induced cellular aggregation, nor did late growth phase
stages. This stands in contrast to all given examples of
multicellular structures, which are typically interpreted as
an advantageous life form under harsh or specialized
environmental conditions. Thus S. solfataricus shows a
unique multicellular formation which is not a general effect
of a stress response.

Interestingly, the extent of cellular aggregation (aggre-
gate sizes and the number of cells involved) was depen-
dent on the UV dose. Relatively high doses of UV light,
like 200 or 1000 J m-2, resulted in an insignificant amount
of small aggregates (� 4 cells) and killed most of the cells.
In contrast a relatively low dose of UV light, like 5 J m-2,
induced cellular aggregation. In nature sunlight composed
of up to about 96% UV-A reaches the ground with c. 4%
UV-B that is the most DNA-damaging factor. The daily
dose of DNA-damaging UV-B light on a sunny day in the
northern and southern world hemispheres is measured
between 1000 and 3000 J m-2 over 24 h (depending on
the season). The experimentally used UV-C (254 nm) is
about 100-fold more effective than UV-B in inducing CPDs
(Kuluncsics et al., 1999). With reference to the observa-
tion that even low dose of UV light significantly induces
the cellular aggregation of S. solfataricus we conclude
that this phenotypic effect reflects the behaviour of the
organism to the sunlight in the natural environment.

Cellular aggregation is induced by DNA DSB and might
mediate a recombinational repair among chromosomes
of mating cells

Between 2 and 8 h after UV treatment we observed the
formation of DNA DSB, probably resulting from replication
fork collapse at damaged DNA sites (Fröls et al., 2007).
These observations inspired us to investigate in this study
if the cellular aggregation is causally linked to the pres-
ence of DSB in the genome. Indeed, the DSB-inducing
agents bleomycin and mitomycin C caused the same
phenotype of cellular aggregation as UV light. Similarly,
the proliferation of the S. shibatae virus 1 (SSV1) can be
induced by mitomycin C as well as UV light (Martin et al.,
1984) indicating that the same internal signal cascades
are involved.

However, it is still unclear how DSB DNA might be
sensed in the cells and how the signal is further trans-
ferred to induce the cellular aggregation and DNA-repair

reactions. A phototaxis mechanism is reported for
H. salinarum that regulates the motor switch of the
flagella. The UV light is sensed by the sensory rhodopsin
(Htr) and activates a Che-like two-component system
(Nutsch et al., 2003). However, neither of these com-
ponents is known in Sulfolobales. In Synechocystis
PCC6803 Che-like histidine kinases control the cell orien-
tation to the light and type IV pilus biosynthesis (Bhaya
et al., 2001).

We observed that strain Dsso0120 was more sensitive
than wild type to DSB-inducing agents, suggesting that
cell aggregation is required for efficient DNA repair.
Although aggregation could simply reduce the exposure
of cells to UV light by shading, we believe that aggrega-
tion might play a role in mediating the formation of mating
pairs that allow DNA repair via homologous recombination
among the partners.

Significantly enhanced exchanges of chromosomal
markers upon treatment with UV light have been
described for Sulfolobus (Wood et al., 1997; S. Fröls and
C. Schleper, unpublished).

Furthermore, we found a slight, but significant upregu-
lation of the mre11 operon upon UV treatment in
S. solfataricus using whole-genome microarrays (Fröls
et al., 2007). This operon encodes homologues of the
eukaryotic system involved in the DSB repair via homolo-
gous recombination (Hopfner et al., 2002; Constantinesco
et al., 2004).

By integrating our observations and those cited above
we think that recombinational repair via homologous
recombination and DNA exchange via cell–cell contacts
might be an important strategy to overcome DNA damage
in Sulfolobus caused by UV light. Future studies will aim
at investigating if this is indeed the case. It will also be
interesting to elucidate the transcriptional regulation of the
UV-induced genes, with the perspective to clarify the
signal transduction pathways that sense UV irradiation or
DNA damage in crenarchaeota.

Experimental procedures

Strains and growth

Sulfolobus solfataricus P1 (DSM1616), PH1 (Schleper et al.,
1994), PH1-M16 (Martusewitsch et al., 2000) and PBL2025
(Schelert et al., 2004) and derived deletion mutants were
grown aerobically at 80°C in the medium described by
Brock et al. (1972), adjusted to pH 3 with sulphuric acid and
supplemented with 0.1% (w/v) of trypton and 0.2% (w/v) of
arabinose under moderate agitation (150 r.p.m. in a New
Brunswick shaker). Growth of cells was monitored by mea-
suring the optical density at 600 nm. Solid media were pre-
pared by adding gelrite to a final concentration of 0.6% and
MgCl2 and CaCl2 to 0.3 and 0.1 M respectively. Plates were
incubated for 5 days at 78°C. For the propagation of plas-
mids, E. coli strain DH5a was used. For the virus containing
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plasmids ElectroMAX™ E. coli Stbl4™ cells (Invitrogen,
Germany) were used.

UV light exposure

UV treatment of cells was performed under red dimmed light.
Aliquots of 10 ml of S. solfataricus culture (OD600 0.3–0.5)
were transferred to a 110 mm plastic Petri dish and treated
with a defined UV dose (l 254 nm, UV-Stratalinker 1800,
Stratagene). Treated cell suspensions were combined to a
final volume of 20 ml. The mock-treated cultures were set for
5 s under red dimmed light. Treated cells were stored in the
dark at room temperature for 15 min and were re-incubated
at 78°C and 150 r.p.m. Samples taken at different time
points were used for microscopy, cell vitality and electron
microscopy.

Electron microscopy and single-particle analysis

For image processing, cells with attached pili were negatively
stained with 2% uranyl acetate on glow-discharged carbon-
coated copper grids. Electron microscopy was performed on
a Philips CM120 electron microscope operating at 120 kV
with a LaB6 filament. Images were recorded with a 4000 SP
4K slow-scan CCD camera at 60 000¥ magnification at a
pixel size of 5.0 Å at the specimen level with ‘GRACE’ soft-
ware (Oostergetel et al., 1998). Single-particle analysis was
performed with the Groningen Image Processing (‘GRIP’)
software package on a PC cluster. Non-overlapping pili seg-
ments were extracted from the micrographs and aligned with
correlation methods. The aligned projections were treated
with multivariate statistical analysis in combination with hier-
archical classification before final averaging (van Heel et al.,
1992; Penczek et al., 1992).

Plasmid construction for expression in S. solfataricus
and E. coli

The genes sso0117 and sso0118 were cloned using primers
118-forward-NcoI and 117-reverse-BamHI in the same
arrangement as found in the genomic context into the virus-

based expression vector pMJ05 (Jonuscheit et al., 2003)
via the entry vector pMZ1 (Zolghadr et al., 2007) yielding
pSVA96. To express the whole ups operon genes sso0121-
117 were cloned using primers 121-forward-NcoI and 117-
reverse-BamHI via pMZ1 into pMJ05 resulting in pSVA125.
To construct the expression plasmid for the signal peptide
cleavage assay, sso0118 was amplified using 118-forward-
NcoI and 118-reverse-BamHI and cloned into pZA7, which
added a HA-tag to the C-terminus of the protein and resulted
in pSVA133. By NcoI–HindIII restriction the sso0118-HA part
was then transferred into pBAD/Myc-HisA yielding pSVA134.
To achieve coexpression with the peptidase a fragment con-
taining pibD under the control of the T7 promoter was cloned
from pUC18-pibD into pSVA134 by SphI restriction resulting
in pSVA135. All plasmid vectors used in this study are listed
in Table 3.

For the expression of SSO117/118 and the ups operon in
the DflaJ strain, cells were grown to an OD600 of 0.2, and
transformed with pSVA96, pSVA125 and pSVA31 as a control
as described by Jonuscheit et al. (2003). After 2 days, cul-
tures were transferred to medium containing 0.4% arabinose
to induce the expression of the desired genes. After one
transfer, cells were analysed at an OD600 of 0.7 cells by
electron microscopy.

Construction of plasmids for the directed deletion
of genes

The up- and downstream flanking regions of sso0120 were
amplified using primer pairs KO-UP forward/KO-UP reverse
and KO-DOWN forward/KO-DOWN reverse respectively
(Table S1). The resulting fragments were cloned using KpnI/
NcoI for the upstream flanking region (1099 bp) or BamHI/
NotI for the downstream flanking region (924 bp) in pET2268,
a vector containing the lacS cassette for selection, yielding
pSVA37. Electroporation of the knockout plasmids and selec-
tion for correct deletion mutants were performed as described
(Albers and Driessen, 2007).

Southern blotting

Genomic DNA (8 ng) was digested with the appropriate
enzymes and separated on 0.8% agarose gel. The gel was

Table 3. Plasmids used in this study.

Plasmid name Reference

pET2268 Vector containing lacS cassette Szabó et al. (2007b)
pZA7 Transfer vector to add HA-tag to proteins Szabó et al. (2006)
pUC18-pibD pUC18 containing pibD under the control of a T7 promoter Szabó et al. (2007a)
pMZ1 Entry vector for virus vector Zolghadr et al. (2007)
pMJ05a Virus-based shuttle vector for S. solfataricus Jonuscheit et al. (2003)
pSVA31 pMJ05 containing ABCE1 under control of araS promoter Albers et al. (2006)
pSVA37 pET2268 containing up- and downstream flanking regions of sso0120 This study
pSVA96 pMJ05 containing sso117/118 under control of araS promoter This study
pSVA99 pMJ05 containing sso0120 under control of araS promoter This study
pSVA125 pMJ05 containing sso121-117 under control of araS promoter This study
pSVA133 pZA7 containing sso0118 This study
pSVA134 pBAD/Myc-HisA containing sso0118-HA This study
pSVA135 pSVA134 containing pibD This study

a. Plasmids labelled bold are shuttle vectors for S. solfataricus/E. coli.
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equilibrated in 20¥ SSC and the DNA was transferred over-
night to a positively charged nylon membrane (BIO-RAD, the
Netherlands). DNA hybridization was performed in standard
hybridization buffer. PCR products of both lacS and the
sso0120 gene were digoxigenin-labelled with the HighPrime
Kit (Roche, the Netherlands). Detection was performed with a
LumiImager (Roche, the Netherlands).

Gene expression analysis

Total RNA isolation and cDNA synthesis were performed as
described previously (Zolghadr et al., 2007). Gene-specific
primer sets (1–7, Table S1) were used to detect the presence
of the genes in the ups operon. PCR products were analysed
on 0.8% agarose gels.

Isolation of E. coli crude membranes

BL21(DE3) (pLysS) E. coli cells were transformed with
plasmids pSW017, pSW018, pSW019 and pSW020. The
signal sequence cleavage assay was performed as described
before (Szabó et al., 2007b).At an OD600 of 0.6, the expression
of the precursor genes, sso0117/118, was induced by addition
of 0.2% L-arabinose for 2 h. Subsequently, the expres-
sion of pibD was induced with 0.1 mM isopropyl-beta-D-
thiogalactopyranoside (IPTG) for 2 h. The cultures were har-
vested, and cell pellets were re-suspended in 2 ml of buffer
(50 mM TrisCl, pH 7.5, 1 mM EDTA). Crude membranes were
isolated as described previously (Szabó et al., 2007b) and
re-suspended in 50 mM TrisCl, pH 7.5. Cleavage of sub-
strates was determined by SDS-PAGE and Western blot
analysis of 5 mg of crude membranes using monoclonal anti-
haemagglutinin (HA Tag) antibodies (Sigma).

Microscopy and quantitative analysis of cell
aggregate formation

Cell aggregate microscopy was performed as described
(Fröls et al., 2007). To quantify the formation of aggregates,
the number of cells in aggregates and the number of aggre-
gates were counted until 1000 or 500 single cells were
observed. At least seven fields of views were analysed for
each time point. To exclude that the cellular aggregates were
not artefacts of the microscopic slide preparation only fields
of views were analysed where the cells showed an even
spreading. For statistic analysis the percentage of cells in
aggregates � 3 cells (to exclude the dividing pairs of cells)
against the total amount of cells was calculated. Additionally
the percentage of each aggregates size (from 3 to 15 cells)
against the total amount of cells was determined to observe
the time- and dose-dependent formation of cellular aggre-
gates in a higher resolution.

Analysis of the cell viability

To analyse the cell viability the LIVE DEAD Baclight (Invitro-
gen) assay was used according to the manufacturer’s
instructions. Alternatively, a combined 4′,6-diamidino-2-
phenylindole (DAPI) propidium iodide stain was used. At 6 h

after UV treatment, samples of 20 ml of liquid cultures were
mixed with 2 ml of propidium iodide (1:30 dilution in 10 mM
TrisCl pH 7.5) and incubated for 15 min in the dark at
room temperature. Microscopic slides were coated with 1%
agar (10 mM TrisCl, pH 7.5) containing 0.2 mg ml-1 DAPI.
Propidium iodide-stained culture (5 ml) was spread on the
coated slide and immediately examined. To analyse the
number of dead cells in aggregates in relation to the living
cells, a minimum of 50 cellular aggregates of � 3 cells were
counted for each UV dose.

Testing of various stress factors

For the temperature shift, exponentially grown S. solfataricus
cultures (OD600 of 0.3–0.5) were transferred from 78°C to
88°C or to 65°C. Additionally control cultures were transferred
to 78°C with gentle shaking at 150 r.p.m., and at time
points up to 10 h after transfer, samples were analysed for
aggregation.

For the pH shift experiments, exponential-grown S. solfa-
taricus cells were harvested and re-suspended in an identical
volume of Brock’s basal salt medium supplemented with
D-arabinose (0.2%) and tryptone (0.1%) at pH values of 2.5, 3
and 4 respectively. Growth was continued at 78°C. Samples
for the quantitative analysis of the cellular aggregation were
taken up to 8 h after the pH shift. For the treatment with the
DSB-inducing antibiotics, an exponential S. solfataricus
culture was treated with 3 mg ml-1 bleomycin (Bleocin, Calbio-
chem) or 5, 10 and 15 mg ml-1 mitomycin C (Sigma). Growth
was continued at 78°C and cell samples taken up to 10 h after
antibiotics additions were plated on Brock’s solid media. Sur-
vival rates confirmed the use of a non-lethal drug concentra-
tion for both antibiotics as described (Cannio et al., 1998;
Reilly and Grogan, 2002; Kosa et al., 2004).
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Fig. S1: Quantitative analysis of the UV-induced cellular aggregation of different S.

solfataricus strains. Cellular aggregation was observed at 3, 6, 8, and 10 hours after
UV-treatment with 25 J/m2 (254 nm). The graph is based on three independent UV-
experiments; in the case of the strains PBL2025, flaJ and sso0120 and 2

independent UV-experiments for the strains P1 and PH1-M16 (only one experiment
at 8 h, respectively). The bars display the % amount of cells in aggregates (  3 cells)

in relation to the total amount of evaluated cells (at minimum 500 single cells were
counted, but mostly up to 1000).



Fig. S2: Quantitative analysis of the cellular aggregation under different
environmental stressors and cell growth: non-lethal pH shift, from pH 3 to pH 4 and
down to pH 2.5 and a non-lethal temperature shift from 78°C up to 88°C and down to
65°C, early stationary growth phase until dead phase. The bars represent the mean
of the results obtained for the four sso0120 wild type strains; P1, PH1-M16, PBL2025
and flaJ. The % amount of cells in aggregates (  3 cells) in relation to the total

amount of evaluated cells (500 single cells, or a minimum of 250 single cells were
counted).



Table S1 : Primers used in this study

* restriction sites are underlined

Primer name Sequenz (5’-3’)

1 RT forward ATAGGTCAAGTGATGGGTTA

1 RT reverse CATCTGCTGCAAGTATCTTT

2 RT forward GCCTATACGCATGGTTTCAC

2 RT reverse AAGGGTCAGCTAAGGGTACA

3 RT forward AGCAAGAAGATCACGTACTA

3 RT reverse CTGGAGTATCCTCTATGGTAAT

4 RT forward GATCTAGAAGAGTTCAGTGTT

4 RT reverse AGACCTTGGCTCTGCTTTCC

5 RT forward ACACAAGTGGTGAGTCAATA

5 RT reverse TTTGCAGCGAGTTCTCCTAA

6 RT forward AGGGCAGTTGGCAACTTAGA

6 RT reverse ATATCTGTGTGCTGCCGGTA

7 RT forward GCTGGGTGGTCTACTTTATG

7 RT reverse AGTACTGCCCAGCAGTTA

118 forward-NcoI CCCCCCCATGGTACAACTAATGATGAAAGGAGG*

118 reverse-BamHI CCCCCGGATCCCGCTATTGAAGCCAGCA

117 reverse-BamHI CCCCCGGATCCATCCGGTCCAGAGTTGA

121 forward-NcoI CCCCCCATGGCAATTCCAGATTTTATACTATATCAG

KO-UP forward CCCGGTACCGTGCGTATTATCTACGTTA

KO-UP reverse CCCCCATGGCAGTGTTTATTTAAAGAA

KO-DOWN forward CCCGGATCCGGAGAATATTCATGATAC

KO-DOWN reverse CCCCCCCCCGCGGCCGCCGAGTGCAAAGATACTTG



Table S2: Homologous ups-operons in other Archaea

S. solfataricus Length in aa S. tokodaii S. acidocaldarius Metalosphera sedula

SSO0121 695 ST1396 Saci_1493 Msed_2103

SSO0120 483 ST1397 Saci_1494 Msed_2104

SSO0119 481 ST1398 Saci_1495 Msed_2105

SSO0118 154 ST1399 Saci_1496 Msed_1193

SSO0117 137 ST1400 Saci_1496a* Msed_2107

* not annotated, found by tblastn search on position 1275628-1275993 in the genome of
  S. acidocaldarius (amino acid identity 30 %, similarity 60 %)


