Measurement of the leptonic decay width of J/ψ using initial state radiation

BESIII Collaboration

a Institute of High Energy Physics, Beijing 100049, People’s Republic of China
b Beijing University, Beijing 100871, People’s Republic of China
c Beijing Institute of Petrochemical Technology, Beijing 102617, People’s Republic of China
d Bochum Ruhr-University, D-44780 Bochum, Germany
e Carnegie Mellon University, Pittsburgh, PA 15213, USA
f Central China Normal University, Wuhan 430079, People’s Republic of China
g China Center of Advanced Science and Technology, Beijing 100190, People’s Republic of China
h COMSATS Institute of Information Technology, Lahore, Defence Road, Off Raiwind Road, 54000 Lahore, Pakistan
i G.I. Budker Institute of Nuclear Physics SB RAS (BINP), Novosibirsk 630090, Russia
j GSI Helmholtzzentrum for Heavy Ion Research GmbH, D-64291 Darmstadt, Germany
k Guangxi Normal University, Guilin 541004, People’s Republic of China
l Guangxi University, Nanning 530004, People’s Republic of China
m Hangzhou Normal University, Hangzhou 310036, People’s Republic of China
n Helmholtz Institute Mainz, Johann-Joachim-Becher-Weg 45, D-55099 Mainz, Germany
o Henan Normal University, Xinxiang 453007, People’s Republic of China
p Henan University of Science and Technology, Luoyang 471003, People’s Republic of China
q Huazhong College, Huangshan 245000, People’s Republic of China
r Hunan University, Changsha 410082, People’s Republic of China
s Indiana University, Bloomington, IN 47405, USA
t INFN Laboratori Nazionali di Frascati, I-00044, Frascati, Italy
u INFN and University of Perugia, I-06100, Perugia, Italy
v INFN Sezione di Ferrara, I-44122, Ferrara, Italy
w University of Ferrara, I-44122, Ferrara, Italy
x Johannes Gutenberg University Mainz, Johann-Joachim-Becher-Weg 45, D-55099 Mainz, Germany
y Joint Institute for Nuclear Research, 141980 Dubna, Moscow region, Russia
z Justus Liebig University Giessen, II. Physikalisches Institut, Heinrich-Boff-Bing 15, D-35392 Giessen, Germany
aa KVI-CART, University of Groningen, NL-9747 AA Groningen, The Netherlands
ab Lanzhou University, Lanzhou 730000, People’s Republic of China
ac Liaoning University, Shenyang 110036, People’s Republic of China
ad Nanjing Normal University, Nanjing 210023, People’s Republic of China
ae Nanjing University, Nanjing 210093, People’s Republic of China
af Nankai University, Tianjin 300071, People’s Republic of China
ag Peking University, Beijing 100871, People’s Republic of China
ah Seoul National University, Seoul, 151-747, Republic of Korea
ai Shandong University, Jinan 250100, People’s Republic of China
aj Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
ak Shanxi University, Taiyuan 030006, People’s Republic of China
al Sichuan University, Chengdu 610064, People’s Republic of China
am Soochow University, Suzhou 215006, People’s Republic of China
an Sun Yat-Sen University, Guangzhou 510275, People’s Republic of China
ao Tsinghua University, Beijing 100084, People’s Republic of China
ap Istanbul Aydin University, 34295 Sevfakoy, Istanbul, Turkey
aq Dalgas University, 34722 Istanbul, Turkey
The electronic width of the J/ψ resonance $\Gamma_{ee} \equiv \Gamma_{ee}(J/\psi)$ has been measured by BaBar [1] and CLEO-c [2], employing the technique of Initial State Radiation (ISR), in which one of the beam particles radiates a photon. Consequently, the invariant mass range below the center-of-mass energy of the e^+e^- collider becomes available. Using a different method, the BESIII experiment also measured its electronic width with improved precision [3]. In this paper, we study the process $e^+e^- \to \mu^+\mu^-\gamma$ using the ISR method with $\mu^+\mu^-$ invariant mass $m_{\mu\mu}$ between 2.8 and 3.4 GeV/c^2, which covers the charmonium resonance J/ψ. The cross section $\sigma_{J/\psi}$ is proportional to $\Gamma_{ee} \cdot B_{\mu\mu}$, where $B_{\mu\mu} \equiv B(J/\psi \to \mu^+\mu^-)$ is the branching fraction of the muonic decay of the J/ψ resonance. With the precise measurement of $B_{\mu\mu}$ from BESIII [4], we have the opportunity to obtain Γ_{ee} with high precision. The differential cross section of $\sigma_{J/\psi}$ can be expressed in terms of the center-of-mass energy squared s as
\[
\frac{d\sigma_{J/\psi}(s, m_{\mu\mu})}{dm_{\mu\mu}} = \frac{2m_{\mu\mu}}{s} W(s, m_{\mu\mu}) B W(m_{\mu\mu}),
\] (1)
where $W(s, m_{\mu\mu})$ is the radiator function, describing the probability that one of the beam particles emits an ISR photon [5], and $BW(m_{\mu\mu})$ is the Breit-Wigner function. $W(s, m_{\mu\mu})$ is calculated by the PHOBOS event generator, with an estimated accuracy of 0.5% [6]. The Breit–Wigner function is
\[
BW(m_{\mu\mu}) = \frac{12\pi B_{\mu\mu} \cdot \Gamma_{ee} \Gamma_{\text{tot}}}{(m_{\mu\mu}^2 - M_{J/\psi}^2)^2 + M_{J/\psi}^2 \Gamma_{\text{tot}}^2},
\] (2)
[7] in which Γ_{tot} and $M_{J/\psi}$ are the J/ψ full width and mass. Both values are taken from the world averages [7]. The cross section $\sigma_{J/\psi}$ over a specified $m_{\mu\mu}$ range can be expressed using:
\[
\sigma_{J/\psi}(s) = \frac{N_{J/\psi}}{s} \cdot \frac{L}{\Gamma_{\text{tot}}} \cdot B_{\mu\mu} \cdot I(s),
\] (3)
where $N_{J/\psi}$ is the number of signal events within the mass range after background subtraction, ϵ is the selection efficiency obtained from a Monte Carlo (MC) simulation, L is the integrated luminosity of the data set, and $I(s)$ is the integral
\[
I(s) = \int_{m_{\text{min}}}^{m_{\text{max}}} \frac{2m_{\mu\mu}}{s} W(s, m_{\mu\mu}) b(m_{\mu\mu}) dm_{\mu\mu},
\] (4)
in which $b(m_{\mu\mu}) \equiv BW(m_{\mu\mu})/\Gamma_{ee} \cdot B_{\mu\mu}$. A mass range between $m_{\text{min}} = 2.8$ GeV/c^2 and $m_{\text{max}} = 3.4$ GeV/c^2 is chosen in which $N_{J/\psi}$ is determined.

The above equations do not take into account interference effects of the resonant $\mu^+\mu^-$ production via J/ψ and the non-resonant $e^+e^- \to \mu^+\mu^-\gamma$ QED production. At lowest order in the fine structure constant α, these can be included by replacing $BW(m_{\mu\mu})$ by [8]
\[
BW'(m_{\mu\mu}) = \frac{4\pi \alpha^2}{3m_{\mu\mu}^2} \left[1 - \zeta(m_{\mu\mu})^2 - 1\right],
\] (5)
with

Article Info

Article history:

Received 8 April 2016

Received in revised form 14 July 2016

Accepted 5 August 2016

Available online 9 August 2016

Editor: V. Metag

Keywords:

J/ψ resonance
Electronic width
Initial state radiation
BESIII

ABSTRACT

Using a data set of 2.93 fb$^{-1}$ taken at a center-of-mass energy of $\sqrt{s} = 3.773$ GeV with the BESIII detector at the BEPCII collider, we measure the process $e^+e^- \to J/\psi \gamma \to \mu^+\mu^-\gamma$ and determine the product of the branching fraction and the electronic width $B_{\mu\mu} \cdot \Gamma_{ee} = (333.4 \pm 2.5_{\text{stat}} \pm 4.4_{\text{sys}})$ eV. Using the earlier-published BESIII result for $B_{\mu\mu} = (5.973 \pm 0.007_{\text{stat}} \pm 0.037_{\text{sys}})$%, we derive the J/ψ electronic width $\Gamma_{ee} = (5.58 \pm 0.05_{\text{stat}} \pm 0.08_{\text{sys}})$ keV.

© 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
\[\zeta(m_{2\mu}) = \frac{3}{\alpha} \cdot \sqrt{\frac{B_{\mu\mu}}{M_{j/\psi} - m_{\mu\mu}^2 - iM_{j/\psi} \Gamma_{1j/\psi}} M_{1j/\psi} \Gamma_{1j/\psi}} \]

and \(b(m_{2\mu}) \) by its equivalent \(b(m_{2\mu}) \equiv B W(m_{2\mu}) / \Gamma_{ee} \cdot B_{\mu\mu} \). The interference is non-symmetrical around the peak; destructive below and constructive above. The radiator function gives a larger weight to lower photon energies, corresponding to higher di-muon invariant masses. This changes the \(m_{2\mu} \) shape around the peak asymmetrically. Replacing \(b(m_{2\mu}) \) by \(b(m_{2\mu}) \) in formula (4) and using the world average [7] for \(\Gamma_{ee} \cdot B_{\mu\mu} \) enhances \(s(5) \) by about 2.2%. The function \(b(m_{2\mu}) \) depends on \(\Gamma_{ee} \cdot B_{\mu\mu} \). Hence, an iterative process is used for its extraction.

We use \(e^+e^- \) collision data collected at the Beijing Spectrometer III (BESIII) experiment. The BESIII detector [9] is located at the double-ring \(e^+e^- \) Beijing Electron Positron Collider (BECPC). The cylindrical BESIII detector covers 93\% of the full solid angle. It consists of the following detector systems: (1) A Multilayer Drift Chamber (MDC) filled with a Helium-based gas, composed of 43 layers, providing a spatial resolution of 135 \(\mu \)m and a momentum resolution of 0.5\% for charged tracks at 1 GeV/c in a magnetic field of 1 T. (2) A Time-of-Flight system (TOF), composed of 176 plastic scintillator counters in the barrel part, and 96 counters in the endcaps. The time resolution in the barrel is 80 ps and 110 ps in the endcaps. For momenta up to 1 GeV/c a \(\sigma \) of \(K/\pi \) separation is obtained. (3) A CsI(Tl) Electro-Magnetic Calorimeter (EMC), with an energy resolution of 2.5\% in the barrel and 5\% in the endcaps at an energy of 1 GeV. (4) A Muon Chamber (MUC) consisting of nine barrel and eight endcap resistive plate chamber layers with a 2 cm position resolution.

We analyze 2.93 fb\(^{-1} \) [10] of data taken at \(\sqrt{s} = 3.773 \text{ GeV} \) in two separate runs in 2010 and 2011. A GEANT4-based [11,12] Monte Carlo (MC) simulation is used to determine efficiencies and study backgrounds. To simulate the ISR process \(e^+e^- \rightarrow \mu^+\mu^- \gamma \), we use the PHOKHARA event generator [6,13]. It includes ISR and final state radiation (FSR) corrections up next-to-leading order (NLO). Hadronic ISR production is also simulated with PHOKHARA. Bhabha scattering is simulated using the BABAYAGA 3.5 event generator [14]. Continuum MC is produced with the KMC generator [15].

We require the presence of at least two charged tracks in the MDC with net charge zero. The points of closest approach from the interaction point (IP) for these two tracks are required to be within a cylinder of 1 cm radius in the transverse direction and \(\pm 10 \) cm of length along the beam axis. In case of three-track events, we choose the track pair with net charge zero which is closest to the IP. The polar angle \(\theta \) of the tracks is required to be found in the fiducial volume of the MDC, 0.4 rad < \(\theta < \pi - 0.4 \) rad, where \(\theta \) is the polar angle of the track with respect to the beam axis. We require the transverse momentum \(p_T \) to be greater than 300 MeV/c for each track. To enhance statistics and to suppress non-ISR background, we investigate untagged ISR events, where the ISR photon is emitted under a small angle \(\theta_{ip} \), almost collinear with the beam, and therefore does not end up in the fiducial volume of the EMC. This is a new approach with respect to BaBar and CLEO-c (both used tagged ISR photons), which has been proved to be valid and effective by using the PHOKHARA event generator [16]. A one-constraint (1C) kinematic fit is performed under the hypothesis \(e^+e^- \rightarrow \mu^+\mu^- \gamma \), using as input the two selected charged track candidates as well as the four-momentum of the initial \(e^+e^- \) system. The constraint is a missing massless particle. The fit imposes overall energy and momentum balance. The \(\chi^2 \) value returned by the fit is required to be smaller than 10. In addition, the predicted missing photon angle with respect to the beam axis, \(\theta_{ip} \), has to be smaller than 0.3 radians or greater than \(\pi - 0.3 \) radians in the lab frame. Radiative Bhabha scattering \(e^+e^-\gamma(\gamma) \) has a cross section that is up to three orders of magnitude larger than the signal cross section. Therefore, electron tracks need to be suppressed. An electron particle identification (PID) algorithm is used for this purpose, employing information from the MDC, TOF and EMC [17]. The probabilities for the track being a muon \(P(\mu) \) or an electron \(P(e) \) are calculated, and \(P(\mu) > P(e) \) is required for both charged tracks, which leads to an electron suppression of more than 96\%. To further suppress hadronic background, an Artificial Neural Network (ANN) built on the TMVA package [18] is used. The ANN is described in detail in Ref. [10]. Both charged tracks are required to have a classifier output value \(y_{ANN} \) of this method smaller than 0.3 to be treated as muons, leading to a signal loss of less than 30\% and a background rejection of more than 99\%.

Background beyond the radiative processes \(\mu^+\mu^-\gamma \) is studied with MC simulations. Table 1 lists the number of events remaining after all previously described requirements in the mass range between 2.8 and 3.4 GeV/c\(^2\). About 4.8 \times 10\(^4\) events are found in the data within this range. The background fraction is found to be smaller than 0.04\% for each of the 150 \(m_{2\mu} \) mass bins. We subtract it from the data bin by bin.

The selection efficiency \(\epsilon \) is determined based on signal MC events. It is obtained as the ratio of the measured number of events after all selection requirements \(N_{\text{true measured}} \) to all generated ones \(N_{\text{true generated}} \). Only the true MC sample of \(J/\psi \) decays with the full \(\theta_{ip} \) range, which does not contain the detector reconstruction, is used here by applying efficiency corrections to each track for muon tracking reconstruction, electron-PID, and ANN efficiency. These corrections have been derived in Ref. [10]. We find \(\epsilon \) to be \((32.04 \pm 0.09)\%\), where the error is due to the size of the signal MC sample.

The number of \(J/\psi \) events \(N_{J/\psi} \) is determined from a binned maximum likelihood fit to data. The fit function \(f(x) \) used is

\[f(x) = N_{J/\psi} \left(M(x) \otimes G(x) \right) + \left(N_{\text{total}} - N_{J/\psi} \right) p(x), \]

where \(M(x) \) describes the shape of the MC-simulated \(J/\psi \) peak. We extract the shape from a MC simulation of the \(J/\psi \) production using a certain \(\Gamma_{ee} \cdot B_{\mu\mu} \) value as an input, together with QED \(\mu^+\mu^-\gamma \) production (including interference effects) as simulated with the PHOKHARA event generator. Then, the histogram \(M(x) \) is obtained by subtracting a pure QED \(\mu^+\mu^-\gamma \) MC sample. It is shown in Fig. 1, using the world average [7] for \(\Gamma_{ee} \cdot B_{\mu\mu} \) as input. To take into account differences in mass resolutions between data and MC simulation, \(M(x) \) is convolved (denoted by the operator \(\otimes \)) with a Gaussian distribution \(C(x) \) with mean \(x \) and width \(\sigma \), whose parameters are determined by the fit to data. To describe the non-resonant QED production in the fit, a polynomial of fourth order is used.
Fig. 1. MC histogram from the PHOKHARA generator after full detector simulation used for the fit. The value of $\Gamma_{ee} \cdot B_{\mu\mu}$ used for generation is the one from Ref. [7].

Fig. 2. Fit to the data using the final value of $\Gamma_{ee} \cdot B_{\mu\mu}$ from Table 3 in the MC histogram for the fit.

$p(x) = \sum_{i=0}^{4} a_i x^i$. \hspace{1cm} (8)

$N_{t_{\text{total}}}$ is the constant number of data events between 2.8 and 3.4 GeV/c2. Free parameters in the fit are $N_{f/\gamma}, \bar{x}, \sigma$, and the coefficients $a_i \ (i = 1, \ldots, 4)$. Hence, $N_{f/\gamma}$ can be obtained directly by the fit. The fit result is shown in Fig. 2; we find $\bar{x} = (2.6 \pm 0.1) \text{ MeV/c}^2$, $\sigma = (10.5 \pm 0.2) \text{ MeV/c}^2$, and $\chi^2/\text{ndf} = 149.8/143$.

Equation (3) is used to determine $\Gamma_{ee} \cdot B_{\mu\mu}$ in an iterative process. In each iteration, we simulate the histogram $M(x)$ and calculate $I(x)$ (including interference corrections), using a $\Gamma_{ee} \cdot B_{\mu\mu}$ input value, and extract the $\Gamma_{ee} \cdot B_{\mu\mu}$ output with Eq. (3). This result is used as input for the next iteration. We choose the PDG value [7] as the starting value. The results of each iteration are summarized in Table 3. After three iterations the result becomes stable within four decimal places, which corresponds to the experimental uncertainty. As the final value we find

$\Gamma_{ee} \cdot B_{\mu\mu} = (333.4 \pm 2.5_{\text{stat}} \pm 4.4_{\text{sys}}) \text{ eV},$

where the first error is the statistical uncertainty from the fit procedure, and the second error is the systematic uncertainty.

All systematic uncertainties are summarized in Table 2. They are summed up in quadrature to be 1.3%. They are derived as follows:

Table 2

<table>
<thead>
<tr>
<th>Source</th>
<th>Uncertainty (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Background subtraction</td>
<td>negl.</td>
</tr>
<tr>
<td>Muon tracking efficiency</td>
<td>0.5</td>
</tr>
<tr>
<td>Muon ANN efficiency</td>
<td>0.5</td>
</tr>
<tr>
<td>Muon e-PID efficiency</td>
<td>0.5</td>
</tr>
<tr>
<td>1C kinematic fit</td>
<td>0.5</td>
</tr>
<tr>
<td>Angular acceptance</td>
<td>0.1</td>
</tr>
<tr>
<td>Luminosity</td>
<td>0.5</td>
</tr>
<tr>
<td>Radiator function</td>
<td>0.5</td>
</tr>
<tr>
<td>Parametrizing the interference</td>
<td>0.2</td>
</tr>
<tr>
<td>Variation of fit range</td>
<td>0.3</td>
</tr>
<tr>
<td>Sum</td>
<td>1.3</td>
</tr>
</tbody>
</table>

Table 3

<table>
<thead>
<tr>
<th>Step</th>
<th>$\Gamma_{ee} \cdot B_{\mu\mu}$ output value</th>
<th>$\Gamma_{ee} \cdot B_{\mu\mu}$ input value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>333.9 ± 2.5</td>
<td>PDG value [7]</td>
</tr>
<tr>
<td>2</td>
<td>333.3 ± 2.5</td>
<td>result of step 1</td>
</tr>
<tr>
<td>3</td>
<td>333.4 ± 2.5</td>
<td>result of step 2</td>
</tr>
<tr>
<td>4</td>
<td>333.4 ± 2.5</td>
<td>result of step 3</td>
</tr>
</tbody>
</table>

(1) Integral $I(s)$: The difference in $I(s)$, when enhancing or decreasing the value of $\Gamma_{ee} \cdot B_{\mu\mu}$ within five standard deviations of the error, claimed by Ref. [7], is smaller than 0.2%. This deviation is considered as the systematic uncertainty of accommodating the interference effects in $I(s)$.

(2) Background subtraction: A conservative uncertainty of 100% is assumed for the MC samples. Hence, the systematic uncertainty due to background subtraction is smaller than 0.04% per bin and can therefore be neglected.

(3) Efficiency ϵ: The data-MC efficiency corrections have been studied in Ref. [10]. The corresponding systematic uncertainties are listed in Table 2. They are found to be smaller than 0.5% in each case.

(4) To estimate the uncertainty introduced by the requirements on θ_{γ} and χ^2_{1C}, the resolution differences between data and MC simulation in these variables are obtained. In case of θ_{γ}, we find the resolution difference to be $(66 \pm 3) \times 10^{-5}$ radians, by comparing an ISR photon tagged clean $\mu^+ \mu^-$ γ sample both from data and MC simulation. In case of χ^2_{1C}, we determine the efficiency of the applied requirement $\chi^2_{1C} < 10$ in data and MC simulation. We vary this requirement in data such that the efficiencies in data and MC simulation are the same. The difference to the actually used requirement is taken as resolution difference, which we find to be (1.1 ± 0.1) units in χ^2_{1C}. To achieve a better description of ϵ, both variables are smeared in the signal MC sample with a Gaussian with a mean value of zero and a width corresponding to the resolution difference. To estimate the contribution to the systematic uncertainty, these variables are also varied with a ± 1 standard deviation, and the difference in ϵ is taken as the systematic uncertainty, which is found to be less than 0.5% for χ^2_{1C} and negligible for θ_{γ}.

(5) The chosen mass range between 2.8 and 3.4 GeV/c2 is varied within 0.1 GeV/c2, using the final value of $\Gamma_{ee} \cdot B_{\mu\mu}$ after the iteration procedure. The difference in $\Gamma_{ee} \cdot B_{\mu\mu}$ is smaller than 0.3%, and is used as a systematic uncertainty.

(6) The luminosity has been measured in Refs. [19,10] with an uncertainty of 0.5%.

(7) The radiator function is extracted from the PHOKHARA event generator [13] and has an uncertainty of 0.5%.
Table 4

Results of the BaBar [1], CLEO-c [2] and KEDR [3] measurements compared to this work.

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Γ_{ee}·$B_{\mu\mu}$ [eV]</th>
<th>Used $B_{\mu\mu}$ value [%]</th>
<th>Γ_{ee} [keV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>BaBar</td>
<td>330.1 ± 7.3_{stat} ± 7.3_{sys}</td>
<td>5.88 ± 0.10 [20]</td>
<td>5.61 ± 0.20</td>
</tr>
<tr>
<td>CLEO-c</td>
<td>333.4 ± 5.8_{stat} ± 7.1_{sys}</td>
<td>5.953 ± 0.056_{stat} ± 0.042_{sys} [21]</td>
<td>5.68 ± 0.11_{stat} ± 0.13_{sys}</td>
</tr>
<tr>
<td>KEDR</td>
<td>331.8 ± 5.2_{stat} ± 6.3_{sys}</td>
<td>5.94 ± 0.06 [22]</td>
<td>5.59 ± 0.12</td>
</tr>
<tr>
<td>This work</td>
<td>333.4 ± 2.5_{stat} ± 4.4_{sys}</td>
<td>5.973 ± 0.007_{stat} ± 0.037_{sys} [4]</td>
<td>5.58 ± 0.05_{stat} ± 0.08_{sys}</td>
</tr>
</tbody>
</table>

(8) The angular acceptance of the charged tracks is studied by varying this requirement by more than three standard deviations of the angular resolution, and studying the corresponding difference in the final result. An uncertainty of less than 0.1% is found.

With $B_{\mu\mu} = (5.973 ± 0.007_{stat} ± 0.037_{sys})$% from an independent BESIII measurement [4], our measurement yields

$$\Gamma_{ee} = (5.58 ± 0.05_{stat} ± 0.08_{sys})\text{ keV}.$$

Our measurement of $\Gamma_{ee} \cdot B_{\mu\mu}$ is consistent with the results from BaBar [1], CLEO-c [2] and KEDR [3]. The measured value for Γ_{ee} is more precise, as summarized in Table 4.

In summary, we have used the ISR process $e^+e^- \rightarrow J/\psi\gamma \rightarrow \mu^+\mu^-\gamma$ to measure $\Gamma_{ee} \cdot B_{\mu\mu} = (333.4 ± 2.5_{stat} ± 4.4_{sys})$ eV with a total relative uncertainty of 1.5%. Combined with the BESIII measurements of $B_{\mu\mu}$, we obtain $\Gamma_{ee} = (5.58 ± 0.05_{stat} ± 0.08_{sys})\text{ keV}$ with a relative precision of 1.7%.

The BESIII Collaboration thanks the staff of BPCII and the IHEP computing center for their strong support. This work is supported by National Key Basic Research Program of China under Contract No. 2015CB856700; National Natural Science Foundation of China (NSFC) under Contracts Nos. 11125525, 11235011, 11322544, 11335008, 11425524; the Chinese Academy of Sciences (CAS) Large-Scale Scientific Facility Program; the CAS Center for Excellence in Particle Physics (CCEPP); the Collaborative Innovation Center for Particles and Interactions (CICPI); Joint Large-Scale Scientific Facility Funds of the NSFC and CAS under Contracts Nos. 11179007, U1232201, U1332201; CAS under Contracts Nos. KJCX2-YW-N29, KJCX2-YW-N45; 100 Talents Program of CAS; INPAC and Shanghai Key Laboratory for Particle Physics and Cosmology; German Research Foundation DFG under Contract No. Collaborative Research Center CRC-1044; Instituto Nazionale di Fisica Nucleare, Italy; Ministry of Development of Turkey under Contract No. DPT2006K-120470; Russian Foundation for Basic Research under Contract No. 14-07-91152; U.S. Department of Energy under Contracts Nos. DE-FG02-04ER41291, DE-FG02-05ER41374, DE-FG02-94ER40823, DESC0010118; U.S. National Science Foundation; University of Groningen (RuG) and the Helmholtzzentrum fuer Schwerionenforschung GmbH (GSI), Darmstadt; WCU Program of National Research Foundation of Korea under Contract No. R32-2008-000-10155-0.

References