Somatic mutations in breast and serous ovarian cancer young patients

Encinas, Giselly; Maistro, Simone; Pasini, Fatima Solange; Hirata Katayama, Maria Lucia; Brentani, Maria Mitzi; de Bock, Geertruida Hendrika; Azevedo Koike Folgueira, Maria Aparecida

Published in:
Revista da Associacao Medica Brasileira

DOI:
10.1590/1806-9282.61.05.474

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2015

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Somatic mutations in breast and serous ovarian cancer young patients: a systematic review and meta-analysis

GISELLY ENCINAS1, SIMONE MAISTRO2, FÁTIMA SOLANGE PASINI3, MARIA LUCIA HIRATA KATAYAMA3, MARIA MITZI BRENTANI4,
GEERTRUIDA HENDRIKA DE BOCK5, MARIA APARECIDA AZEVEDO KOIKE FOLGUEIRA4**

1MSc, Doctorate student, Department of Radiology and Oncology, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP Brazil
2Post-Doctorate Researcher, Department of Radiology and Oncology, Instituto do Câncer do Estado de São Paulo (ICESP), FMUSP São Paulo, SP Brazil
3PhD, Researcher, Department of Radiology and Oncology, ICESP-FMUSP São Paulo, SP Brazil
4Associate Professor, Department of Radiology and Oncology, ICESP-FMUSP São Paulo, SP Brazil
5Full Professor, Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands

Study conducted at Department of Radiology and Oncology, Faculdade de Medicina da Universidade de São Paulo, Instituto do Câncer do Estado de São Paulo, São Paulo, SP, Brazil. Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands

Article received: 3/5/2015
Accepted for publication: 5/16/2015

*Correspondence:
Address: Av. Dr. Arnaldo, 455 – sala 4115
Postal code: 01246-903
São Paulo, SP – Brazil
Phone: 55 11 30617165
Fax: 55 11 30826580
makoike@lim24.fm.usp.br

http://dx.doi.org/10.1590/1806-9282.61.05.474

Financial support: FAPESP and CNPq

**Correspondence:

Objective: our aim was to evaluate whether somatic mutations in five genes were associated with an early age at presentation of breast cancer (BC) or serous ovarian cancer (SOC).

Methods: COSMIC database was searched for the five most frequent somatic mutations in BC and SOC. A systematic review of PubMed was performed. Young age for BC and SOC patients was set at ≤35 and ≤40 years, respectively. Age groups were also classified in <30 years and every 10 years thereafter.

Results: twenty six (1,980 patients, 111 younger) and 16 studies (598, 41 younger), were analyzed for BC and SOC, respectively. In BC, PIK3CA wild type tumor was associated with early onset, not confirmed in binary regression with estrogen receptor (ER) status. In HER2-negative tumors, there was increased frequency of PIK3CA somatic mutation in older age groups; in ER-positive tumors, there was a trend towards an increased frequency of PIK3CA somatic mutation in older age groups. TP53 somatic mutation was described in 20% of tumors from both younger and older patients; PTEN, CDH1 and GATA3 somatic mutation was investigated only in 16 patients and PTEN mutation was detected in one of them. In SOC, TP53 somatic mutation was rather common, detected in more than 50% of tumors, however, more frequently in older patients.

Conclusion: frequency of somatic mutations in specific genes was not associated with early-onset breast cancer. Although very common in patients with serous ovarian cancer diagnosed at all ages, TP53 mutation was more frequently detected in older women.

Keywords: breast neoplasms, ovarian neoplasms, young adult, mutation.
luminal A and higher proportion of triple negative and high grade tumors. However, molecular studies have also suggested that breast cancer in young patients may be characterized by unique disease biology, as compared to older patients, beyond subtype distribution.

One of the predisposing factors for breast cancer is germline mutation in tumor suppressor genes such as BRCA1/2. In younger patients its frequency may be as high as 10.9 to 23%, as reported in women from different countries.

Another cancer associated with BRCA1/2 germline mutation is epithelial ovarian cancer, where prevalence of the mutation in unselected patients is higher than in breast cancer, varying from 8-13%. In this cancer, high prevalence (24%) was described in women diagnosed in their forties with a lower prevalence in younger women in their thirties (11%). Epithelial ovarian cancer is not common in women below 40 years, and young age has been reported as a favorable prognostic factor. In analogy with older ovarian cancer patients, serous ovarian cancer is the most frequent histology in young women ≤ 40 years, but in contrast, low tumor grade is more common in this age group.

However, BRCA1/2 germline mutation does not explain breast or epithelial ovarian cancer development in the majority of cases. A large number of cancer somatic alterations were recently characterized, most of which deposited in the COSMIC database (Catalogue of Somatic Mutation in Cancer - http://www.sanger.ac.uk/genetics/CGP/cosmic/). Nevertheless, it is still not clear whether there might be an association between gene somatic mutations and age of diagnosis. Hence, we performed a systematic review and meta-analysis to evaluate a possible association between somatic alterations in specific genes in breast and serous ovarian cancer samples and age at cancer diagnosis.

METHODS

Study eligibility and identification

At first, the COSMIC database was searched for the identification of five of the genes most frequently mutated (somatic mutations) in breast cancer, namely PIK3CA (25%), TP53 (23%), CDH1 (11%), GATA3 (7%) and PTEN (5%). Search strategy was: breast tissue, subtissue (all), cancer histology, subhistology (all). Date References shown in COSMIC for these selected genes were reviewed. The search was performed on October 2013.

A literature search through PubMed database followed, to ensure that studies including somatic alterations in these specific genes in breast cancer were not missed. PubMed was searched for using the key words specified: breast neoplasms [MeSH terms] AND “somatic” [all fields] AND (“2003/10/13” [PDat]: “2015/02/11” [PDat] AND “humans” [MeSH terms]) and (breast neoplasm [MeSH terms] AND “somatic”) AND “PIK3CA”; followed by TP53; P53; CDH1; GATA3 and PTEN. After consulting COSMIC and PubMed, a total of 821 unique articles were identified. After exclusions, which were mainly due to lack of individual data for age or gene mutation, 26 studies were selected (Table 1).

The same strategy used above was employed to analyze ovarian cancer, including identification of the five most frequently mutated genes in COSMIC, as of October 2013, which were TP53 (65%), KRAS (6%), BRCA1 (4%), NF1 (4%) and CHEK2 (3%). Search strategy in COSMIC was: ovary tissue, subtissue (all), cancer histology and serous cancer subhistology. Only serous cancer was included due to its higher frequency and differential frequencies of somatic gene mutations detected in different histologies. Subsequently, PubMed was searched for using the key words specified: ovarian neoplasms [MeSH terms] AND somatic [all fields] AND (“2003/10/18” [PDat]: “2015/02/11” [PDat] AND “humans” [MeSH terms]) and ovarian cancer (MesH terms) AND somatic AND TP53, followed by: P53; KRAS; BRCA1, NF1, CHK2 and CHEK2. Among 439 unique articles, after exclusions mainly due to absence of individual data for age and mutation, sixteen studies were selected (Table 1).

Selection and exclusion criteria for studies

The following inclusion criteria were used for selection of the publications: (a) studies in which data was available for each individual patient, concerning age and somatic mutation; (b) studies employing whole tumor genome or exome sequencing; (c) studies evaluating mutations in the five candidate genes in tumor specimens using direct sequencing. Exclusion criteria were: (a) studies without individual data; (b) mutation analyzed only through loss of heterozygosity (LOH), Restriction fragment length polymorphism (RFLP), single-strand conformation polymorphism (SSCP) not confirmed by direct sequencing; and (c) other techniques not related with direct sequencing.

References from selected studies, reviews and meta-analysis were checked for other relevant publications. Authors of manuscripts were contacted by email for missing information, most authors replied, but only one was able to report on missing clinical data. Almost all abstracts from studies published in other languages than English were reviewed, but neither one met the inclusion criteria.
TABLE 1 Studies selected in breast and serous ovarian cancer analysis.

<table>
<thead>
<tr>
<th>Author</th>
<th>Patients (n)</th>
<th>Gene</th>
<th>Methodology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breast cancer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ding et al.</td>
<td>17</td>
<td>All</td>
<td>WGS and/or exome sequencing</td>
</tr>
<tr>
<td>Yost et al.</td>
<td>2</td>
<td>All</td>
<td>WGS and/or exome sequencing</td>
</tr>
<tr>
<td>Nik-Zainal et al.</td>
<td>21</td>
<td>All</td>
<td>WGS and/or exome sequencing</td>
</tr>
<tr>
<td>Banerji et al.</td>
<td>103</td>
<td>All</td>
<td>WGS and/or exome sequencing</td>
</tr>
<tr>
<td>Shah et al.</td>
<td>63</td>
<td>All</td>
<td>WGS and/or exome sequencing</td>
</tr>
<tr>
<td>Stephens et al.</td>
<td>100</td>
<td>All</td>
<td>WGS and/or exome sequencing</td>
</tr>
<tr>
<td>Ellis et al.</td>
<td>317</td>
<td>All</td>
<td>WGS and/or exome sequencing (77 patients), PIK3CA, TP53, CDHI and GATA3 (240 patients)</td>
</tr>
<tr>
<td>Jiao et al.</td>
<td>15</td>
<td>All</td>
<td>WGS and/or exome sequencing</td>
</tr>
<tr>
<td>Craig et al.</td>
<td>14</td>
<td>All</td>
<td>WGS and/or exome sequencing</td>
</tr>
<tr>
<td>Benvenuti et al.</td>
<td>85</td>
<td>PIK3CA</td>
<td>Direct sequencing</td>
</tr>
<tr>
<td>Miron et al.</td>
<td>80</td>
<td>PIK3CA</td>
<td>Direct sequencing</td>
</tr>
<tr>
<td>Martins et al.</td>
<td>75</td>
<td>PIK3CA</td>
<td>Direct sequencing</td>
</tr>
<tr>
<td>Hernandez et al.</td>
<td>13</td>
<td>PIK3CA</td>
<td>Sequenom MassArray – direct sequencing</td>
</tr>
<tr>
<td>Lima et al.</td>
<td>1</td>
<td>PTEN</td>
<td>Direct sequencing</td>
</tr>
<tr>
<td>Jong et al.</td>
<td>89</td>
<td>TP53</td>
<td>DHPLC – direct sequencing</td>
</tr>
<tr>
<td>Lavaroni et al.</td>
<td>31</td>
<td>TP53</td>
<td>SSCP – direct sequencing</td>
</tr>
<tr>
<td>Wistuba et al.</td>
<td>2</td>
<td>TP53</td>
<td>SSCP – direct sequencing</td>
</tr>
<tr>
<td>Masri et al.</td>
<td>19</td>
<td>TP53</td>
<td>Direct sequencing</td>
</tr>
<tr>
<td>Lien et al.</td>
<td>14</td>
<td>TP53</td>
<td>Direct sequencing</td>
</tr>
<tr>
<td>Eachkoti et al.</td>
<td>25</td>
<td>TP53</td>
<td>SSCP – direct sequencing</td>
</tr>
<tr>
<td>Vincent-Salomon et al.</td>
<td>48</td>
<td>TP53</td>
<td>Direct sequencing</td>
</tr>
<tr>
<td>Aceto et al.</td>
<td>4</td>
<td>TP53</td>
<td>SSCP – direct sequencing</td>
</tr>
<tr>
<td>Curtis et al.</td>
<td>820</td>
<td>TP53</td>
<td>Direct sequencing</td>
</tr>
<tr>
<td>Ripamonti et al.</td>
<td>1</td>
<td>TP53</td>
<td>Direct sequencing</td>
</tr>
<tr>
<td>Sjoblom et al.</td>
<td>36</td>
<td>TP53/GATA3/CDHI</td>
<td>Direct sequencing</td>
</tr>
<tr>
<td>Ang et al.</td>
<td>1</td>
<td>TP53/PIK3CA</td>
<td>Sequenom MassArray – direct sequencing</td>
</tr>
<tr>
<td>Serous ovarian cancer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bell et al.</td>
<td>309</td>
<td>All</td>
<td>WGS and/or exome sequencing (8 patients) and direct sequencing (KRAS – 9 patients)</td>
</tr>
<tr>
<td>Jones et al.</td>
<td>17</td>
<td>All</td>
<td>WGS and/or exome sequencing</td>
</tr>
<tr>
<td>Zhang et al.</td>
<td>1</td>
<td>All</td>
<td>WGS and/or exome sequencing</td>
</tr>
<tr>
<td>Bashashati et al.</td>
<td>5</td>
<td>All</td>
<td>WGS and/or exome sequencing</td>
</tr>
<tr>
<td>Merajver et al.</td>
<td>15</td>
<td>BRCA1</td>
<td>SSCP – direct sequencing</td>
</tr>
<tr>
<td>Koul et al.</td>
<td>2</td>
<td>BRCA1</td>
<td>PTT – SPSS – direct sequencing</td>
</tr>
<tr>
<td>Enomoto et al.</td>
<td>10</td>
<td>KRAS</td>
<td>Direct sequencing</td>
</tr>
<tr>
<td>Fu et al.</td>
<td>10</td>
<td>KRAS</td>
<td>Direct sequencing</td>
</tr>
<tr>
<td>Mandai et al.</td>
<td>21</td>
<td>KRAS</td>
<td>SSCP – direct sequencing</td>
</tr>
<tr>
<td>Otsuka et al.</td>
<td>14</td>
<td>TP53</td>
<td>SSCP – direct sequencing</td>
</tr>
<tr>
<td>Kringen et al.</td>
<td>24</td>
<td>TP53</td>
<td>TTGE – direct sequencing</td>
</tr>
<tr>
<td>Dehari et al.</td>
<td>6</td>
<td>TP53/KRAS</td>
<td>Direct sequencing</td>
</tr>
<tr>
<td>Birch et al.</td>
<td>10</td>
<td>TP53/KRAS</td>
<td>Direct sequencing</td>
</tr>
<tr>
<td>Wojnaowicz et al.</td>
<td>95</td>
<td>TP53/KRAS</td>
<td>Direct sequencing</td>
</tr>
<tr>
<td>Sangha et al.</td>
<td>41</td>
<td>TP53/KRAS/NF1</td>
<td>PTT – direct sequencing</td>
</tr>
<tr>
<td>Kinde et al.</td>
<td>18</td>
<td>TP53/KRAS/NF1</td>
<td>Direct sequencing</td>
</tr>
</tbody>
</table>

WGS: whole genome sequencing; DHPLC: denaturing high pressure liquid chromatography; SSCP: single-strand conformation polymorphism.
Data collection
The aim of the present study was to evaluate the rate of somatic mutations in five specific genes, disregarding the type of mutation and the number of mutations in each gene in the same sample. In case of multiple reports of the same data, only one was taken into consideration. Each abstract was reviewed by two investigators independently. In case of any disagreement, the issue was discussed with the group until a consensus was reached.

A Microsoft Excel Database was assembled with included trials and reasons for exclusion of excluded trials. A second datasheet was assembled with the included articles reporting each patient and mutation found: identification of patient, age, tumor histology; histological grade, stage and mutation (presence or absent). Additionally, for breast cancer patients, information about node, ER, PR and HER2, as reported by the authors, was included.

Data analysis
In this work, cut off ages for early age breast cancer and ovarian cancer were 35 and 40 years, respectively. Group ages were then stratified in 7 groups: (1) <30 years, (2) 30-39 years, (3) 40-49 years, (4) 50-59 years, (5) 60-69 years, (6) 70-79 years and (7) ≥80 years. Age groups with less than 10 patients were not taken into consideration for analysis.

Chi-square or Fisher’s exact tests were used to evaluate association between variables. Odds ratio (OR) and 95% confidence intervals (95% CIs) were estimated using logistic regression. Correlation between variables was evaluated through Pearson correlation and correlation coefficients (r) are provided. P values ≤ 0.05 were considered significant. The analysis was performed using Statistical Package for the Social Sciences 18.0 (SPSS).

Results
A total of 1980 patients, 5.6% of whom aged less than 36 years, were included in the 26 studies selected (Table 1). In these studies, data available comprehended each patient’s age and specific mutations. At first, breast cancer patients were separated in two subsets: younger (≤35 years) vs. older (>35 years). Most patients, both younger and older, were diagnosed with invasive ductal cancer (84% in both groups); however, high histological grade (73 vs. 46.6%; p<0.001) and ER-negative tumor (45.5 vs. 30.6%; p=0.006) as well as node positivity (63.6 vs. 45.8%; p=0.044) and advanced disease, clinical stage III/IV (28.8 vs. 14.9%; p=0.003), were mainly detected in younger patients.

PIK3CA somatic mutation was more frequently detected in tumors from older patients as compared with younger patients (26.7 vs. 6.7%; p=0.014). TP53 somatic mutation was described in similar frequencies of younger and older patients, 21.6 and 20.1%, respectively.

PTEN, CDH1 and GATA3 somatic mutation was investigated only in a small number of younger patients (16 patients each). PTEN somatic mutation was detected in 3.3% of all patients and in 1/16 younger patients. GATA3 and CDH1 somatic mutations were analyzed in 672 and 564 patients, respectively, and detected in approximately 8% of them, none aged ≤35 years. CDH1 somatic mutation was detected in almost half (47%) of the lobular cancers and median age of patients was higher in patients harboring CDH1 somatic mutation than in patients not harboring the mutation (62 vs. 57 years; p=0.007, Mann Whitney test).

Each variable significantly associated with age (histological grade, node, clinical stage, estrogen receptor [ER] status) was then tested concomitantly with PIK3CA somatic mutation in the subsets of younger and older breast cancer patients, using binary logistic regression. This analysis showed a trend towards a lower chance of ER-positive tumor in younger, as compared with older patients (OR: 0.433; 95% CI: 0.181-1.036; p=0.060), but not for PIK3CA somatic mutation (OR: 0.233; 95% CI: 0.029-1.712; p= 0.149).

An association between gene mutations and tumor subtypes was already described; hence, the whole group of patients was then tested for these associations, independent of age. PIK3CA somatic mutation was more frequently detected in ER-positive than in ER-negative tumors (28 vs. 8%; p<0.001) and TP53 somatic mutation was more frequently detected in ER-negative (42.8 vs. 10.1%; p<0.001) and HER2-positive tumors (27.5 vs. 18.6%; p=0.006). Considering the whole group of patients who had both PIK3CA and TP53 analyzed, only 5.5% (35/637) presented both PIK3CA and TP53 somatic mutations, while 49.6% (316/637) presented both PIK3CA wild-type (wt) and TP53 wt.

Following the hypothesis that the number of somatic mutations accumulate along the lifetime, the next step was to evaluate PIK3CA and TP53 somatic mutations according to age groups, classified as <30 years and every 10 years. Frequency of PIK3CA somatic mutation increased in older age groups and reached about 30% in patients aged more than 60 years; TP53 somatic mutation peaked in 20-30% in patients aged 30-59 years, decreasing thereafter (Figure 1).

ER and HER2 status was also determined according to age groups, as another aim was to evaluate presence of somatic mutations according to tumor characteristics (ER and HER2) in the age groups. Frequency of ER-positive tumors was directly correlated with age and reached
80% in women aged 60 years or more. In contrast, frequency of HER2-positive tumors was indirectly correlated with age and maximum level, around 25%, was detected in patients aged less than 30 years (Figure 1).

Afterwards, frequency of PIK3CA and TP53 somatic mutation was evaluated in ER-positive/negative and HER2-positive/negative tumors, according to age groups. There was a trend towards an increased frequency of PIK3CA somatic mutation in ER-positive tumors, according to age groups (Figure 2). For patients aged less than 40 years, frequency of PIK3CA somatic mutation in ER-positive tumors was low, near 10%. After this age, more than 25% of the ER-positive tumors presented PIK3CA somatic mutation. In HER2-negative tumors, a positive correlation in frequency of PIK3CA somatic mutation according to age groups was detected. No correlation was observed in frequency of TP53 mutation according to tumor characteristics and age (Figure 2).

Among 16 studies selected in serous ovarian cancer, 598 samples were evaluated (with 6.8% aged less than 41 years), while other histologies, comprehending 95 samples, were disregarded from further analysis (Table 1). Patients were grouped in younger (≤40 years) and older age (>40 years), the majority of them diagnosed with advanced
disease (clinical stage III/IV). High grade tumors (histological grade III) were mainly observed in older patients (88.8 vs. 65%; p<0.001). TP53 somatic mutation was rather common, detected in more than 50% of tumors in both age groups, however, more frequently in older patients (86.7 vs. 55.2%; p<0.001). KRAS somatic mutation was described in less than 3% of the tumors; however, only 35 younger patients were included, among whom, one with mutation. A low frequency of somatic mutation was also observed for BRCA1 (3.5%), NFI (5.5%) and CHECK2 (0.3%), none detected in younger patients.

Frequency of TP53 mutation was also tested in age groups, classified as <30 years and then every 10 years, and detected in more than 75% of tumors from patients aged 40 years or more. This evaluation was not performed for the other genes, due to the small number of patients available.

Discussion

We have investigated whether frequency of somatic mutations would differ in younger and older cancer patients. At first, frequency of somatic mutations in PIK3CA, TP53, CDH1, GATA3 and PTEN was evaluated in younger and older breast cancer patients, using a cut off of 35 years. PIK3CA somatic mutation was found less frequently in younger (≤ 35 years) than older patients (>35 years) (6.7 vs. 26.7%, respectively). In addition, an association between PIK3CA somatic mutation and positive expression of ER was detected, as already reported. However, in binary logistic regression, only odds ratio (OR) for ER-positive expression (but not for PIK3CA somatic mutation) was lower in younger patients.

Analyzing some other manuscripts, that were not included in the present meta-analysis (since individual age of cancer diagnosis was not available), no association between PIK3CA somatic mutation and age was found. In these studies, however, a cut point was set at a higher age, 50-55 years or menopause. On the other hand, a trend towards association between PIK3CA somatic mutation in older patients was also already reported.

PIK3CA somatic mutation frequency was, then, investigated in different age groups (<30 years and then every 10 years) and a direct correlation was verified. Furthermore, a direct correlation of frequency of PIK3CA somatic mutation in ER-positive tumors and age groups was detected, indicating that PIK3CA somatic mutation frequency increases in aging patients. Hence, it seems likely PIK3CA somatic mutation rate increases in ER positive tumors in aging patients.

In the present analysis, TP53 somatic mutation frequency was similar (around 20%) in both younger and older breast cancer patients. Considering frequency of TP53 somatic mutation in the age groups, it tended to increase in the early age groups, reaching almost 30% in patients aged 40-49 years, going downwards in older age groups. In agreement, in another manuscript, which was not included in this meta-analysis due to unavailability of age for all patients, but only for TP53 somatic mutation carriers, TP53 somatic mutation was reported to be 17% in early onset breast cancer patients (< 37 years). In addition, a fall in TP53 somatic mutation rate in older age groups, above 59 years, was also reported in a large study. Discrepancies however, evaluating TP53 somatic mutation frequency and age were also shown, varying from no association to reduced or increased age being associated with TP53 somatic mutation. In the present series, TP53 somatic mutation was more frequent in ER-negative tumors (41.8%), in accordance with some authors but in contrast with others, that found no association.

In the current analysis, PTEN, CDH1 and GATA3 somatic mutation was investigated only in a small number of younger breast cancer patients (16 patients), in whom it seemed to be very infrequent, even absent as in the case of PTEN and CDH1. In contrast, it is interesting to observe that another recent work reported that GATA3 somatic mutations tended to occur in tumors from patients aged ≤ 40 years, mainly in luminal-like subtype. In the present analysis, median age of patients presenting CDH1 somatic mutation was 62 years, in accordance with another study, where mean age was 64.9 years, indicating that it is mainly detected in older patients.

In serous ovarian cancer, TP53 somatic mutation was rather common and mutation frequency increased with advancing age, in agreement with previous studies. In addition, KRAS somatic mutation rate was low (<3%), also reflecting data from other authors. BRCA1 somatic mutation was detected in tumors from 3.5% of the patients, and even though no mutations were detected in younger patients, only 16 were aged less than 41 years. A similarly low BRCA1 somatic mutation rate was also detected in another study of epithelial ovarian cancer. In that analysis all affected patients presented familial history of breast and/or ovarian cancer and tumor subtype specificity was not reported.

Conclusion

In breast cancer samples, there is a trend towards increasing PIK3CA somatic mutation rate in ER-positive tumors in aging patients. TP53 somatic mutation peaks around 20-30% in patients aged 30-59 years, decreasing thereafter. In addition, CDH1 somatic mutation seems to be unlikely in younger patients. In ovarian cancer samples TP53 somatic mutation is rather frequent, detected in more than 50% of tumors in younger and more than 75% of tumors in older patients.

Acknowledgments

The authors would like to thank Prof. Michael H. Bloch M.D., M.S., Assistant Professor at Yale Child Study Center and Assistant Director of Yale OCD Clinic, for giving a course about “Metanalysis” at Faculdade de Medicina, Universidade de São Paulo in 2012; Cristina Piñero Grandal, for editing the figures; Tatiane Furuya Mazzoti and Eduardo Oda, for discussions on statistical analysis. Supported by São Paulo Research Foundation (FAPESP, grant #2012/12306-4). Giselly Encinas Zanetti received a PhD
resumo

mutações somáticas em pacientes jovens com câncer de mama e serosário de ovário: revisão e metanálise

objetivo: avaliar se mutações somáticas em câncer de mama e seroso de ovário estão associadas com pacientes jovens.

métodos: com base no COSMIC, foram selecionados os cinco genes mais frequentes mutados em câncer de mama e seroso de ovário. Em seguida, realizou-se uma revisão sistemática no PubMed. Pacientes jovens foram classificados com ≤35 anos e ≥40 anos para câncer de mama e seroso de ovário, respectivamente. Classificaram-se também as pacientes em grupos etários de ≤30 anos, separando a cada 10 anos.

resultados: vinte e seis (1.980 pacientes, 111 jovens) e 16 estudos (598, 41 jovens) foram selecionados para câncer de mama e seroso de ovário, respectivamente. Em câncer de mama, pacientes jovens apresentaram baixa freqüência de mutações somáticas em PIK3CA. Tumor HER2 negativo foi associado a mutações somáticas em PIK3CA no grupo etário mais avançado, e em tumores ER positivos foi observada uma tendência a essa associação. Mutações somáticas em TP53 foram observadas em 20% dos tumores, em ambos os grupos (≤35 anos e ≥35 anos). Mutações somáticas em PTEN, CDH1 e GATA3 foram analisadas em 16 pacientes e apenas uma apresentou mutação em PTEN. Em câncer seroso de ovário, mutações somáticas em TP53 foram detectadas em mais que 50% dos tumores; entretanto, foram mais frequentes em pacientes idosas.

conclusão: a frequência de mutações somáticas nos genes selecionados não foi associada com pacientes jovens. Embora muito comum em pacientes com câncer seroso de ovário, mutações somáticas em TP53 foram mais frequentes em pacientes mais velhas.

palavras-chave: neoplasias da mama, neoplasias ovarianas, adulto jovem, mutação.

referências

