Moving from Creativity to Innovation
Rietzschel, Eric; Ritter, S.

Published in:
Individual Creativity in the Workplace

DOI:
10.1016/B978-0-12-813238-8.00001-2

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2018

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
https://doi.org/10.1016/B978-0-12-813238-8.00001-2

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Moving From Creativity to Innovation

Eric F. Rietzschel⁎, Simone M. Ritter†

⁎Department of Psychology, University of Groningen, Groningen, Netherlands, †Radboud University Nijmegen, Behavioural Science Institute, Nijmegen, Netherlands

Creativity is one of our most important abilities, having led to humans exploring and colonizing the entire planet (as well as parts of extraterrestrial space), the invention of agriculture, medicine, and astonishing levels of technological advances, not to mention science, philosophy, and art—it is no exaggeration to state that the world would look completely differently (for better or for worse) without human creativity. However, creativity’s potential to change the world relies on something that has traditionally been overlooked in the field of creativity research: the ability to get creative ideas implemented and adopted. This requires more than idea generation: creative ideas need to be recognized and selected, resources need to be harvested, and relevant stakeholders need to be convinced of the value of a creative idea before implementation can successfully take place. In this chapter, we summarize much of the literature on the evaluation and selection of creative ideas, discuss what we think are some of the main challenges in moving from creativity to innovation and, finally, provide practical advice for successful idea evaluation and selection and for “selling” a highly creative idea.

DEFINING CREATIVITY AND INNOVATION

Creativity is commonly defined as the ability to generate ideas, solutions, or products that are both novel and appropriate (e.g., Amabile, 1996; Sternberg & Lubart, 1999; also see Litchfield, Gilson, & Gilson, 2015, for a discussion of different quality dimensions of “creative” ideas). Thus ideas
that are merely good solutions to a problem without any element of novelty or surprise would be considered mundane, and ideas that are only novel without being somehow feasible or appropriate in a given domain would be considered eccentric or “weird,” but neither would be considered creative contributions. Note, however, that mundane ideas are not necessarily worthless: Often the most important thing, especially in organizations, is that an idea works. However, there are many situations in which organizations are specifically looking for novel ideas, for example, when conventional solutions are known to be ineffective, or when searching for a way to gain a competitive advantage through innovation.

The relation between creativity and innovation is best described by stating that creativity is a necessary, yet insufficient condition for innovation (e.g., Baer, 2012; Rietzschel, Nijstad, & Stroebe, 2006; West, 2002a, 2002b). While the common definition of creativity revolves around idea generation, innovation is usually defined as “the intentional introduction and application within a job, work team or organization of ideas, processes, products or procedures which are new to that job, work team or organization and which are designed to benefit the job, the work team or the organization” (West & Farr, 1990, p. 9). Thus innovation centers around the implementation of creative ideas in an organizational context.

The Importance of Distinguishing Creativity From Innovation

The difference between creativity and innovation is important for several reasons. Firstly, the terms “creativity” and “innovation” describe different behaviors, and as such should also be distinguished conceptually. In fact, the two are not always strongly or even positively related, nor are they necessarily predicted by the same (dispositional or contextual) variables (e.g., Oldham & Cummings, 1996; Perry-Smith & Coff, 2011; Somech & Drach-Zahavy, 2013; West, 2002a, 2002b). Thus, factors that contribute to idea generation may not lead to better idea implementation, and sometimes the factors that enhance the one seem to actually hinder the other. This has serious implications for organizations interested in increasing their innovative output. Distinguishing between creativity and innovation is, therefore, important from both a theoretical and a practical perspective.

Secondly, we currently know far more about idea generation than about idea implementation. Although a substantial amount of research has looked at innovation in organizations, this research has rarely explicitly distinguished between idea generation and idea implementation (but see, e.g., Baer, 2012; Oldham & Cummings, 1996; Somech & Drach-Zahavy, 2013, for exceptions)—the two are often measured together in a global assessment of innovative job performance. In contrast, there is a large body of literature that has looked specifically at creativity (see, e.g., Zhou & Shalley, 2008, for overviews of organizational creativity.
DEFINING CREATIVITY AND INNOVATION

research), addressing issues such as individual differences, group interaction, contextual influences, and so on. The consequence is that we know quite a lot about the factors that contribute to successful idea generation, but—given the lack of research on idea implementation and the weak and complicated relation between idea generation and implementation—relatively little about the factors that contribute to idea implementation specifically.

Thirdly, innovation research suggests that it is precisely in the *transition* from idea generation to implementation that individuals and groups run into difficulties: getting to successful implementation simply seems to be the bigger challenge. As West (2002a, 2002b) famously stated, “ideas are ten a penny” (p. 411): There usually is no shortage of creative ideas, but rather a lack of *willingness*, *support*, or the necessary *resources* (either tangible or intangible) to get these ideas implemented. Thus, research on the conditions for a successful transition from creativity to idea implementation is sorely needed.

Moving From Creativity to Innovation in the Organizational Context

Several scholars have addressed the creative or innovative process as a series of stages, although in reality the process is more likely to be iterative. An influential example is the model by Mumford, Lonergan, and Scott (2002), who proposed a process where (a) ideas are generated, and (b) possible outcomes and implications are forecasted, after which (c) the viability of the idea within the intended implementation context is assessed. This can then lead to (d) a decision to either drop the idea altogether, or begin planning for implementation, or—more likely—move into a revision process, after which the idea gets implemented or might still be dropped. What this and similar models suggest is that idea implementation is difficult because ideas encounter multiple challenges along the way, such as *evaluation* (creative ideas need to be recognized), *selection* (only a limited number of ideas can be chosen for further development), *selling or promotion* (other stakeholders need to be convinced of the value of an idea), and *further revision and implementation*.

Organizational creativity and innovation is a multilevel phenomenon influenced by many stakeholders (e.g., Woodman, Sawyer, & Griffin, 1993). Idea generation can happen in many ways, such as during brainstorming sessions (e.g., Osborn, 1953; Sutton & Hargadon, 1996), suggestions entered into an internal suggestions system (e.g., Frese, Teng, & Wijnen, 1999; Verworn, 2009), or ideas generated and pursued as part of one’s regular work duties (e.g., Shalley, Gilson, & Blum, 2000). Similarly, the screening, selection, and further development of ideas can happen in a variety of ways and settings, such as workgroup meetings (where workgroup
members collectively decide which ideas or options to pursue) or board meetings (where the management may decide on the allocation of funds), but also individually, when employees or supervisors decide on their own which ideas or options seem most promising. Regardless of how ideas are generated and selected, however, organizational reality requires the involvement of other stakeholders at some point; apart from small, self-owned businesses, employees are rarely if ever in the position to generate, select, and implement creative ideas at work themselves (apart from those ideas that only concern people’s own work processes, such as adopting a new way of organizing one’s own work tasks). Thus, although innovation requires that the person who came up with an idea sees the value of her idea and is able to select it as a promising option to develop and implement, this is by no means enough: even if individual creators would score perfectly on recognizing and selecting their most creative ideas (which, as we will see, they do not), this would be no guarantee for the idea to get implemented. The other stakeholders within the organization will need to be convinced that the idea is worthwhile (also see Litchfield, Ford, & Gentry, 2015). Thus, key to our analysis is the proposition that moving from creativity to innovation requires looking beyond individual creative abilities or behavior.

In the following, we first summarize and discuss much of the literature in the area of idea evaluation (including creative forecasting) and idea selection. Then, we focus on the question of whether there are other factors that can aid or hinder the transition from idea selection to idea implementation. Finally, we reflect on the research discussed thus far to provide some practical suggestions for successfully “selling” a highly creative idea.

IDEA EVALUATION AND CREATIVE FORECASTING

The first challenge in moving from creativity to innovation is to recognize whether the available ideas have creative potential. Thus, once ideas have been generated, the next step involves idea evaluation—the assessment of the available options against certain standards (e.g., originality, usefulness, popularity, potential, impact, risk and cost; e.g., Frederiksen & Knudsen, 2017).

Most creativity theories recognize idea evaluation as an important component of the creative process. For example, an evaluation operation was included in Guilford’s (1968) structure of intellect and in Vygotsky’s theory of imagination (Ayman-Nolley, 1992; Smolucha, 1992), and Amabile’s (1996) Componential Theory of creativity includes “response validation” as a part of the creative process. Moreover, it has been suggested that creative ideas only earn social acceptance after they were critically scrutinized.
IDEA EVALUATION AND CREATIVE FORECASTING

(Simonton, 1988), and that evaluation and criticism are important aspects of imaginative invention (Csikszentmihalyi, 1999).

Several researchers have stated that idea evaluation begins with forecasting—the prediction of likely outcomes or the consequences of implementing an idea within a particular setting. People’s evaluations of an idea will therefore strongly depend on their expectations regarding the success of an idea (Besemer & O’Quin, 1999; Christiaans, 2002; Dörner & Schaub, 1994; Lonergan, Scott, & Mumford, 2004; Mumford et al., 2002). Forecasts can be subject to several kinds of errors (Pant & Starbuck, 1990). For example, people may tend to underestimate the resources that would be needed, and to overestimate the outcomes, especially positively valued outcomes (Schwenk & Thomas, 1983). The latter, also called “optimistic bias,” appears to arise from different sources, such as the failure to consider base rate information, and a predisposition to discount obstacles (Buehler, Griffin, & Ross, 1994; Francis-Smythe & Robertson, 1999; Mumford, Schultz, & Van Doorn, 2001; Schwenk & Thomas, 1983).

Only a limited number of studies have so far investigated how idea evaluation and forecasting operate (although idea evaluation appears to have been studied more extensively than idea selection). In the following section, we review the available literature on idea evaluation and forecasting to shed light on the question whether and when people can accurately evaluate and forecast ideas.

One important question is whether the creativity of an idea can be objectively assessed (i.e., whether some ideas are “actually” more creative than others). If not, this might be taken to mean that the creativity or quality of an idea is merely “in the eye of the beholder” and that no judgment of any idea is better than another. Most creativity researchers take the perspective that, although all creativity ratings or judgments are inherently subjective, this does not mean that all judgments are equally valid (also see Silvia, 2008). For example, the operational definition of creativity underlying Amabile’s (1982, 1996) Consensual Assessment Technique is that “A product or response is creative to the extent that appropriate observers independently agree it is creative. Appropriate observers are those familiar with the domain in which the product was created or the response articulated” (Amabile, 1996, p. 33). In fact, ratings of creativity provided by experts or trained raters show good interrater reliability for different kinds of creative ideas and products, including drawings (e.g., Dollinger & Shafran, 2005), stories (e.g., Baer, Kaufman, & Gentile, 2004), and ideas in divergent thinking tasks (e.g., Amabile, 1982; Diehl & Stroebe, 1987; Rietzschel et al., 2006; Ritter, van Baaren, & Dijksterhuis, 2012; Silvia, 2008). The agreement between judges indicates that creativity is generally an identifiable and quantifiable characteristic of ideas and products (Benedek et al., 2016).
Interestingly, earlier research on idea evaluation has shown a moderate association (36% shared variance) between people’s evaluation of their own ideas (i.e., intrapersonal evaluation) and their evaluation of others’ ideas (i.e., interpersonal evaluation; Runco & Smith, 1992). In other words, people’s evaluation of ideas strongly depends on the source of the ideas. This may possibly be explained by one’s role in the evaluation process: One can either be “actor” (during intrapersonal evaluation) or “observer” (during interpersonal evaluation) (also see Berg, 2016). Both roles may have advantages and disadvantages for the evaluation process. For example, having generated an idea may provide relevant information regarding idea development, but may also lead to biased perceptions due to feelings of loss when having to let go of the idea; this is also sometimes called the “ownership bias” (e.g., Kahneman, Knetsch, & Thaler, 1991; Onarheim & Christensen, 2012). Directly addressing these different roles and their effect on idea evaluation, Berg (2016) studied the conditions for accurate creative forecasting in a field study and a lab experiment. In the field study, creators (i.e., professionals in the circus arts industry) and managers forecasted the success of new circus acts with audiences. Forecasting accuracy was assessed using data from >10,000 audience members, and revealed that both managers and creators underestimated the success of new acts. However, creators were more accurate than managers in forecasting the success of other people’s ideas (but not their own).

As evaluating one’s own ideas clearly differs from evaluating others’ ideas, we discuss research on these two activities separately.

Interpersonal Evaluation

In an extensive research program, Runco and colleagues (Basadur, Runco, & Vega, 2000; Runco, 1993; Runco & Basadur, 1993; Runco & Chand, 1994, 1995; Runco, McCarthy, & Svenson, 1994; Runco & Smith, 1992; Runco & Vega, 1990) have established that, as mentioned previously, people are generally able to accurately evaluate others’ ideas (i.e., their evaluations tend to be substantially positively correlated with those of experts). Nevertheless, there is room for improvement. Recently, for example, Benedek et al. (2016) found that people tended to underestimate the creativity of ideas. Specifically, although people recognized the novelty of highly creative ideas, they tended to underestimate the appropriateness of these ideas. Moreover, results showed a positive relationship between participants’ divergent thinking skills and their interpersonal evaluation skill: participants who were better at generating creative ideas were also better at recognizing other people’s creative ideas. Dailey and Mumford (2006) and Runco and Vega (1990) found similar positive relationships between interpersonal evaluation and idea generation skills, suggesting a common ability or trait underlying both behaviors.

Expertise

In addition to the roles that different evaluators may have (cf. Berg, 2016), they may also differ in their expertise regarding the ideas being judged, and such differences in expertise could influence idea evaluation. For example, Kaufman, Baer, Cole, and Sexton (2008) asked experts (published poets) and novices (college students) to evaluate poems on their creativity. The results revealed moderate correlations between the evaluations of experts and novices, with experts evaluating the poems as less creative than novices. Moreover, experts showed a much higher intrarater agreement than novices. In line with these results, Onarheim and Christensen (2012) found that more experienced engineers agreed more strongly with executives in the evaluation of engineering design ideas. Furthermore, although employee evaluations were likely to be biased by the visual complexity of the ideas, this bias was less strong among experienced employees. Further, Dailey and Mumford (2006) investigated the accuracy of undergraduate students in predicting the resources needed for, and consequences of, implementation of creative ideas. Although participants on the whole underestimated resource requirements, and overestimated outcomes, participants with high domain knowledge were more accurate in forecasting some important aspects, such as the likely impact of an idea on organizations, the difficulties involved in idea implementation, and the novelty of the idea. In line with these findings, Önkäl, Yates, Simga-Mugan, and Öztin (2003) found that as people acquire experience, forecasts become more accurate.

Such findings strongly suggest that expertise positively affects the evaluation and forecasting of creative ideas. This raises the question *how much* expertise really is necessary. For example, Kaufman, Baer, Cropley, Reiter-Palmon, and Sinnett (2013) compared the evaluation performance of experts, quasiexperts (i.e., more domain experience than novices, but no professional experience), and novices. In line with the findings from Kaufman et al. (2008), experts outperformed novices. The results for quasiexperts, however, were less consistent, showing that quasiexperts sometimes, but not always performed as accurately as experts. Boundary conditions for the accuracy of quasiexperts might be the domain or field of the ideas (Kaufman et al., 2013), or the degree to which the ideas are radical versus incremental (Moreau, Lehmann, & Markman, 2001).

Intrapersonal Evaluation

Thus far, only a few studies have been conducted on the evaluation and forecasting of one’s own ideas (i.e., on *intrapersonal* evaluation and forecasting). Several of these studies have looked at the relation between idea generation skills and evaluation skills (also see previously). For example, Runco and colleagues (Runco & Dow, 2004; Runco & Smith, 1992).
asked their participants to first generate ideas and then to rate their own ideas on creativity, and found that participants who generated many original ideas were also the most accurate in their idea ratings. Similar results were obtained by Basadur et al. (2000) and by Grohman, Wodniecka, and Klusak (2006).

Silvia (2008) conducted a study on “discernment,” that is, the degree to which people are able to recognize their most creative ideas. In his study, participants first generated ideas in several divergent thinking tasks, and then were asked to identify their most creative responses.\(^1\) Results showed that, on the whole, people were able to identify their most creative ideas (i.e., their choice was highly correlated with that of experts). Moreover, people who scored high on the personality trait openness to experience (a classic predictor of creative performance) were significantly more discerning than those scoring low on openness. As Silvia (2008) noted, these results suggest that “generation skills and evaluation skills are distinct but correlated traits—people high in one tend to be high in the other” (p. 144).

While effective idea evaluation is of course important for the innovative process as such, engaging in evaluation itself may also benefit the creative process. For example, Byrne, Shipman, and Mumford (2010) asked undergraduates to generate advertising campaigns for a new product. Prior to formulating the campaigns, the students had to forecast the implications of their ideas. It was found that the extensiveness of forecasting was related to the quality, originality, and elegance of the advertising campaigns. Thus, the more participants thought about what might be the implications of their ideas, the better and more creative their final products. These results fit with a more recent study by Hao et al. (2016), who found that participants generated more original ideas when they were asked to reflect on the originality of their ideas halfway through the task. Thus, reflection on the quality of one’s ideas may not merely be a matter of separating the wheat from the chaff, but could also enhance subsequent idea generation.

Other Factors Influencing Idea Evaluation and Forecasting

The research discussed so far suggests that people are generally able to recognize creative ideas. Moreover, people who are able to generate many (original) ideas tend to be the most accurate in evaluating and forecasting their own ideas, and at least a moderate degree of expertise seems to be necessary for accurate forecasting and evaluation, although this may be different for highly novel ideas. The finding by, for example, Silvia (2008) that openness to experience predicts evaluation accuracy raises the

\(^1\)Although participants in this study made a selection from their own ideas, we discuss this study under “Evaluation” because the research question focused on people’s ability to recognize their most creative ideas.
question whether other known predictors of idea generation might also relate to evaluation accuracy. Recent research has therefore focused on the effects of several factors (e.g., regulatory focus, construal level, mood) that were previously found to influence the ability of individuals and groups to generate creative ideas.

Regulatory Focus

Regulatory focus theory describes how people engage in self-regulation, the process of bringing oneself into alignment with one’s standards and goals (Higgins, 1997). According to regulatory focus theory, people may adopt a promotion focus (a focus on growth, attaining desired outcomes, and realizing ambitions), or a prevention focus (a focus on safety and security, avoiding undesirable outcomes, and fulfilling one’s responsibilities).

Regulatory focus has been linked to creative idea generation (e.g., Friedman & Förster, 2001), people’s willingness to make risky decisions (Crowe & Higgins, 1997), and the degree to which organizational teams engage in the promotion and selling of their creative ideas (Rietzschel, 2011). Therefore, it might plausibly be related to idea evaluation as well. This indeed appears to be the case. In a recent study on interpersonal idea evaluation, for example, Zhou, Wang, Song, and Wu (2017) showed that people’s regulatory focus affected their novelty perception as well as their interpersonal evaluation accuracy: on the whole, people with a strong promotion focus, as compared to people with either a weak promotion focus or a strong prevention focus, were better able to recognize the novelty and creativity of an idea. Similar effects have been found with regard to intrapersonal idea evaluation. Herman and Reiter-Palmon (2011) found that participants with a strong promotion focus were better able to assess the originality of self-generated ideas, whereas participants in a prevention focus were more accurate in assessing idea “quality” (i.e., how coherent and “workable” the idea was). In line with these results, Fürst, Ghisletta, and Lubart (2016) found that convergence and conscientiousness—both associated with a prevention focus, although this was not directly assessed in this study—were related to individuals’ tendency to critically evaluate and correct their own ideas.

Uncertainty Tolerance

People vary in their ability to tolerate uncertainty and ambiguity (see Furnham & Ribchester, 1995, for an overview), and these differences predict creativity (e.g., Kornilova & Kornilov, 2010; Zenasni, Besançon, & Lubart, 2008). Original ideas, by definition, are relatively new and untested and the more original an idea, the higher the uncertainty (Amabile, 1996). Hence, the degree to which people are willing or able to tolerate such uncertainty might be related to their evaluation of creative ideas as well. Mueller, Melwani, and Goncalo (2012) proposed that although
people say that they value creativity, they may have an unconscious bias against originality, especially when they feel the need to reduce uncertainty. Across two studies on interpersonal idea evaluation, Mueller et al. (2012) demonstrated that when individuals’ motivation to diminish uncertainty was high, they exhibited a stronger implicit bias against originality, but not a stronger explicit bias. Importantly, the implicit bias negatively predicted people’s ability to recognize creativity, suggesting that certain circumstances may make people less open to creative ideas without their being aware of it. Such results also fit with those by, for example, Silvia (2008) on the relation between openness to experience and discernment.

Construal Level

Construal level theory describes the relation between psychological distance (e.g., temporal, spatial, social) and the extent to which people’s representations of events, situations, or decisions are abstract or concrete (Trope & Liberman, 2010). The general idea is that with high psychological distance people hold a more abstract (high-level construal), while with low psychological distance people hold a concrete (low-level) mind-set. Construal level has been linked to creative performance, the underlying rationale being that high-level construals are associated with flexibility and remote associations (e.g., Förster, Friedman, & Liberman, 2004; Jia, Hirt, & Karpen, 2009; Polman & Emich, 2011). Because a high construal level is associated with a stronger focus on high-level considerations, such as desirability, than on low-level considerations, such as feasibility, it might also predict people’s evaluation performance. Mueller, Wakslak, and Krishnan (2014) manipulated participant’s construal level mind-set, and found that when a high-level construal mind-set was induced, as compared to a low-level construal mind-set, people evaluated a creative idea higher on creativity. Interestingly, the relationship between construal level priming and idea evaluation was sometimes mediated by uncertainty. Specifically, participants with a low-level “how” mind-set (Study 3) reported higher uncertainty about a creative idea than participants with a high-level “why” mind-set, and this uncertainty in turn negatively predicted creativity ratings.

Evaluation Criteria and Evaluation Instructions

Although creativity is sometimes seen as necessarily spontaneous and “inspired” (Baas, Koch, Nijstad, & De Dreu, 2015; Ritter & Rietzschel, 2017; Sternberg & Lubart, 1999), giving people-specific goals or instructions can significantly enhance creative performance (Litchfield, 2008; O’Hara & Sternberg, 2001; Runco, Illies, & Reiter-Palmon, 2005). Similar effects might exist for idea evaluation, because evaluation performance also depends on the salience of particular dimensions or aspects of ideas (e.g., Herman & Reiter-Palmon, 2011). For example, in a study on interpersonal
idea evaluation, Blair and Mumford (2007) found that participants were more likely to prefer original ideas when evaluation criteria were loose and when time pressure was high. Lonergan et al. (2004) found that the use of different appraisal and revision standards affected students’ creative revision of previously generated ideas for an advertisement campaign. Specifically, applying implementation efficiency criteria to original ideas, and innovative criteria to less original ideas, respectively, led to the best results.

RESEARCH ON IDEA SELECTION

All in all, it appears that people are generally able to distinguish between creative and less creative ideas, but not always to the same degree: individual and contextual factors can significantly affect the recognition of creative contributions. More important than mere evaluation and forecasting, however, are people’s actual decisions regarding the possible development and implementation of an idea. These decisions are usually dichotomous in nature: ideas are either selected for further development or implementation or not (also see Rietzschel, Nijstad, & Stroebe, 2018). Of course, a decision can be changed during the development or implementation process, and ideas that were initially rejected may get a second chance later on. Nevertheless, selection is a crucial stage in moving from creativity to innovation, and unfortunately, as we will see in the following sections, research shows that people tend not to do it very well.

Idea Selection After Brainstorming

Relatively many of the existing idea selection studies have been done in the field of brainstorming research. Originally proposed by Osborn (1953), brainstorming is a creativity technique aimed at the generation of as many ideas as possible. It is often done in groups, although research unambiguously shows that group brainstorming leads to lower productivity than brainstorming in nominal groups (i.e., people working individually, whose nonredundant ideas are then pooled; see e.g., Diehl & Stroebe, 1987; Stroebe, Nijstad, & Rietzschel, 2010; Taylor, Berry, & Block, 1958). The main question in research on idea selection after brainstorming has been whether higher productivity (and hence higher availability of high-quality ideas) also carries over into better idea selection, and whether group interaction would offer benefits for idea selection (groups might be able to overcome their productivity loss by making a more effective selection).

Faure (2004) looked at differences in idea generation and selection performance between interactive and nominal groups. These groups first generated ideas in a brainstorming task, and then selected ideas from their
own production (i.e., intrapersonal idea selection). All group members first made an individual preselection, after which the group collectively made their final selection. Although interactive groups—as in earlier research—outperformed nominal groups in terms of productivity, this did not carry over into idea selection performance: members of nominal and interactive groups selected ideas of equal quality.

Similar results were obtained in subsequent studies, such as Rietzschel et al. (2006), who also found that interactive and nominal groups selected ideas of equal quality, despite the substantial differences in initial productivity. Although this might seem to suggest a highly effective selection by the interactive groups, selection performance was abysmal in all conditions: the quality of the selected ideas was not significantly different from that of the generated ideas; in other words, neither interactive nor nominal groups appeared to perform above chance level. Putman and Paulus (2009) also found that interactive and nominal groups performed suboptimally in making their selection (no significant difference between the quality of generated and selected ideas). Nominal groups did select ideas that were more original, but this was due to the fact that they generated more original ideas in the first place.

Causes of Suboptimal Selection After Brainstorming

Following up on these results, Rietzschel, Nijstad, and Stroebe (2010) hypothesized that effective idea selection might be too cognitively demanding when there are many ideas to choose from, and that people might therefore benefit from the opportunity to first prescreen their ideas before making the final selection. This also fits with the notion of idea evaluation or creative forecasting as an important stage in the journey from idea to innovation (e.g., Mumford et al., 2002; however, also see Kennel, Reiter-Palmon, De Vreede, & de Vreede, 2013). Additionally, they noted that participants might have used different selection criteria than those used by researchers, and that it would, in a way, be unfair to speak of “suboptimal” selection performance if people simply used different criteria. In two studies, they found that prescreening instructions did not affect selection performance, but selection criteria did. Interestingly, the effect of selection criteria depended on the kinds of criteria given. Instructing participants to select ideas that were both original and feasible (in line with the common definition of creativity) did not lead to better selection as compared with the default instruction to “select the best ideas.” In contrast, instructions to simply select “creative” ideas led to participants choosing ideas of higher originality, but lower effectiveness.

These results suggest that at least part of the low selection performance in earlier studies was due to the kind of selection criteria that participants used. In line with this interpretation, Rietzschel et al. (2010) found that
participants were more likely to base their selection on considerations of feasibility and desirability in the absence of specific selection instructions (also see Blair & Mumford, 2007). Providing them with selection criteria increased their focus on originality, but at the cost of lower satisfaction with the selection they made (see Rietzschel, Nijstad, & Stroebe, 2014, for similar results). Moreover, participants seemed to make a trade-off between different criteria (focusing either on originality and creativity, or on feasibility and desirability), and their self-reported tendency to select “the best” idea was most strongly and positively correlated with their tendency to select feasible and desirable ideas.

Other Idea Selection Research

Research on idea selection has not been limited to brainstorming research. Results of other studies are more or less in line with the previously discussed results: people generally perform suboptimally when it comes to selecting creative ideas, and they tend to prefer feasible ideas over original ones.

Suboptimal Selection Performance

Several studies have yielded additional evidence for the poor selection performance found in the brainstorming studies discussed previously. For example, Girotra, Terwiesch, and Ulrich (2010) conducted a study on different kinds of group interaction in idea generation and selection, finding that groups in all conditions made a suboptimal selection from their own ideas, but that a “hybrid” structure, alternating between individual and group work, worked better than other configurations. Toh and Miller (2016a, 2016b) studied idea generation and selection in teams of design students, and found that teams generally failed to select their most creative ideas, “even though creativity is regarded as an important element of successful engineering design” (p. 82). Kennel et al. (2013) had teams generate and select solutions to a problem, finding that, although most teams selected ideas that they themselves rated as original and/or feasible, expert ratings showed lower scores for the selected ideas, with almost half of the teams selecting ideas that were rated as neither original nor feasible. Moreover, teams performed suboptimally on idea selection even after having evaluated the ideas on creativity-relevant criteria, suggesting that, important as idea evaluation may be, it is not enough in itself to lead to accurate selection. Further, Reiter-Palmon and Arreola (2015) compared the effects of two different creative strategies on the quality of the final idea. Participants were either instructed to generate many ideas and then select their best idea or were instructed to generate a single best idea. Results showed that, although participants in the “generate many ideas” condition came up with idea sets that were more likely to contain
at least one very original idea, they selected ideas of lower quality (feasibility, originality, and elaboration) than participants in the “single idea” condition.

Preference for Feasibility Over Originality

In an experiment where participants were instructed to rate and select ideas in a project funding task, Blair and Mumford (2007) found that participants tended to reject highly original or risky ideas, and were more likely to select ideas that were consistent with social norms, easy to understand, and likely to quickly lead to desirable outcomes, especially under high time pressure. These results are in line with those discussed previously by Rietzschel et al. (2010, 2014), and with the findings on regulatory focus and construal level described previously: circumstances or traits that lead people to focus less on feasibility and more on originality tend to enhance the recognition of creative ideas, as well as their selection. Recently, De Buissonjé, Ritter, De Bruin, Ter Horst, and Meeldijk (2017) conducted a field study where participants had to select the most creative ideas from an idea pool. Participants who had been brought into a promotion-focused state with positive affect selected more creative ideas than did participants in the control condition (also see Perry-Smith & Coff, 2011).

On the whole, then, the strong preference for feasibility seems to be one of the major causes (if not the single most important cause) for people’s poor selection performance (also see Rietzschel et al., 2018). Generally, originality and feasibility tend to be negatively correlated (Nijstad, De Dreu, Rietzschel, & Baas, 2010), which makes it challenging to find those rare ideas that are high on both. The research discussed so far strongly suggests a sort of trade-off, where people—depending on circumstances or the traits and preferences they bring to the task—will focus on either of the two dimensions, at the cost of the other dimension. Thus one of the challenges for effective idea selection may be to get people to not make a trade-off, but select ideas that are high on both dimensions.

The Role of Unconscious Thought

Idea selection can be considered a form of convergent creativity, in that one goes from several possible options (generated in the divergent stages of the process) to one or a couple of ideas that will be developed further and possibly will be implemented. In this regard, idea selection may be similar to such tasks as solving insight problems, in that one attempts to find or identify the idea or solution that best fulfills a certain set of criteria, which may be or seem to be incompatible, such as high originality and high feasibility (also see Reiter-Palmon & Arreola, 2015). Several researchers (see Sternberg & Davidson, 1995, for a collection of overviews) have pointed out that creative problem-solving may critically depend on
the relaxation of implicit constraints: often our assumptions about what an acceptable solution or solution strategy should be are not fully articulated, or inappropriate in the given situation (cf. Luchins & Luchins, 1969). The Duncker candle problem (Duncker, 1945) is a classic example. In this problem-solving task, participants are provided with a candle, a box of tacks, and a set of matches, and have to come up with a way to attach the candle to a wall in such a way that it can be lighted without dripping wax on the floor. Participants will only manage to find the correct solution if they realize that the box containing the tacks can be a platform as well as a container, and could be attached to the wall using the tacks. Idea selection may suffer from similar problems. For example, if people assume that ideas tend to be either original or feasible (see previously), this constraint will make it very difficult to select an idea that scores high on both dimensions. Thus if idea selection is psychologically similar to these kinds of insight tasks, circumstances that help people to relax implicit constraints (such as the implicit assumption that original ideas are not feasible) might help them select more creative ideas.

This question was studied, for example, by Ritter, Van Baaren, et al. (2012), who studied the effects of unconscious thought in the creative process. Previous research had shown that engaging in a certain amount of unconscious thought could be beneficial for problem-solving (Dijksterhuis & Meurs, 2006; Zhong, Dijksterhuis, & Galinsky, 2008), in line with the classic notion of “incubation” as a common stage in the creative process (e.g., Wallas, 1926). Ritter et al. applied this reasoning to idea selection. In their studies, participants first generated and then selected ideas. Before the creative task, participants were either asked to consciously think about the problem at hand, or were asked to do another task, which was assumed to allow for unconscious task-related thought. In a third condition, participants proceeded immediately to the creative task. Results across two studies showed that idea generation and idea selection were differently affected by the manipulation. While the results on idea generation differed between the studies, selection performance was consistently higher in the “unconscious thought” condition than in the other two conditions; in fact, only in this condition did a majority of participants manage to select their best ideas as rated by external judges (suggesting poor selection performance in the absence of unconscious thought).

In another study, Ritter, Strick, Bos, Van Baaren, and Dijksterhuis (2012) tested the effects of diffused odor during sleep on creative performance. Participants were presented with a problem in the evening, and then literally “slept on it” through the night. During the sleep period an odor was diffused in the room—either the odor that had been present during the presentation of the problem (and hence was assumed to be associated with the topic, stimulating task-related cognition during sleep), or a different odor; in the control condition, no odor was diffused during sleep.
The authors found that participants in the “conditioned odor” condition generated and selected more creative ideas after waking up than participants in the other condition. Specifically, in the “conditioned odor” condition, approximately 75% of participants selected their most creative idea (as judged by raters), as compared to around 40% in the other two conditions.

These findings suggest that unconscious processes can indeed contribute to the selection of more creative ideas, and that more extensive deliberation is not necessarily the best way to attain creative outcomes—possibly because deliberation does not help us relax implicit constraints or overcome cognitive biases. In line with this perspective, Zhu, Ritter, Müller, and Dijksterhuis (2017) investigated the role of intuitive and deliberative processing modes in creative idea selection, and found that participants who had been instructed to make their selection intuitively selected ideas that were more creative, more original (and equally useful) than the ideas selected by participants who had been instructed to make their selection deliberatively. In fact, only participants in the intuitive condition performed above chance level in their selection.

GETTING IDEAS IMPLEMENTED IN THE ORGANIZATIONAL CONTEXT

Thus far, the research discussed suggests that (a) people are able to recognize creative ideas, but not always to the same extent, and (b) people have a hard time actually selecting creative ideas (i.e., performance is not better than chance level), although selection performance is better under certain circumstances. Moreover, the selection of creative ideas (as well as their recognition) seems to be particularly difficult when people strongly focus on feasibility and are motivated to reduce uncertainty or avoid risks. However, even if individuals or groups succeed in selecting the most creative idea(s), this does not guarantee actual innovation. Ideas need to be implemented, and this usually requires involvement of more stakeholders than only the idea creator(s) and selector(s). In fact, Csikszentmihalyi’s (1999) systems theory of creativity explicitly argues that it is in the interplay between creators and the field they work in that creativity comes into existence. According to this perspective, the creativity of a contribution is not so much (exclusively) a function of properties of the contribution, but rather of the way in which the field, or gatekeepers in the field, respond to it.

In short, some individuals or teams may be excellent at generating, evaluating, and selecting their best ideas, and still fail to get these ideas implemented. In this section, we will discuss some individual factors that have been found to contribute to or hinder the implementation of creative ideas.
Getting Ideas Accepted by Coworkers

Although creativity is often highly valued, this does not necessarily mean that creative ideas are always appreciated (cf. Mueller et al., 2012). In the organizational context, creative ideas can also be considered disruptive or threatening. For example, Janssen (2003) argues that innovative ideas are likely to be seen as a challenge to the status quo and hence may lead to conflict, especially among highly involved employees. In a field study, Janssen indeed found that employees who showed high levels of innovative job performance (as rated by their supervisors) experienced more conflict and less satisfactory relations with their coworkers, but only when they had high levels of job involvement.

Along similar lines, Baer (2012) noted that highly creative ideas are more likely to lead to controversy and differences of opinion than mundane ones (cf. Moreau et al., 2001). Highly creative ideas might therefore be at a disadvantage as compared to less creative ideas when it comes to implementation, because it is more difficult to gather sufficient support for these ideas. However, Baer also argued that the move toward implementation is especially open to social-political maneuvering, “because a decision to allocate or redirect resources often involves multiple constituents who are likely to disagree about the value of an idea, especially one that is novel and inherently ambiguous” (p. 1105). In line with this perspective, a field study showed that the more radical employees’ ideas were, the less likely these were to get implemented, unless the employee had strong networking skills, a large number of “buy-in ties” (interested stakeholders in his/her network), or experienced strong implementation instrumentality (expected to benefit from implementation of the idea).

Further, Perry-Smith and Mannucci (2017) present an extensive analysis of the way in which different stages of the “idea journey” from creativity to innovation may require different kinds of network activation, not all of which are mutually compatible—in other words, what is required for, say, idea generation may not be helpful for idea championing or idea implementation.

Pitching and Selling Ideas

The success of an idea will not only depend on the networks that people have, but also on their ability to convince the people in and outside their network that an idea is valuable and creative. Some people simply might be better at presenting or pitching their idea and thereby garnering support (also see Rietzschel, 2011). This was shown, for example, by Goncalo, Flynn, and Kim (2010), who addressed the relation between narcissism and creativity in a series of three studies. Their results showed that narcissists were not actually more creative, but that the ideas they
pitched were rated as more creative. Moreover, the observed relation between narcissism and perceived creativity was mediated by the perceived enthusiasm of the pitcher. Goncalo et al. conclude that “narcissists may be effective at convincing others that their ideas are creative, in part because they convey traits that are closely associated with a creative personality prototype” (p. 1490).

Another illustration of how personal characteristics (as opposed to characteristics of one’s ideas) may affect other people’s perceptions and evaluations of creativity comes from Proudfoot, Kay, and Koval (2015), who make the case that the creativity stereotype of divergence and independence fits with a classic and stereotypical representation of masculinity, with its emphasis on independence, agency, adventurousness, and self-reliance. This could also lead to a gender bias in the attribution of creativity. Across five studies, they show that creativity is indeed associated more strongly with “masculine” attributes than “feminine” ones, that men are ascribed more creativity than women even when the creative product is the same, and that female executives (in organizations) and speakers (on TED.com) are rated as less innovative. Thus, and in line with the results found by Goncalo et al. (2010), individual characteristics other than the creativity of one’s ideas may nevertheless affect other people’s evaluations of these ideas.

In line with this perspective, Litchfield, Ford, et al. (2015) point out that convincing others (such as coworkers) of the potential value of an idea may require the ability to take other people’s perspective, for example to understand or predict which kinds of ideas will be likely to be appreciated or supported by which stakeholders. Thus, perspective-taking may help creators sell their ideas more effectively by enabling them to identify whom the idea should or could be sold to, as well as the best way to do so. In a field study among employees, their coworkers, and their supervisors, Litchfield, Ford, et al. (2015) found that organizational innovation was highest when high individual creativity was accompanied by a strong creative team environment and high levels of individual perspective-taking, again demonstrating that success in selling an idea not only depends on the quality of the idea itself.

Getting Ideas Accepted by a Supervisor

It is not just the characteristics of the creator that affect other people’s reactions. Often, employees come up with an idea (e.g., to improve work processes) and communicate this to their direct supervisor, who is in a position to support the idea, to assign resources to further development, or to champion the idea to higher management. In such cases, acceptance of the idea by the supervisor is of course essential, but not all supervisors are equally likely to recognize or support their subordinates’ creative
ideas. Recognizing subordinates’ creative ideas can be considered a special case of interpersonal idea evaluation, and in line with the research discussed earlier, Basadur et al. (2000) found that managers’ ability to accurately evaluate highly original ideas was positively predicted by their own ability to generate creative ideas. Beside the ability to recognize creative ideas, research also suggests that a supervisor’s achievement goals may affect his or her willingness to support creative ideas. In the achievement goal literature, a distinction is often made between performance (wanting to outperform others) and mastery (wanting to outperform oneself) goals (Elliot, 2005). In several studies, Sijbom, Janssen, and Van Yperen (2015a, 2015b, 2016) found that leaders with a mastery orientation were more likely to adopt a creative idea, whereas leaders with a performance orientation were more likely to oppose the idea. Sijbom et al. (2015a, 2015b) also found that this effect depended on, among others, the presence (vs absence) of a problem identification in the idea. When the idea contained an explicit problem identification, Sijbom et al. argue, performance-oriented leaders saw the creative idea as an implicit evaluation of their leadership skills, which threatened them and hence made them less receptive. When the idea was presented without an explicit problem statement, performance-oriented leaders were as receptive as mastery-oriented leaders. Moreover, Sijbom et al. (2016) showed that the effects of achievement goals were specific to leaders evaluating ideas proposed by subordinates—the effects did not occur when a superior rather than a subordinate proposed the ideas.

Supervisory Support

Clearly, supervisors play an important role in the transition from creativity to innovation. Receiving support from supervisors has long been known to be an important precondition for employees to display creative behavior at work (see, e.g., Tierney, 2008; Zhou, 2008, for overviews), and several studies and conceptual analyses have focused on the important role of leaders in facilitating or stimulating employees’ innovative performance (e.g., De Jong & Den Hartog, 2007; Stenmark, Shipman, & Mumford, 2011; also see Zhou & Shalley, 2008, for several relevant overviews). Recently, more specific attention has been begun to be paid to the effects of support on successfully selling and implementing creative ideas. For example, Axtell et al. (2000) found that the relation between employees’ contribution of ideas for improvements on the workfloor and implementation of these ideas depended on managerial support: when employees experienced little managerial support, the relation was quite weak. Only when employees felt supported by management, a clear positive relation between idea generation and idea implementation was observed. In a recent paper, Škerlavaj, Černe, and Dysvik (2014) found evidence (both in a field study and a lab experiment) for a curvilinear relation between idea...
generation and idea implementation. Škerlavaj et al. argue that employees who spend an inordinate amount of time or resources on the generation of ideas may be less effective at selling those ideas to coworkers and management, because time and resources are limited. Thus, they hypothesized and found an inverse U-shaped relation between idea generation and idea implementation. Importantly, this curve was moderated by supervisory support, such that when employees perceived high support, the relation between idea generation and implementation was positive and linear.

What these results show is that a focus on the properties of creative ideas and people’s ability to recognize or select these ideas is too narrow. Even if employees have generated and selected the best of all possible ideas, the idea needs to be sold to the other stakeholders in the organization, who may or may not be motivated or able to recognize an idea’s value.

PRACTICAL RECOMMENDATIONS FOR THE ORGANIZATIONAL CONTEXT

Whereas various techniques, strategies, and trainings have been developed and tested to enhance the ability of individuals and groups to generate ideas, research on facilitating idea evaluation and idea selection skills is scarce. However, based on the research discussed so far, several recommendations and practical solutions can be tentatively formulated to help individuals and organizations to successfully evaluate and select creative ideas. We discuss two classes of recommendations: (a) suggestions on how to improve idea selection in organizations, and (b) suggestions on how to improve one’s success in selling creative ideas to coworkers and supervisors.

Improving Idea Selection

Loosen Implicit Constraints About Originality and Usefulness

As explained before, an idea has to be original (i.e., novel) and useful (i.e., feasible, effective) in order to be considered creative. Nevertheless, people tend to perceive an incompatibility between the originality and the usefulness/feasibility dimension (Rietzschel et al., 2010, 2014). Moreover, Blair and Mumford (2007) found that people tended to reject highly original ideas and were more likely to select ideas that are consistent with social norms. Generally, the implicit assumption that original ideas cannot be feasible seems to strongly hinder effective idea selection. In line with the aforementioned work on insight and unconscious thought, a possible approach to diminish this “either-originality-or-usefulness” constraint could be to enhance the opportunity for unconscious thought (Ritter, Strick, et al., 2012; Ritter, van Baaren, & Dijksterhuis, 2012) or to rely on a more
intuitive processing style. Research by Magnusson, Netz, and Wästlund (2014) also suggests that intuition can be used as a successful means for evaluating ideas, and Zhu et al. (2017) found that an intuitive (as opposed to a deliberative) thinking style led to better idea selection. Thus, creating circumstances that make it easier for people to move beyond the heuristic trade-off between originality and feasibility are likely to be helpful for idea selection (also see Litchfield, Gilson, et al., 2015). Of course this is all the more important in the organizational context, where feasibility is highly salient (e.g., because of limited resources or a competitive market). However, it may be difficult to justify these kinds of intuitive decisions to stakeholders; other, more explicit interventions such as the use of selection criteria will perhaps be received more favorably.

Use Instructions for Idea Evaluation and Selection

Overcoming the trade-off between originality and feasibility can also be stimulated by the use of explicit selection criteria. As we have seen, people tend to prefer and select highly feasible ideas over highly original ones. While changing people’s preferences may not always be immediately possible (however, see later), the initial selection of creative ideas can benefit from explicitly using originality as a selection criterion (e.g., Rietzschel et al., 2010, 2014), or from loosening the selection criteria and allowing people to select multiple ideas (so as to allow for the selection of at least some highly original ideas; e.g., Blair & Mumford, 2007). The criteria used may also have to be contingent on the quality of the available ideas. For example, Lonergan et al. (2004) found that better advertising campaigns were obtained when innovative criteria instructions were applied to less original ideas, and when implementation efficiency criteria instructions were applied to more original ideas. Thus, being more explicit about the importance of selecting original ideas may be helpful. However, since—as discussed previously—this may come at the cost of lower satisfaction (Rietzschel et al., 2010, 2014), it remains to be seen whether people will be willing to actually support these ideas or invest resources in them. This may require something more than selection criteria.

Induce Specific Psychological Conditions

Research discussed previously has shown that specific psychological conditions, such as regulatory focus (i.e., promotion focus), construal level (i.e., abstract mind-set), and uncertainty tolerance, can positively influence idea evaluation and idea selection. The underlying mechanism seems to be that these conditions make people more open to original ideas and more willing to take risks. Thus, idea selection and implementation in organizations are likely to benefit from contexts that instill or enhance such psychological conditions. For example, organizations could consider explicitly framing innovation projects in terms of potential gains rather
than potential losses (and hence avoid an innovation imperative based on, for example, the fear of being outcompeted), and stakeholders might be encouraged to focus more strongly on abstract “why”-considerations and long-term considerations. Rather than directly changing the selection process by providing people with different criteria, then, these kinds of interventions are aimed at changing people’s preferences, or at least their willingness to take certain ideas into consideration.

Train Evaluation and Selection Skills

Most of the studies described in this chapter focused on the question whether activating a specific psychological condition (i.e., changes on state level) right before the idea evaluating and/or idea selecting process leads to temporarily enhanced evaluation and selection performance. Another means could be to train people’s evaluation and selection skills and hence make them chronically more open to original ideas. Runco and Basadur (1993) provided managers with a 20h intensive multiphase creative problem solving training, and found that the training increased managers’ evaluative accuracy as compared to a premeasurement. Licuanan, Dailey, and Mumford (2007) found that errors in evaluating the originality of highly novel ideas can be reduced by having participants engage in active analysis of product originality. Reiter-Palmon, Ligon, Schoenbeck, and McFeely (2017) trained undergraduates in evaluating and rating creativity, manipulating the availability of practice ratings and feedback, as well as the quality of the rating rubrics the trainee received. To assess rating accuracy, trainee’s ratings of creative solutions were compared with expert ratings. Rating practice and more descriptive rating rubrics increased the quality rating accuracy, but not the originality rating accuracy.

Successful selling of a highly creative idea

Based on the research discussed thus far, some global practical suggestions can be formulated for employees who would like to increase their chance of moving their ideas closer toward implementation.

Stress Feasibility and Effectiveness, Not Originality

Paradoxically, although originality is considered to be the hallmark of creative ideas (e.g., Runco & Charles, 1993), originality may also be what causes an idea to be rejected. Research discussed so far shows that people may be strongly biased against original ideas (e.g., Blair & Mumford, 2007; Mueller et al., 2012; Rietzschel et al., 2010, 2014). Since people prefer highly feasible ideas, and appear to believe that highly original ideas cannot be feasible, selling a creative idea will likely go better if one manages to convince the other party that an idea is easy to implement and likely to work. Of course, usually this is exactly what is wanted. But in
situations where innovation explicitly is the goal, or where common and routine solutions are known to no longer be effective, getting highly original ideas accepted is critically important, and in those situations it can be important to resist the temptation to emphasize how novel and radical an idea is (except when it is clear that novelty really is what is sought, for example when looking for radical new advertisement concepts). In fact, Goldenberg, Horowitz, Levav, and Mazursky’s (2003) notion of the “innovation sweetspot” suggests that it may even be worthwhile to actively downplay the novelty of an idea somewhat.

Prepare for Resistance

We have discussed several studies showing that people generally cannot be expected to respond positively to creative ideas immediately. Examples are the work by Mueller et al. (2012) on the implicit bias against creativity, a field study by Janssen (2003) showing that employees who contribute innovative ideas can easily run into conflict with their coworkers, and studies by Sijbom et al. (2015a, 2015b, 2016) who found that competitive leaders were more likely to reject subordinates’ creative ideas, especially if the idea was voiced in an aggressive (as opposed to considerate) manner. Creative ideas may be more likely to get supported if they are presented or pitched in such a way that they do not elicit uncertainty (Mueller et al., 2012) or a sense of competitive threat (Sijbom et al., 2015b), but it is easy to fall into the pitfall of getting carried away with one’s own idea (see later) and to assume that everybody will like it.

Show Confidence and Enthusiasm

Generating creative ideas strongly depends on intrinsic motivation and task engagement, and employees may be very much committed to their ideas. If the goal is to convince somebody (e.g., a supervisor) that one’s idea is highly creative, this can be useful. Goncalo et al. (2010) found that the perceived enthusiasm of narcissistic participants mediated the higher creativity rating these participants received. Enthusiasm and charisma are considered part of the “creativity stereotype” (Elsbach & Kramer, 2003; Goncalo et al., 2010); displaying these kinds of behaviors may therefore lead to more positive creativity perceptions. Following up on research showing that an abstract mind-set may lead to better recognition of creativity (Mueller et al., 2014), and research linking positive, high-arousal emotions to the adoption of an abstract mind-set (De Dreu, Baas, & Nijstad, 2008), one might speculate that a process of emotional contagion (e.g., Hatfield, Cacioppo, & Rapson, 1993) could in part be responsible for this effect: presenting an idea with enthusiasm may make the audience enthusiastic as well, and therefore better able to recognize the idea’s creativity. However, whether or not this will also mean that the idea is received more favorably is another issue (see previously).
Focus on the Long Term

As mentioned before, people’s responses are often mostly driven by their expectations regarding the feasibility and effectiveness of an idea. This will be especially the case if short-term considerations (e.g., thoughts of imminent implementation) guide the evaluation or selection process (also see Rietzschel et al., 2018). Thus, presenting an idea in such a way that the long term becomes more salient than the short term could increase acceptance by reducing the focus on feasibility. Moreover, as shown by Mueller et al. (2014), when people are focused more on the long term and hence adopt an abstract mind-set, they are better at recognizing creative ideas, and tend to evaluate these ideas more positively.

Don’t Do It All Alone

One of the things we have stressed in this chapter is that idea implementation in organizations is not an individual endeavor, but requires support and commitment from multiple stakeholders. The stereotype of the creative “lone genius” notwithstanding, creative success strongly depends on the ability to muster the necessary support from others. Investing in one’s professional network within and outside of the organization is therefore important (also see Perry-Smith & Mannucci, 2017). While several studies have found that network ties can contribute significantly to creative output (especially so-called “weak ties”; see e.g., Perry-Smith & Shalley, 2003), research such as that by Baer (2012) shows that networking success also increases the chance of getting one’s ideas implemented. Further, Škerlavaj et al. (2014) found that high levels of supervisory support were associated with a more positive relationship between creativity and idea implementation, and Somech and Drach-Zahavy (2013) found that a favorable team climate, rather than individual abilities, was crucial in getting creative ideas implemented.

CONCLUDING REMARKS

In a world characterized by fast technological and social change, and facing the pressures of climate change and the need for a more sustainable society, few things are as important and urgent as successful innovation. Optimizing the creative process is of critical importance for both public and private organizations. The success of this process usually depends on the quality of the idea that is identified as the most creative idea. Thus, in addition to being able to generate creative ideas, one also has to succeed in recognizing and selecting ones most creative idea. Moreover, recent developments in the World Wide Web, crowd-sourcing, and open innovation have opened the floodgates for idea generation in many domains, making
it increasingly important to recognize and select the most creative idea from a pool of available ideas (i.e., interindividual idea evaluation and selection). Thus far, idea evaluation and, to a greater extent, idea selection are far from optimal. This implies that, unless more attention is paid to the idea evaluation and selection process, creativity and innovation will remain at suboptimal levels. Practitioners and researchers alike should not merely focus on idea generation, but should take a different track than they have done so far—spending serious effort on understanding and improving idea evaluation and selection.

References

1. CREATIVITY AND INNOVATION: LARGER CONCEPTS
1. MOVING FROM CREATIVITY TO INNOVATION

REFERENCES

1. CREATIVITY AND INNOVATION: LARGER CONCEPTS
Kennel, V., Reiter-Palmon, R., De Vreede, T., & de Vreede, G. J. (2013). In Creativity in teams: an examination of team accuracy in the idea evaluation and selection process System Sciences (HICSS), 2013 46th Hawaii International Conference (pp. 630–639): IEEE.

REFERENCES

1. CREATIVITY AND INNOVATION: LARGER CONCEPTS

Further Reading

