Coronary artery calcium quantification on first, second and third generation dual source CT: A comparison study

Marleen Vonder a, Gert Jan Pelgrim a, Sévrin E.M. Huijse b, Holger Haubenreisser c, Mathias Meyer c, Peter M.A. van Ooijen a, b, Matthijs Oudkerk a, Thomas Henzler c, Rozemarijn Vliegenthart a, b, *

a University of Groningen, University Medical Center Groningen, Center for Medical Imaging North-East Netherlands (CMI-NEN), Groningen, The Netherlands
b University Medical Center Groningen, Dept. of Radiology, Groningen, The Netherlands
c University Medical Center Mannheim, Dept. of Radiology, Mannheim, Germany

Article history:
Received 12 May 2017
Received in revised form 9 August 2017
Accepted 3 September 2017
Available online 8 September 2017

Keywords:
Coronary atherosclerosis
Computed tomography
Image reconstruction
Phantom Imaging
Cardiovascular disease

Background: Differences in coronary artery calcium (CAC) quantification of successive CT systems of one vendor could impact results of CAC screening and progression studies. The purpose of this study is to compare CAC quantification between three generations of dual-source computed tomography (DSCT) systems.

Methods: Three DSCT generations were used to repeatedly scan an anthropomorphic chest phantom and three inserts. The first and second insert contained 100 small and nine large calcifications, respectively, to determine detectability, and the Agatston and (calibrated) mass score, respectively. A third insert containing a moving artificial coronary artery was used to determine impact of movement on calcium scoring. Data were acquired at 120 kVp, 90 reference mAs with prospective electrocardiographic (ECG)-gating at sequential and high-pitch spiral mode, for respectively first and second/third generation DSCT. Differences and variability in detectability and calcium scores were analyzed.

Results: Although noise levels differed (p < 0.002), no differences in detectability were found between the three DSCT generations; median (range) for first, second and third generation were 11 (8), 11 (4) and 12 (2) out of 100 calcifications (p > 0.272). Between second and third generation no difference was found in Agatston score for the large calcification phantom (p > 0.05). The intra-scanner variability and inter-scanner median relative difference ranged for Agatston score from 2.1 to 8.3% and 0.5 to 12.7% and for mass score from 1.4% to 4.4% and 0.7 to 5.6%. Overall, intra-scanner variability was lowest for third generation DSCT.

Conclusion: The three DSCT generations have similar detectability of calcifications. Median Agatston and mass score differed by no more than 12.7% and 5.6%.

© 2017 Society of Cardiovascular Computed Tomography. Published by Elsevier Inc. All rights reserved.

1. Introduction

Coronary artery calcium (CAC) scoring by computed tomography (CT) is primarily used as a cardiovascular disease (CVD) risk stratification tool in asymptomatic individuals. Further risk stratification can be performed by analyzing CAC progression. Progression of ≥15% compared to baseline is associated with an increased CVD risk, whereas in patients with stable CAC the risk is the same across risk categories. Detection of CAC progression by use of the Agatston score can be difficult, because significant differences in Agatston scores can be present between CT systems. Other CAC scoring parameters like the mass score have shown lower inter-

E-mail addresses: m.vonder@umcg.nl (M. Vonder), g.j.pelgrim@umcg.nl (G.J. Pelgrim), s.e.m.huijse@umcg.nl (S.E.M. Huijse), holger.haubenreisser@medma.uni-heidelberg.de (H. Haubenreisser), mathias.meyer@medma.uni-heidelberg.de (M. Meyer), p.m.a.vanoijen@umcg.nl (P.M.A. van Ooijen), m.oudkerk@umcg.nl (M. Oudkerk), thomas.henzler@medma.uni-heidelberg.nl (T. Henzler), t.vliegenthart@umcg.nl (R. Vliegenthart).

http://dx.doi.org/10.1016/j.jcct.2017.09.002
1934-5925/© 2017 Society of Cardiovascular Computed Tomography. Published by Elsevier Inc. All rights reserved.
system variability than the Agatston score.3 In large multi-center screening trials and in follow-up studies, it is often not possible to use exactly the same type of CT system. Possibly, differences in CAC scores also play a role in consecutive scanner generations of one vendor. Nevertheless, little is known about the impact of differences between successive CT systems of one vendor (e.g. differences in generation power, detector type and collimation) on CAC scoring. The purpose of this study was to compare coronary calcium quantification of three consecutive generations of dual-source CT systems (DSCT) of one vendor.

2. Methods

An anthropomorphic chest phantom and additional fat rings were used to simulate small, medium and large chest size (Thorax, extension ring M and L, QRM, Mührendorf, Germany), see Fig. 1. The thorax contained an opening at the level of the heart in which two static (Insert 1: small calcifications, Insert 2: large calcifications) and one dynamic (Insert 3: moving artificial calcium artery) insert were placed consecutively. See Table 1 for the details of each insert, containing calcifications corresponding in size, density and speed to those found in vivo.5–7 All three chest-sizes were scanned with inserts 1 and 2, and the medium chest size was used with insert 3 for all speeds. The phantom was scanned five times for insert 1 and 2, and three times for insert 3 on first, second and third generation DSCT (SOMATOM Definition; Definition Flash; Force; Siemens Healthcare, Forchheim, Germany). See Table 2 for acquisition and reconstruction details per generation, as recommended by the vendor.

Fig. 1. Phantom set-up
An anthropomorphic chest phantom and fat rings were used to simulate patients with a small, medium and large chest size. The phantom contained an opening at the level of the heart in which consecutively static and moving calcium inserts were placed.

3. Results

Image quality and radiation dose are listed in Table 3. No significant difference in the number of detected calcifications was found between any of the DSCT generations (p > 0.272) based on insert 1, see Fig. 2. However, detectability decreased for increasing patient size (τ = -0.543, p < 0.01) for all DSCT generations.

Total Agatston and mass scores of insert 2 and 3 are depicted in Fig. 3. Agatston and mass score were calculated as follows:

\begin{equation}
\text{Agatston} = \sum \text{Mass-calibration factor} \times \text{Agatston score}
\end{equation}

\begin{equation}
\text{Mass} = \sum \text{Mass-calibration factor} \times \text{mass score}
\end{equation}

With MADM representing the median absolute deviation from the median (MADM) and x the calcium score, Mann-Whitney U testing was used to compare the measurements of the different DSCT generations per chest size, and Kendall’s tau-b (τ) was used to determine trends in calcium scores. To express the magnitude of any score differences between generations of DSCT (G\textsubscript{1}, G\textsubscript{2}, G\textsubscript{3}), a median relative difference (MRD) was calculated as follows:

\begin{equation}
\text{MRD} = \frac{\text{median score } G_1 - \text{median score } G_2 \cdot 100\%}{\text{median score } G_1 + \text{median score } G_2 / 2}
\end{equation}

Table 1

<table>
<thead>
<tr>
<th>Calcification Details</th>
<th>Insert 1</th>
<th>Insert 2</th>
<th>Insert 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(D100)</td>
<td>(CC1)</td>
<td>(Sim2D)</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Static</td>
<td>Static</td>
<td>Moving</td>
</tr>
<tr>
<td>Speed (mm/s)</td>
<td>0</td>
<td>0</td>
<td>0, 10, 20, 30</td>
</tr>
<tr>
<td>Calcifications:</td>
<td>Number</td>
<td>Size (mm3)</td>
<td>Density (HA/cm3)</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>0.1–6.3</td>
<td>90–540</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>0.8, 21.2, 98.2</td>
<td>200, 400, 800</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>9.1, 24.6, 62.8</td>
<td>401</td>
</tr>
</tbody>
</table>
Table 2
Vendor recommended protocols.

<table>
<thead>
<tr>
<th>DSCT generation</th>
<th>First</th>
<th>Second</th>
<th>Third</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scan mode</td>
<td>Sequential</td>
<td>High-pitch spiral</td>
<td>High-pitch spiral</td>
</tr>
<tr>
<td>Collimation</td>
<td>$2 \times 64 \times 0.6$</td>
<td>$2 \times 128 \times 0.6$</td>
<td>$2 \times 192 \times 0.6$</td>
</tr>
<tr>
<td>Scan speed (ms)</td>
<td>–</td>
<td>458 mm/s</td>
<td>737 mm/s</td>
</tr>
<tr>
<td>Temporal resolution (ms)</td>
<td>83</td>
<td>75</td>
<td>66</td>
</tr>
<tr>
<td>Tube voltage (kVp)</td>
<td>120</td>
<td>120</td>
<td>120</td>
</tr>
<tr>
<td>Tube current (ref mAs)</td>
<td>90</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>Reconstruction matrix</td>
<td>512×512</td>
<td>512×512</td>
<td>512×512</td>
</tr>
<tr>
<td>Field of View (mm)</td>
<td>250×250</td>
<td>250×250</td>
<td>250×250</td>
</tr>
<tr>
<td>Kernel</td>
<td>B35f</td>
<td>B35f</td>
<td>Qr36d</td>
</tr>
<tr>
<td>Slice thickness/increment (mm)</td>
<td>3.0/3.0</td>
<td>3.0/1.5</td>
<td>3.0/1.5</td>
</tr>
</tbody>
</table>

Table 3
Image quality and radiation dose.

<table>
<thead>
<tr>
<th>DSCT generation</th>
<th>First</th>
<th>Second</th>
<th>Third</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median (IQR) image noise (HU)</td>
<td>15.6 (13.7–18.0)</td>
<td>20.3 (18.8–21.7)</td>
<td>17.3 (16.2–19.8)</td>
<td><0.002*</td>
</tr>
<tr>
<td>Median effective tube current (eff mAs)</td>
<td>206 (30–322)</td>
<td>66 (28–121)</td>
<td>85 (40–145)</td>
<td>0.011b 0.217</td>
</tr>
<tr>
<td>Median (range) CTDIvol (mGy)</td>
<td>7.1 (1.1–11.1)</td>
<td>1.1 (0.5–2.0)</td>
<td>1.5 (0.7–2.4)</td>
<td>–</td>
</tr>
</tbody>
</table>

* Image noise was higher for 2nd compared to 1st and 3rd generation DSCT.

b Tube current was higher for 1st compared to 2nd, and comparable for 2nd and 3rd.

Fig. 2. Detectability of calcifications
The median detected number of calcifications (out of 100) that were detected and the 95% confidence interval, based on small calcification insert.

($\tau_b = -0.525, p < 0.01$), whereas the mass score did not ($\tau_b = -0.013, p = 0.909$), with the same trend for all DSCT generations.

No difference in Agatston ($p > 0.177$) and mass ($p > 0.05$) score were found between the DSCT generations for insert 3, with coronary artery speed of 0 mm/s. At speed 10–30 mm/s, second generation showed significantly lower total Agatston score compared to first ($p = 0.021$) and third ($p = 0.008$) generation. The median relative difference at speed 0 mm/s between first and second generation was 2.8% and 3.5%, between first and third 3.3% and 5.6%, and between second and third 6.1% and 2.3%, respectively Agatston and mass score.

The Agatston ($\tau_b = -0.452, p < 0.01$) and mass ($\tau_b = -0.628, p < 0.01$) score decreased for increasing speed of the coronary artery (insert 3) for all generations. The variability of respectively the Agatston and mass score for the moving coronary artery was for first generation 5.3% and 3.4%, for second generation 8.3% and 4.1%, and for third generation 3.4% and 4.4%. The median relative difference at coronary artery speeds 10–30 mm/s between first and second was 12.7% and 2.8%, between first and third 1.3% and 2.1%, between second and third 11.4% and 0.7%, for respectively Agatston and mass. No significant differences in mass score was found for coronary artery speed 0 mm/s ($p = 0.875$) and 10–30 mm/s ($p = 0.322$) between any of the three DSCT generations.

4. Discussion

Similar detectability of coronary calcifications and small variations in median Agatston score, ranging from 0.5 to 6.1%, were found across the three DSCT generations for the static insert, to a maximum of 12.7% for the dynamic insert. Contrary, the mass score varied only by 0.5% to a maximum of 5.1%, with no significant differences between the generations for the dynamic insert. Likewise, the variability in mass score tended to be lower than in Agatston score for all generations DSCT, with lowest Agatston variability for third generation DSCT.

Although 0-score is an important determinant in CAC risk stratification, very few previous studies have investigated the impact of CT system on the 0-score. A study by Groen et al. showed highest detectability for electron-beam CT (22:100) compared to multi-detector CT (17:100), while in our study the highest detectability of any of the DSCT generations was 15:100.

In our study we found comparable Agatston and mass scores and magnitude of relative difference between DSCT generations compared to the relative difference in scores between different types of MDCT studied by McCollough et al., based on insert 2. In studies by Willemink et al. and Ghadri et al. CAC quantification was compared between CT systems of different vendors, of which we derived a median relative difference in Agatston score of respectively 6.4%–43.9% and 0.7%–4. This shows that relative difference between scanners can be highly variable, and that small relative differences between scanners are not exclusive for CT systems of...
the same vendor.

Studies have reported intra-scanner variability of 12–20% and 1.5–13.7% for respectively Agatston and mass score.10–14 Although the results of our study show lower to comparable results for intra-scanner variability, direct comparison is difficult because CAC levels were different for these studies and measurement error increases with increasing CAC levels.10

4.1. Limitations

In this study, similar quality reference tube currents were used, but image noise differed significantly for second generation compared to first and third. Nonetheless, this did not affect the detectability and Agatston score, and former studies showed that tube current has negligible impact on calcium scoring.15 The three generations probably used different dose modulation curves to determine a suitable effective tube current for each patient chest size. Although this should lead to equivalent noise levels across patient sizes within one generation, this could have caused the differences between DSCT generations.

For the moving insert, the Agatston score was lower for second generation DSCT compared to first and third. Hypothetically, the second generation’s scan lower maximum high-pitch scan speed may have caused partial volume effects which led to lower maximum HU values of the calcifications, resulting in a lower Agatston score. This effect was not found for mass score, since this score does not depend on maximum HU values.

To conclude, the three DSCT generations had similar detectability of calcifications. Median Agatston and mass score differed by no more than 12.7% and 5.6%. This indicates that CAC progression can only be concluded if the Agatston and mass score increase above this level compared to baseline.

Disclosures

Thomas Henzler and Mathias Meyer: Institutional research funding from Siemens within the context of the Research Campus M2OLIE funded by the German Federal Ministry of Education and Research (BMBF) within the Framework “Forschungscampus: public-private partnership for Innovations” under the funding code 13GW00926.

All other authors of this manuscript declare no relationships.

![Fig. 3. Agatston and mass score](image-url)

The median and 95%-confidence interval of the Agatston and mass score per patient size, based on insert 2; and per velocity of insert 3; for the three DSCT generations.
with any companies, whose products or services may be related to the subject matter of the article.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

References

