Platelet serotonin is not elevated in patients with benign head and neck paragangliomas

Berends, Annika M. A.; Eijkelenkamp, Karin; Osinga, Thamara E.; Kerstens, Michiel N.; Links, Thera P.; van Faassen, Martijn; Kema, Ido P.; van der Horst-Schrivers, Anouk N. A.

Published in:
Clinical chemistry and laboratory medicine

DOI:
10.1515/cclm-2017-0876

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2018

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

Download date: 17-09-2023
Letter to the Editor

Annika M.A. Berends*, Karin Eijkelenkamp, Thamara E. Osinga, Michiel N. Kerstens, Thera P. Links, Martijn van Faassen, Ido P. Kema and Anouk N.A. van der Horst-Schrivers

Platelet serotonin is not elevated in patients with benign head and neck paragangliomas

https://doi.org/10.1515/cclm-2017-0876
Received September 27, 2017; accepted January 4, 2018

Keywords: blood platelets; head and neck paragangliomas; serotonin.

To the Editor,

Head and neck paragangliomas (HNPGLs) are rare neuroendocrine tumors that arise from parasympathetic ganglia in the head, neck and mediastinal region [1]. HNPGL can be classified as either sporadic or inherited and are usually benign. The discovery of many new predisposing germline mutations in recent years has resulted in a significant increase of predominantly asymptomatic germline mutation carriers visiting the outpatient clinic in order to be screened for the presence of HNPGL, pheochromocytoma (PCC) and sympathetic paragangliomas (sPGL) [2]. Surveillance of these patients is recommended because early detection of an inherited HNPGL may allow early treatment with a lower risk of treatment-associated complications. Current surveillance for HNPGL consists of periodic radiological imaging of the head and neck region [3]. In contrast to PCC/sPGL, HNPGLs rarely secrete (nor)epinephrine. Thus, biochemical screening by measurement of metanephrines in plasma or urine is not a suitable test to screen for HNPGL. There is a clinical need for a reliable biomarker for early detection of HNPGL in asymptomatic germline mutation carriers and in patients who had resection of an HNPGL to screen for recurrent disease. This would not only be more patient friendly than periodic radiological examinations but could also be more cost-effective.

It has been demonstrated that a substantial proportion of HNPGL produces dopamine. We have recently investigated the dopamine concentration in platelets and found that it was higher in patients with HNPGL when compared to healthy controls. Unfortunately, dopamine concentration in platelets cannot be considered as a useful biomarker in clinical practice because only 17% of patients had a dopamine concentration in platelets above the upper reference limit (URL) [4]. In another study, we showed that all HNPGL tissue samples (n = 18) stained positive for aromatic-L-amino-acid decarboxylase (AADC), the enzyme that converts L-3,4-di-hydroxyphenylalanine (L-DOPA) to dopamine [5]. In addition, the presence of AADC in HNPGL is supported by the high sensitivity of 6-[18F]fluor-L-3,4-dihydroxyphenylalanine positron emission tomography (18F-FDOPA-PET) for HNPGL [6]. Notably, AADC is also involved in the synthesis of serotonin by converting 5-hydroxytryptophan (5-HTP) to serotonin (5-hydroxytryptamine). The expression of AADC in HNPGL tissue in combination with a normal dopamine content in platelets in most HNPGL patients could mean that AADC in these tumors contributes more to the biosynthesis of serotonin than of dopamine. In support of this, we have found an extremely high platelet serotonin concentration of 13.07 nmol/10⁹ platelets in a patient with a symptomatic malignant PGL [7, unpublished observation].

We therefore hypothesized that platelet serotonin concentration is elevated in patients with HNPGL. In a previous study, the urinary excretion rate of 5-hydroxyindoleacetic acid (5-HIAA) was found to be normal in 114 patients with HNPGL [8]. The measurement of serotonin in platelets, however, is a more sensitive method to demonstrate increased serotonin production, at least in neuroendocrine tumors of the small bowel [9].

In this observational study, the platelet serotonin concentration was measured in 28 patients with HNPGL and in a control group. We included patients older than
18 years, with a diagnosis of HNPGL without concurrent PCC or sPGL [4] (Table 1). The control group consisted of 68 healthy volunteers (35 men, 33 women, 35–56 years of age). Patients using selective serotonin reuptake inhibitors, tricyclic antidepressants, antiepileptic drugs, monoamine oxidase inhibitors and/or illicit drugs (amphetamine, cocaine, methylphenidate), which are known to interfere with serotonin uptake and/or metabolism, were excluded. The study protocol was approved by the Medical Ethics Committee of the University Medical Center of Groningen. Informed consent was obtained from all patients.

Platelet-rich plasma (PRP) was used for the determination of serotonin in platelets. Platelet serotonin concentration reflects the average exposure to serotonin during the preceding 8–10 days, so this represents a sensitive method for detection of sustained serotonin overproduction. EDTA blood was collected by venipuncture. PRP samples were processed within 1 h and stored on ice afterwards. For PRP preparation, blood was centrifuged at 120 g for 30 min at 4 °C; 0.5 mL PRP was used for platelet count (Sysmex XE-2100). PRP was stored at −80 °C after adding EDTA plus the antioxidant L(+) ascorbic acid. Serotonin concentration was analyzed using online sample preparation coupled to isotope dilution liquid chromatography (Symbiosis™ System, Spark Holland, Emmen, the Netherlands) in combination with a XEVO TQ-MS tandem mass spectrometer (Waters, Milford, CT, USA). Serotonin analysis was performed essentially as previously described [10]. The content of serotonin in blood platelets was obtained by dividing the serotonin concentration in PRP by the platelet concentration in the plasma. The serotonin content in blood platelets is presented as nmol serotonin/10⁹ platelets.

Results are presented as mean±SD or as median with interquartile range. Comparison between groups was carried out with the Mann-Whitney U-test. Statistical analyses were performed with PASW statistics (version 22; IBM/SPSS, Armonk, NY, USA). A two-sided p-value <0.05 was considered statistically significant.

All patients in our study had a benign variant of HNPGL. Except for one patient, all patients had a platelet serotonin concentration below the URL. Compared to the platelet serotonin concentration of healthy volunteers, there were no significant differences (Figure 1; HNPGL 2.91 [2.13–3.71] nmol/10⁹ platelets vs. controls 3.07 [2.23–3.86] nmol/10⁹ platelets, p=0.75).

With this study, we aimed to find a biomarker for HNPGL, which could be used during the surveillance of germline mutation carriers or after resection of an HNPGL. Unfortunately, our results do not support the potential diagnostic value of serotonin concentration in platelets. There are several possible explanations for our findings.

First, the overproduction of serotonin by HNPGL might be too small for detection against the background of normal serotonin production.

Second, it could be that only a subpopulation of the HNPGLs are endocrine active. All patients in our study had a benign variant of HNPGL. Complaints associated with a benign HNPGL are most often localized due to tumor compression of adjacent structures. Characteristics

Table 1: Characteristics of 28 patients with a head and neck paraganglioma.

<table>
<thead>
<tr>
<th>Sex, male/female</th>
<th>11/17</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, years (mean±SD)</td>
<td>55±17</td>
</tr>
<tr>
<td>Tumor location</td>
<td></td>
</tr>
<tr>
<td>Carotid body PGL</td>
<td>14</td>
</tr>
<tr>
<td>Jugulotympanic PGL</td>
<td>9</td>
</tr>
<tr>
<td>Vagal PGL</td>
<td>1</td>
</tr>
<tr>
<td>Multifocal PGL</td>
<td>4</td>
</tr>
<tr>
<td>Germline mutations, n (%)</td>
<td></td>
</tr>
<tr>
<td>None (sporadic)</td>
<td>9 (32)</td>
</tr>
<tr>
<td>Unknown</td>
<td>5 (18)</td>
</tr>
<tr>
<td>Hereditary syndrome</td>
<td>14 (50)</td>
</tr>
<tr>
<td>VHL</td>
<td>0 (0)</td>
</tr>
<tr>
<td>SDHA</td>
<td>1 (4)</td>
</tr>
<tr>
<td>SDHB</td>
<td>8 (28)</td>
</tr>
<tr>
<td>SDHD</td>
<td>4 (14)</td>
</tr>
<tr>
<td>SDHAF2</td>
<td>1 (4)</td>
</tr>
</tbody>
</table>

HNPGL, head and neck paraganglioma. Hereditary syndrome consisting of germline mutations in the von Hippel-Lindau (VHL), succinate dehydrogenase (SDH), subunit A (SDHA), subunit B (SDHB), subunit C (SDHC), subunit D (SDHD) or assembly factor 2 (SDHAF2).

Figure 1: Box plot Whisker representing 5 and 95 percentiles and outliers. Concentration of serotonin in blood platelets in patients with a head and neck paraganglioma (HNPGL) compared with healthy controls (p = 0.75).
of serotonin excess such as flushes, diarrhea and palpitations are less explicitly described. As previously suggested, serotonin platelet concentration could be different in case of malignant disease.

In conclusion, our results do not support the potential diagnostic value of measurement of platelet serotonin concentration in patients with a benign HNPGL. It remains to be determined whether this assay might be clinically useful in patients with a malignant HNPGL.

Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Research funding: None declared.

Employment or leadership: None declared.

Honorarium: None declared.

Competing interests: The funding organization(s) played no role in the study design; in the collection, analysis, and interpretation of data; in the writing of the report; or in the decision to submit the report for publication.

References


