Self-Organization of Graft Copolymers and Retortable iPP-Based Nanoporous Films Thereof

Thomas Defize, Miloud Bouyahyi, Artur Rozanski, Lanti Yang, Bhaskar Patham, Teun Sweere, Sebastian Hochstädt, Michael Ryan Hansen, Katrien V. Bernaerts, Lidia Jasinska-Walc,* and Rob Duchateau*

Cite This: ACS Appl. Polym. Mater. 2022, 4, 6897−6907

ABSTRACT: Polyolefins might become inexpensive alternatives to the existing membranes based on polyethersulfone. Here, we disclose the production of retortable, well-defined polypropylene (PP)-based nanoporous films derived from amphiphilic graft copolymer precursors. The graft copolymers, containing a polypropylene backbone and polyester grafts, were obtained by grafting lactones, specifically 3-valerolactone and ε-caprolactone, from well-defined randomly functionalized poly(propylene-co-10-undecen-1-ol) as a macroinitiator. Depending on the composition, the graft copolymers self-assemble into droplet, cylindrical, lamellar, or interconnected two-phase morphologies. Functional mesoporous iPP-based films were fabricated by the selective degradation of the polyester blocks of the copolymers. Their structure and morphology were studied using atomic force microscopy (AFM), scanning electron microscopy (SEM), small-angle X-ray scattering (SAXS), and solid-state NMR, while the mesoporosity was assessed by nitrogen sorption experiments. The pore size of the films is strongly influenced not only by the volume fraction of the copolymer blocks but unexpectedly also by the topology (i.e., number of grafts) of the graft copolymer, as was confirmed by computational modeling studies using the dynamic density functional theory (DDFT) engine within the Cuigi software. This work provides a conclusive answer on how the morphology of iPP-based graft copolymers is tuned by the graft copolymer composition and the amount and length of the grafted polyester blocks. Filtration tests and flux determination demonstrated that such structurally well-defined mesoporous products could be considered for the development of ultrafiltration membranes while the chemical resistance and sterilization tests revealed their robust performance and suitability for water purification applications.

KEYWORDS: nanoporous films, polypropylene, graft copolymers, self-assembling, morphology

INTRODUCTION

Emerging technologies using polymer-derived nanoporous membranes reveal a high potential for a wide range of applications such as medicine, water purification, and industrial separation processes. Owing to the facile processability of polymers, tunability of the pore size, and low costs of the corresponding membranes compared to ceramics, polymeric membranes for controlled separation find use in various areas from water purification to biomedical applications. Currently, commercially available membranes are mainly fabricated from poly(vinylidene difluoride), poly(ethylene-co-chlorotrifluoroethylene), polysulfone, polyethersulfone, polyphenylsulfone, or aromatic polyamides. The processing conditions of polymeric membranes, viz., molecular imprinting, controlled foaming, controlled crazing, temperature and nonsolvent-induced phase separation (NIPS), self-assembly and nonsolvent-induced phase separation (SNIPS), or selective degradation of block copolymers, critically affect their morphology, properties, and thus application area. Due to the relative simplicity to alter the chemical composition of block copolymers, they are receiving increasing interest for the production of membranes with tunable pore size and mechanical properties.

The first efficient strategy for the synthesis of well-defined block copolymers and analysis of their complex architectures has been reported by Szwarc. These polymers, consisting of immiscible blocks, self-assemble into ordered morphologies at the mesoscopic scale, which depends mostly on the overall degree of polymerization, the volume fraction of each segment, and the segment–segment (Flory–Huggins) interaction parameters. Matsen and Bates have extensively studied the properties of block copolymers to understand and predict their self-assembly into ordered structures. Importantly, these block polymers can serve a broad range of applications such as

Received: May 17, 2022
Accepted: September 6, 2022
Published: September 16, 2022
Block copolymers are also suitable precursors for the preparation of nano- or mesoporous materials with ordered morphologies via selective block sacrifice of cylindrical or bicontinuous morphology. This route was presented for the first time by Nakahama and co-workers, who generated nanopores in a polystyrene matrix by selective degradation via ozonolysis of polystyrene-polysoprene sequences in a cross-linked polystyrene-polysoprene block copolymer. As presented by Hillmyer and co-workers, PLA was successfully used as sacrificial block to produce either polystyrene or hydrogenated polybutadiene-based nanoporous membranes. Other researchers produced similar PE-block-PLA copolymers starting from chain-end-functionalized polyethylene produced by coordinative chain transfer polymerization followed by air oxidation. The latter research groups have done a great job demonstrating the potential of producing polyolefinic membranes and starting from amphiphilic polyolefin-based block copolymers. Authors explained that starting from hydrogenated polybutadienes is rather expensive and the oxidation of polyethylene to hydroxyl chain-end-functionalized polyethylenes, using coordinative chain transfer polymerization, generally does not exceed 80% efficiency. Furthermore, the melting point of polyethylene-based membranes is too low to allow standard sterilization methods.

Herein we describe the synthesis of isotactic polypropylene (iPP)-based mesoporous films exhibiting tunable pore sizes, via the self-assembly of iPP-graft-polyester copolymers (Scheme 1) followed by selective etching of the polyester blocks and performance testing of the produced materials. Using randomly functionalized-, rather than chain-end-functionalized, polypropylene assured that a larger fraction of the polypropylene chains was functionalized and allowed us to vary the average number of polyester branches in the final graft copolymers. It was anticipated that the topology of the graft copolymers might influence the self-assembly process and final morphology. The simulations of the microphase separation of the various graft copolymers, revealing different chemical compositions and topologies, were performed by the dynamic density functional theory (DDFT) engine within the Culgi software. The simulations demonstrated that the morphologies can be well predicted based on the molecular composition of the graft copolymers.

EXPERIMENTAL SECTION

Materials

δ-Valerolactone (VL; 98%, TCI) and ε-caprolactone (CL; 97%, Sigma-Aldrich) were dried over CaH$_2$ (95%, Sigma-Aldrich) and distilled under reduced pressure. Diethyl ether was used as received. Toluene (anhydrous, Sigma-Aldrich) was purified using an MBraun-SPS-800 purification column system and was stored on 4 Å molecular sieves under an inert atmosphere before use. 10-Undecen-1-ol was purchased from Sigma-Aldrich, distilled under reduced pressure, and stored on 4 Å molecular sieves under an inert atmosphere. Methylaluminoxane (MAO) (30 wt % solution in toluene) was purchased from Chemtura. Diethylzinc (DEZ) (1.0 M solution in hexanes) and triisobutylaluminum (TiBA) (1.0 M solution in hexanes) were purchased from Sigma-Aldrich. rac-Me$_5$Si(2-Me-4-Ph-Ind)$_2$ZrCl$_2$ was purchased from MCAT GmbH, Konstanz, Germany. Isotactic polypropylene (IPP) (SABIC-PP520P, MFR = 10.5 g·10 min$^{-1}$ (230 °C, 2.16 kg)), (vinylidene) 2-ethylhexanoate (SnOct)$_2$ (92–100%, Sigma-Aldrich), titanium(IV) n-butoxide (Ti(OBu)$_4$, Sigma-Aldrich), and ligands 1010 (antioxidant, BASF) were used as received. 3-Aminopropyl-functionalized silica nanoparticles (3% (w/v) in ethanol) were purchased from Sigma-Aldrich.

Synthesis of Poly(propylene-co-10-undecen-1-ol) (IPP-OH)

The propylene–10-undecen-1-ol copolymerization was carried out in a stainless steel Böchi reactor (300 mL). Prior to the polymerization, the reactor was dried in vacuo and flushed with nitrogen. Toluene (100 mL) was introduced into the reactor followed by TiBA (1.0 M solution in hexane, 5 mL) and the functionalized comonomer (10-undecen-1-ol; 1 mL, 2.5 mmol) under a nitrogen atmosphere (1 bar). The resulting solution was stirred for 15–20 min. Subsequently, MAO (30 wt % solution in toluene, 2.0 mL) was introduced into the reactor under nitrogen atmosphere after which the solution was saturated with propylene (5 bar total pressure). In a glovebox, a stock solution of rac-Me$_5$Si(2-Me-4-Ph-Ind)$_2$ZrCl$_2$ (5 mg, 8 µmol) in toluene (10 mL) was prepared and the catalyst solution (5 mL) was transferred into the reactor using overpressure of nitrogen atmosphere (1 bar). The propylene pressure was maintained constant for 30 min. At the end of the polymerization reaction, the propylene feed was stopped and the residual propylene was released from the reactor. The resulting mixture was quenched in acidified methanol (300 mL, 2.5 wt % of concentrated HCl), filtered, and washed with demineralized water. The obtained powder was dried in a vacuum oven under reduced pressure at 60 °C overnight.

Synthesis of PP-graft-PCL via Catalytic Ring-Opening Polymerization

IPP-OH (4 g, $M_n = 27.8$ kg mol$^{-1}$, $D = 2.3$) was placed in a round-bottom flask with a magnetic stirrer and dried by Dean–Stark distillation in toluene (100 mL) for 24 h. The solution was cooled to 100 °C and catalyst SnOct$_2$ (180 mg, 0.44 µmol) and ε-caprolactone (10.27 g, 98.99 mmol) were added. The ring-opening polymerization reaction was carried out for 24 h under inert atmosphere. The progress of the copolymerization was followed by 1H NMR spectroscopy by taking aliquots at set time intervals. The synthesized copolymer was isolated by the precipitation in diethyl ether and dried in a vacuum oven at 40 °C for 24 h. Yield: 94%.

Synthesis of PP-graft-PVL via Catalytic Ring-Opening Polymerization

IPP-OH (4 g, $M_n = 27.8$ kg mol$^{-1}$, $D = 2.3$) was placed in a round-bottom flask with a magnetic stirrer and dried by Dean–Stark distillation in toluene (100 mL) for 24 h. The solution was cooled down to 100 °C and catalyst SnOct$_2$ (180 mg, 0.44 µmol) and δ-valerolactone (10.00 g, 100 mmol) were added. The reaction was carried out for 24 h under inert atmosphere. The progress of the copolymerization was followed by 1H NMR spectroscopy by taking aliquots at set time intervals. The synthesized copolymer was isolated by the precipitation in diethyl ether and dried in a vacuum oven at 40 °C for 24 h. Yield: 95%.

Compression Molding

All of the copolymer-based films were prepared via compression molding using PP ISO settings on a LabEcon 600 high-temperature press (Fontijne Presses, the Netherlands). The copolymers were introduced into a Teflon mold to prepare samples with a thickness of 0.18 mm. The program for the compression molding involved the following steps: heating to 200 °C for 5 min at 5 bar followed by cooling to room temperature for 10 min at 5 bar.

Mesoporous Films Preparation

The degradation of the polyester blocks of the copolymers was carried out by immersing pieces of the PP-graft-polyester copolymer films in a 0.5 M solution of NaOH in a mixture of water and methanol (60:40 v/v). The solution was kept at 70 °C for 3 days, and the porous films were then washed with slightly acidic MeOH (aq.) and MeOH and dried for 24 h under reduced pressure.
Filtration Procedure. The porous film was clamped into a glass filter device. Then, vacuum was applied (20 mbar) and water was added at the top of the filtration device. The volumetric flux was calculated using eq 1

\[J_v = \frac{V}{A \cdot t} \]

where \(J_v \) is the volumetric flux, \(V \) is the volume (L), \(A \) is the area of the porous film (m²), and \(t \) is the time (h). A filtration experiment was carried out using a dispersion of silica nanoparticles (3%) w/v in ethanol. The dispersion was filtered using the same filtration setup, and DLS experiments were carried out on the solutions before and after filtration.

\[\text{1H NMR Spectroscopy.} \] Liquid-state 1H NMR spectra were recorded at 80 °C using a Varian Mercury Vx spectrometer operating at Larmor frequencies of 400 MHz. For the experiments, the spectral width was 6402.0 Hz, acquisition time was 1.998 s, and the number of recorded scans was 64.

Size Exclusion Chromatography (SEC). \(M_w \), \(M_n \), and polydispersity index (PDI, \(P_d \)) were determined using SEC. The measurements were performed at 150 °C on a Polymer Char GPC-IR built around an Agilent GC oven model 7890, equipped with an autosampler and the Integrated Detector IR4. 1,2-Dichlorobenzene (oDCB) was used as an eluent at a flow rate of 1 mL·min⁻¹. The SEC data were processed using Calculations Software GPC One.

Differential Scanning Calorimetry (DSC) Analysis. Melting \((T_m)\) and crystallization \((T_c)\) temperatures as well as enthalpies of the transitions were measured by DSC using a DSC Q100 from TA Instruments. The measurements were carried out at a heating and cooling rate of 10 °C·min⁻¹ from −60 to 210 °C. The transitions were deduced from the second heating and cooling curves.

Sample Preparation for Atomic Force Microscopy (AFM). For spin-coated self-assembled copolymer film, AFM imaging was directly performed on the film surface under ambient conditions without further treatment of the sample. For compression molding film imaging, the cross section of films before and after degradation was probed using two-dimensional small-angle X-ray scattering. The mesophase morphologies of various iPP-graft-polyester and iPP-block-polyester copolymer architectures have been investigated. Without DDTF, polymers are described by chains of soft and connected blobs. The molecular weight of blobs representing iPP was 1236 g·mol⁻¹, and the molecular weight of blobs representing PVL and PCL was 1492 g·mol⁻¹. The simulations were performed on a cubic box with an edge length of 100 nm containing 10 000 iPP-polyester copolymers.

Solid-State NMR Analysis. All samples were annealed for 30 min at 150 °C under N₂ atmosphere and cooled to room temperature at a rate of 10 K·min⁻¹ prior to solid-state NMR measurements. The solid-state \(^{13}C \) ([H] MAS NMR experiments were carried out on a Bruker Avance III 300 spectrometer \((v_H = 300.00 \text{ MHz}) \) using a Bruker 4.0 mm H/X WVT double-resonance probe. The samples were packed in a 4.0 mm ZrO₂ rotor and sealed with a Vespel top-cap. All spectra were recorded at a MAS frequency of 10.0 kHz at variable temperatures controlled using a Bruker VT 3000 temperature control unit. Calibration of the temperature was carried out using \(^{203}Pb\) reference related to the absolute chemical shift of ethylene glycol. Chemical shifts and radio-frequency (rf) field strengths were calibrated using adamantane \((\delta^{13}C = 38.5/29.5 \text{ ppm})\) as secondary reference. Calibration of the magic angle was performed using \(^{23}NaNO₃\). Typical experimental parameters for the CP-RINEPT experiments \(^{50}\) were \(^{1}H\) 90° pulses of 4 μs \((v_\mu = 62.5 \text{ kHz})\) and \(^{13}C\) 90° pulses of 5 μs \((v_\mu = 62.5 \text{ kHz})\) using an interpulse delay of 1/(4\(^{2}\)rf\(_{\mu}\)) \((J_{13C1H} = 150 \text{ Hz})\) for the INEPT-block and a refocusing delay of 1/(3\(^{4}\)rf\(_{\mu}\)). A cross-polarization (CP) contact time of 3.0 ms with a ramp from 70 to 100% on the \(^{1}H\) channel was used. Proton decoupling was employed using the SW/TPPM\(^{50}\) scheme with \(v_\mu = 62.5 \text{ kHz} \) coupling strength during CP acquisition and \(v_\mu = 25.0 \text{ kHz} \) during INEPT acquisition. All experiments were conducted using a recycle delay of 6 s and 1200 scans. Processing, data analysis, and plotting were carried out using the Bruker Topspin 4.1.1 software and OriginPro2020b.

Sterilization Tests. Steam sterilization experiments were performed in a gravity displacement autoclave using standard conditions (30 min at 121 °C).

RESULTS AND DISCUSSION

Poly(propylene-co-10-undecene-1-ol) \((\text{poly} (\text{C}_5\text{-co-C}_{11}\text{OH}))\) were obtained in good yields with tunable molecular weights and functionality levels by the copolymerization of propylene...
and TiBA-pacified 10-undecen-1-ol. These randomly hydroxyl-functionalized copolymers were used as macroinitiators for the catalytic ring-opening polymerization of δ-valerolactone (VL) or ε-caprolactone (CL) to produce the corresponding polypropylene-graft-poly(δ-valerolactone) (iPP-g-PVL) and polypropylene-graft-poly(ε-caprolactone) (iPP-g-PCL), respectively (Scheme 1). The graft copolymer topologies were modeled using coarse-grained modeling software (Culgi) (Scheme S1). The polymerizations were mediated by two different poly(C₃-co-C₁₁OH) samples having on average three OH groups per polymer chain and revealing $M_n = 22.9 \text{ kg} \cdot \text{mol}^{-1}$, $\bar{D} = 2.6$ (entries 1–3, 6, Table 1) or poly(C₃-co-C₁₁OH) with six OH groups per polymer chain and $M_n = 27.8 \text{ kg} \cdot \text{mol}^{-1}$, $\bar{D} = 2.3$ (entries 4–5, 7, Table 1), respectively. As presented in Table 1, the ring-opening polymerization of VL or CL initiated by poly(C₃-co-C₁₁OH) as a macroinitiator was effective over a broad range of lactone/catalyst/macroinitiator ratios. Analysis of the graft copolymers by means of HT-SEC proved difficult due to the amphiphilic nature of the copolymers.\(^{51,52}\) However, the chemical structure of the macroinitiators and resulting graft copolymers could successfully be elucidated by the $^1\text{H NMR}$ spectroscopy (Figures S1–S3). The spectrum, corresponding to the poly(C₃-co-C₁₁OH), displays the characteristic signal of α-CH₂OH at 3.67 ppm. The formation of the iPP-based copolymers was clearly confirmed by the resonances at 3.79, 3.96, and 4.09 ppm (Figures S1–S3). Based on the molecular weight of the poly(C₃-co-C₁₁OH) macroinitiators, the molecular weights of the graft copolymers were estimated by $^1\text{H NMR}$ spectroscopy (Table 1). The volume fractions of the polypropylene and polyester segments were calculated based on the corresponding molar fractions and intrinsic densities of the homopolymers (Table 1). A polypropylene volume fraction of 30–50 vol % in the graft copolymers was targeted as this was assumed to lead to the right morphology (cylindrical or interconnected two-phase morphology) necessary for subsequent porous film formation.

The microphase separation of the graft copolymers’ segments by self-assembly was studied by AFM on thin films prepared by compression molding at 200 °C for 5 min. Additionally, for better understanding of the various copolymer compositions morphologies, computational modeling studies were performed. It should be noted that under the applied annealing conditions the self-assembly of graft copolymer in the prepared films is probably not in the kinetic equilibrium state yet, however, sufficient for the nanoporous film formation.

Table 1. Molecular Characterization of PP-g-PVL and iPP-g-PCL Copolymers

<table>
<thead>
<tr>
<th>entry</th>
<th>branches/chain</th>
<th>VL/CL/cat./init.</th>
<th>$M_n [\text{kg} \cdot \text{mol}^{-1}]$</th>
<th>\bar{D}</th>
<th>M_n, PVL/PCL [kg·mol⁻¹]</th>
<th>iPP/PVL/PCL [mol %]</th>
<th>iPP/PVL/PCL [vol %]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>125/0/1/2</td>
<td>22.5</td>
<td>2.9</td>
<td>9.5</td>
<td>66/34/0</td>
<td>0.50/0.50/0</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>125/0/1/2</td>
<td>23.2</td>
<td>2.9</td>
<td>10.4</td>
<td>63/37/0</td>
<td>0.46/0.54/0</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>250/0/1/2</td>
<td>14.6</td>
<td>4.0</td>
<td>17.2</td>
<td>52/48/0</td>
<td>0.35/0.65/0</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>225/0/1/2</td>
<td>21.9</td>
<td>3.2</td>
<td>8.8</td>
<td>56/44/0</td>
<td>0.39/0.61/0</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>250/0/1/2</td>
<td>24.6</td>
<td>3.1</td>
<td>9.9</td>
<td>53/47/0</td>
<td>0.36/0.64/0</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>0/225/1/2</td>
<td>31.2</td>
<td>3.8</td>
<td>19.4</td>
<td>52/0/48</td>
<td>0.33/0.67/0</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>0/250/1/2</td>
<td>20.3</td>
<td>4.9</td>
<td>11.6</td>
<td>53/0/47</td>
<td>0.33/0.67/0</td>
</tr>
</tbody>
</table>

\(^{a}\)Determined by $^1\text{H NMR}$. \(^{b}\)Measured by HT-SEC in o-DCB at 150 °C according to PS standards. \(^{c}\)Molecular weight, mol, and volume fraction of PVL or PCL blocks determined by $^1\text{H NMR}$.
preparation. The cross-sectional AFM phase images of polypropylene-graft-polyester with a different volume fraction of the iPP and polyester blocks are presented in Figures 1 and S4. The morphology of the graft copolymers changes significantly with changing polypropylene and polyester volume fractions, whereas for the lower and upper range of the polypropylene volume fraction (e.g., 33–36 and 48 vol %), an interconnected two-phase morphology with one phase forming nanodomains was observed (Figure 1A–D). Interestingly, the graft copolymers containing around 40 vol % polypropylene (iPP$_{39\text{vol}\%}$-g-PVL$_{61\text{vol}\%}$) exhibit a periodic lamellar self-assembly structure with a lamellae pitch size of around 25 nm (Figure 1B). As proven, the interconnected two-phase morphology with nanodomains is suitable for the production of nanoporous films by selective phase sacrification.

Variable-temperature (VT) 13C solid-state MAS NMR spectroscopy experiments were performed to gain insight into the structural properties and the temperature response of the graft copolymers. Heteronuclear cross-polarization (CP) combined with refocused insensitive nuclei enhanced by polarization transfer (RINEPT) was carried out (referred to as CP-RINEPT)50 on iPP$_{33\text{vol}\%}$-g-PCL$_{67\text{vol}\%}$ containing on average three polyester branches and iPP$_{33\text{vol}\%}$-g-PCL$_{67\text{vol}\%}$ having on average six polyester branches (entries 6 and 7, Table 1), as summarized in Figures 2 and S5, respectively. To independently detect rigid and mobile groups in one experiment, we utilized the difference in magnetization transfer mechanisms of the CP block, which is based on the through-space heteronuclear dipole–dipole coupling and the RINEPT block, which is based on the through-bond J-coupling.

Signals of both iPP and PCL blocks appear at 304 K (Figures 2 and S5) due to the rigidity of the components, leading to non-averaged heteronuclear dipolar couplings below their melting temperatures (see Table S1) required for the CP step to be efficient. In contrast, no 13C signals are observed in the 13C(1H) RINEPT MAS NMR spectra (Figures 2b and S5b) at 304 K, however, raising the temperature above 317 K results in sufficient mobility of the polyester part to give 13C RINEPT signals even below its melting point of 320 K (see Figure S5). Accordingly, 13C resonance lines of the ester fraction show less intensity in the 13C(1H) CP/MAS NMR spectra with increasing temperature revealing three broad asymmetric resonances with the chemical shifts of 44.7, 26.5, and 22.3 ppm related to CH$_2$(A), CH(B) and CH$_3$(C) carbons of the iPP block, respectively; see inset in Figures 2 and S5. Characteristic 13C chemical shifts of the PCL fraction can be observed at high temperatures in the 13C(1H) RINEPT MAS NMR spectra at 173.0 (COO(1)), 64.3 (CH$_2$(2)), 34.4 (CH$_3$(3)), 29.0 (CH$_3$(4)), 26.1 (CH$_3$(5)), and 25.2 (CH$_3$(6)) ppm. A characteristic splitting of the methylene and methyl 13C signals for the iPP polymer backbone is observed for the copolymer having on average three PCL branches (Figure 2a), which is related to different contributions from the crystalline domains, as investigated in detail by Bunn et al.53 In fact, the splitting of these 13C signals refers to the existence of α-isotactic PP retaining the unit cell conformation of the α-crystal phase and the imperfect packing of these chains in the crystalline domains.53 However, the splitting is not directly visible for the sample with six PCL branches (Figure S5a), but is still discernible as shoulders. At higher temperatures, the splitting of the methylene and methyl 13C signals develops into single resonance lines, which has been proposed to occur due to the more active threefold jump rotation about the 3-α-helical chain axis of the iPP, effectively averaging the 13C resonance lines.34 Thus, given the fact that both studied samples, iPP$_{33\text{vol}\%}$-g-PCL$_{67\text{vol}\%}$ having three polyester branches and iPP$_{53\text{vol}\%}$-g-PCL$_{47\text{vol}\%}$ containing six polyester branches, were preannealed under identical conditions to cancel out the influence of their different thermal histories, the main reason for the different polymer chain packing in the crystal regions of the iPP block is proposed to be the difference in the number of PCL branches and the corresponding branch lengths.

To better understand the self-assembly behavior of the graft copolymers and possibly to be able to predict their morphology with different compositions, computational modeling studies have been performed. The dynamic density functional theory (DDFT) engine63 within the Culgi...
The Gibbs free energy of mixing was calculated using COSMO-RS or COSMO-SAC theory:\(^{24}\)

\[
\frac{\Delta G_{12}}{k_B T} = x_1 \ln(x_1 \phi_1^{\text{COSMO}}) + x_2 \ln(x_2 \phi_2^{\text{COSMO}})
\]

where \(x_1\) is the mole fraction, \(\phi_i\) is the volume fraction, \(v_i\) is the volume of the monomeric unit, \(N_i\) is the degree of polymerization, and \(\phi_i^{\text{COSMO}}\) equals the COSMO-RS or COSMO-SAC activity coefficient of the polymer. Based on the performed calculations, the volumes of the monomeric units of poly(propylene), poly(\(\delta\)-valerolactone), and poly(\(\varepsilon\)-caprolactone) were estimated at the levels of 46.5, 91.6, and 104.4 \(\text{mL} \cdot \text{mol}^{-1}\), respectively. The required \(\sigma\)-profiles for the calculation of the COSMO-SAC activity coefficients were obtained using the semiempirical method AM1.\(^{47}\) The obtained \(\chi\)-parameters between propylene and lactone monomers depend on the volume fraction \(\phi_i\) and are shown in Figure S5. The values at \(\phi_{\text{PVL}} = 0.5\) in Figure S4 (0.69 for iPP-g-PVL and 0.53 for iPP-g-PCL) were used as input for the Flory–Huggins \(\chi\)-parameters within the DDFT simulations. The microphase separation of the polypropylene-graft-polyester copolymers, presented in Table 1, was simulated. The polypropylene-graft-polyester copolymers were described as a chain of connected beads. Each bead has a molar volume of 1.37 \(\text{L} \cdot \text{mol}^{-1}\), a bead representing part of the iPP chain has a mass of 1236 \(\text{g} \cdot \text{mol}^{-1}\) and a bead representing part of the PVL or PCL chain has a mass of 1492 \(\text{g} \cdot \text{mol}^{-1}\). As a result, the iPP backbone of each of the samples was described by about 20 “iPP beads”. The topological structures of the various copolymers shown in Scheme S1 served as input for the simulations. The simulations were performed on a cubic box with an edge length of 100 nm, and the obtained morphologies are presented in Figure 3.

Interestingly, the PVL-based copolymers with six branches (Table 1, entries 4 and 5) have a smaller pore size as the graft copolymers with three branches (Table 1, entries 1–3). Moreover, longer-side polyester chains of iPP\(_{33}\%-g\)-PVL\(_{67}\%) (Table 1, entry 3) compared to iPP\(_{50}\%-g\)-PVL\(_{50}\%) (Table 1, entry 1) and iPP\(_{46}\%-g\)-PVL\(_{54}\%) (Table 1, entry 2) result in slightly larger polymer domains. By increasing the number of grafts from 3 to 6, the formation of phase-separated domains becomes less likely, as the iPP backbone is shielded by the polyester branches. According to Figure S6, the \(\varepsilon\)-caprolactone monomer is more soluble in iPP than the \(\delta\)-valerolactone monomer; therefore, the microphase-separated morphology in iPP\(_{33}\%-g\)-PVL\(_{67}\%) (Table 1, entry 5) is better defined than in iPP\(_{33}\%-g\)-PCL\(_{67}\%) (Table 1, entry 7). As shown in Figure S7, the obtained morphology of the iPP\(_{50}\%-g\)-PCL\(_{70}\%) copolymer with eight branches does not show a distinct microphase-separated structure within the simulations anymore. In agreement with the simulation studies, the small-angle X-ray scattering (SAXS) analysis of the copolymers clearly demonstrated the presence of ordered two-phase structures revealing a clear density contrast (Figures 4 and S8–S18). The subsequent selective etching of the polyester

![Figure 3](https://doi.org/10.1021/acsapm.2c00839)

Figure 3. Simulated morphologies of the polypropylene-graft-polyester samples. The numbers above the cubes represent entries in Table 1. The cubic boxes have an edge length of 100 nm.

![Figure 4](https://doi.org/10.1021/acsapm.2c00839)

Figure 4. SAXS analysis of the iPP-based copolymers and mesoporous films obtained by exposure of the copolymer to degrading environments. The SAXS profiles include sample immersed in a concentrated HCL solution (12 M) and sterilized film.
blocks in the copolymers (see the Experimental Section for details) resulted in a nanoporous iPP-based products that show a significant increase in X-ray scattering intensity. For the thus-obtained mesoporous films, the electron density contrast has changed as the bicontinuous structure of the copolymers is transformed into nanoporous systems (for the degradation efficiency analysis, see Figure S19). The analysis implies that the signals observed in the SAXS patterns originate from the degradable and nondegradable copolymer components rather than from the individual lamellar structure of iPP. For the copolymers with three branches, the position of the SAXS profile shifts toward lower values, accompanied by an increase in the volume fraction of the polyester degradable component. This means that the dimension of the scattering domains increases (Table S2). Consequently, the size of the film pores should increase with the increase in the volume fraction of PVL or PCL (Table 2), which is indeed observed. With an increasing amount of the branches in the copolymers (at similar volume content of degradable component), a significant reduction in the domain dimensions from ca. 50 nm to approximately 35−38 nm is observed. Again, a similar trend is observed for the size of the film pores (Table 2). This implies that the domain size of the graft copolymers and, hence, the pore size of the corresponding mesoporous films can be tuned not only by the chemical composition of the graft copolymers but also by the number of branches per graft copolymer. An important information provided by SAXS is that the domain size of the graft copolymer precursors remains virtually unchanged (Table S2). Additionally, the SAXS profiles of the films treated with concentrated HCl and the sterilized materials reveal that the dimensions of the scattering domains are similar to the nanoporous reference film. This implies that the iPP skeleton is robust and does not collapse during the etching process to form the film, treatment of the thus-formed film with a strong acid, or during sterilization of the film.

The morphologies of the nanoporous materials, obtained after selective etching of the graft copolymer samples, were studied by SEM. Based on the microscopy studies, the materials derived from graft copolymers and revealing an interconnected bicontinuous two-phase structure with nano-domains (Figures 5A−D and S20) consist of interconnected pores with an average pore diameter ranging from 35 to 50 nm, depending on the chemical composition and average number of branches of the original graft copolymer. This is in agreement with the SAXS results. Identical morphologies were also observed on the surfaces of the samples (Figures 5D and S20C), which indicates that the iPP-based interpenetrating network is present across the entire film. For the porous materials prepared from iPP-P39vol% PCL 61vol% having a lamellar-like morphology rather than irregular pores, a significantly lower porosity level was observed (Figure S3B).

To investigate the pore size distributions and surface area of the materials in more detail, nitrogen adsorption/desorption tests were performed (Figures 6, S21, and S22; Table 2). According to the Brunauer−Deming−Deming−Teller (BDDT) classification, all of the obtained nitrogen sorption isotherms are of type IV with a hysteresis loop characteristic of capillary condensation happening in the mesopores. The experiments confirm that the final products are mesoporous with an average pore size diameter between 12.8 and 33.3 nm, as determined by the Barret−Joyner−Halenda (BJH) model from desorption isotherm. For determining the surface area of the mesoporous films, the Brunauer−Emmet−Teller (BET) method was employed. The data presented in Table 2 show that the surface areas of the mesoporous films are in the range of 62−121 m²·g⁻¹. As mentioned above, the increasing number of polyester branches in the graft copolymer precursors leads to a systematic reduction of the film pore size, as was also confirmed by SAXS. This effect is especially pronounced for the iPP-g-PCL copolymers (Table 2, entries 6 and 7) having longer PCL grafts, compared to the PVL grafts (Table 2, entries 3−5). In agreement with SEM analysis, the lowest surface area was observed for the iPP-g-PVL-based porous film, produced from the graft copolymer exhibiting a lamellar-like morphology (Table 2, entry 4). Additionally, the pore size of the mesoporous films was also estimated by SAXS experiments (Table 2), using the mean thickness of the two polymer phases after degradation (l) and the volume fraction of the polyester before degradation (φp-polyester) according to the eq 2.

\[d = l \cdot \varphi - \text{polyester} \] (2)

The estimation of the pore size using SAXS (21.1−36.2 nm) is consistent with the pore size derived via nitrogen desorption experiments. The slightly underestimated values of the latter method are caused by the curvature effects of the porous materials. To demonstrate the potential of the iPP-based nanoporous films, deriving from iPP-P39vol% PCL 61vol% copolymer (Table 1, entry 2), the samples were exposed to strong acidic conditions by immersing them in a concentrated HCL solution (12 M) at 50 °C for 24 h. The experiment showed that not only 99% of the initial mass of the sample was preserved but also the porosity and surface area remained unaffected (Figure 6, Table 2, entry 2). The suitability of the porous film for potential water purification or medical applications was proven by performing sterilization test under standardized conditions (121 °C for 30 min). Both the N2 adsorption test and SAXS analysis show that the average pore size of the films was not affected under the

Table 2. Surface Area and Pore Size Analysis of the Porous Films

<table>
<thead>
<tr>
<th>entry</th>
<th>branches/ chain</th>
<th>composition</th>
<th>surface area [m²·g⁻¹]</th>
<th>pore size [nm]</th>
<th>pore size [nm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>iPP33vol%-PVL67vol%</td>
<td>73</td>
<td>20.4</td>
<td>21.1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>iPP33vol%-PVL67vol%</td>
<td>93</td>
<td>23.7</td>
<td>24.6</td>
</tr>
<tr>
<td>2'</td>
<td>3</td>
<td>iPP33vol%-PVL67vol%</td>
<td>93</td>
<td>25.5</td>
<td>26.0</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>iPP33vol%-PVL67vol%</td>
<td>76</td>
<td>22.9</td>
<td>26.0</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>iPP54vol%-PVL46vol%</td>
<td>76</td>
<td>24.7</td>
<td>32.0</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>iPP54vol%-PVL46vol%</td>
<td>62</td>
<td>18.4</td>
<td>24.4</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>iPP54vol%-PVL46vol%</td>
<td>90</td>
<td>31.0</td>
<td>24.3</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>iPP54vol%-PVL46vol%</td>
<td>121</td>
<td>12.8</td>
<td>23.5</td>
</tr>
</tbody>
</table>

*Surface area determined by the Brunauer−Emmet−Teller method.
*Pore size determined by the Barret−Joyner−Halenda model from desorption isotherm.
Pore size calculated from SAXS experiments.
Sample 2 immersed in 12 M HCl.
Sample 2 submitted for sterilization.
applied conditions (Figure 6). Some changes in the sample’s surface area might be explained by a partial/negligible collapse of the cells in the film during the high-temperature sterilization treatments (Table 2, entry 2).

The volumetric flux of the porous film obtained from the iPP_{46vol%}-g-PVL_{54vol%}-precursor (Table 1, entry 2) was measured by filtering water under the reduced pressure (20 mbar) using a simple filtering device as presented in Figure 7A. The volumetric flux was calculated using eq 1. The estimated volumetric flux of the film was equal to 75 L·m⁻²·h⁻¹, which is similar to the values reported for ultrafiltration systems HYDRAcap 60-LD-A. To test whether the film did not contain any cracks as well as to test its ability to filter nanoparticles, the film was subjected to a dispersion of silica nanoparticles 3% (w/v) in ethanol (with an average particle size lower than 100 nm). DLS analysis of the filtrate did not reveal any signal, proving that the investigated films can be successfully used as selective micro- and ultrafiltration systems.

To determine the thermal resistance of the films, poly(C₃-co-C₁₁OH) macroinitiators and the corresponding iPP-g-PVL and iPP-g-PCL copolymers were analyzed by DSC (Table S1). The two selected poly(C₃-co-C₁₁OH) materials, having on average three and six OH functionalities per polymer chain and Mn equal to 22.9 and 27.8 kg·mol⁻¹, reveal melting points at 147 °C and 142 °C, while their crystallization temperatures were found at 110 °C and 107 °C, respectively. Clearly, the
increasing contribution of the OH end-capped branches influences the crystal structure of iPPs and lowers their T_m and T_c. Given the heterogeneous nature of the polypropylene-graft-polyester copolymers, the increasing crystallization temperature of iPP blocks compared to poly(C$_3$-co-C$_{11}$OH) can be explained by the formation of heterogeneous nucleation points in the samples. Static mechanical properties of the graft copolymers and nanoporous films were investigated by tensile tests, performed at room temperature (Table S3). The copolymers, depending on their topology and composition, exhibit Young moduli in the range between 416 and 780 MPa. Not surprisingly, for the corresponding nanoporous films, a significant decrease in these values (100–225 MPa) was found. A similar trend was also observed for the mechanical performance. Obviously, the lower mechanical performance of the films is related to the fact that only the unetched polypropylene part of the copolymers transfers the applied stress and the discontinuous transition from a stressed area to an unstressed fraction of the samples. A similar relationship was reported by Pitet for PE-based nanoporous materials. Although the mechanical properties of the films are inferior to those of their graft copolymer precursors, their mechanical properties are still sufficient to implement these nanoporous films, for example, in combination with commercially available porous materials, such as nonwoven PP, that provide the mechanical properties of the thus-formed combined micro- and ultrafiltration device.

■ CONCLUSIONS

In this study, the impact of the polypropylene-graft-polyesters topology on self-organization ability was studied by spectroscopy, surface analysis techniques, and molecular modeling simulations. Solid-state NMR analysis of the graft copolymers proved that the different polymer chain packing in the crystal regions of the iPP block corresponds to the difference in the number of polyester branches in the samples. As confirmed by Culgi simulations and AFM, depending on the chemical composition and the topology expressed in a difference in the average number of polyester branches (3 versus 6), the copolymers undergo self-organization into lamellar-like or gyroid-like structures. The copolymers revealed a rather narrow composition window (iPP vol % equal to 39) for which exclusively lamellar-like structures can be formed. Beyond this regime, a two-phase interconnected morphology with one phase forming nanodomains (dots, cylinder, or gyroid-like structure) of the copolymers was observed that is the most suitable for the production of nanoporous films suitable for ultrafiltration processes by selective etching of the polyester units. The SEM analysis of the nanoporous PP-based film, obtained via selective removal of the polyester blocks, exhibited an interconnected nature of the porous in the films’ cross section but also at their surface. Interestingly, we have proven a correlation between the number of branches in the graft copolymers and the polyester domain size and hence the film pore size after etching. Importantly, the pore size of the corresponding films can be tuned not only by the chemical composition of the graft copolymers but also by the number of branches per graft copolymer. The synthesized graft copolymers having six branches per polymer chain reveal smaller pore sizes in the range between 13 nm and 21 nm in comparison with the copolymers having three polyester branches and pore sizes up to 36 nm.

The investigated porous films reveal good chemical resistance under acidic conditions and preserve their structure during sterilization, which makes them interesting candidates for water purification membranes and medical applications.

■ ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsapm.2c00839.

Complete experimental part and characterization techniques: NMR, SEM, AFM, SAXS, adsorption test, and mechanical and thermal properties (PDF)
AUTHOR INFORMATION

Corresponding Authors
Lidia Jasinska-Walc — Department of Chemistry and Functional Materials, Gdańsk University of Technology, 80-233 Gdańsk, Poland; SABIC Technology & Innovation, STC Geleen, 6160 AH Geleen, The Netherlands; orcid.org/0000-0001-6793-6936; Email: Lidia.Jasinska-Walc@SABIC.com

Rob Duchateau — SABIC Technology & Innovation, STC Geleen, 6160 AH Geleen, The Netherlands; Chemical Product Engineering, Department of Chemical Engineering, University of Groningen, 9747 AG Groningen, The Netherlands; orcid.org/0000-0002-2641-4354; Email: Rob.Duchateau@SABIC.com

Authors
Thomas Defize — Department of Biobased Materials, Maastricht University, 6200 MD Maastricht, The Netherlands
Miloud Bouyahyi — SABIC Technology & Innovation, STC Geleen, 6160 AH Geleen, The Netherlands; orcid.org/0000-0001-7466-6671
Artur Rozanski — Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, 90-363 Lodz, Poland; orcid.org/0000-0001-7545-6246
Lanti Yang — SABIC Technology & Innovation, 4612 PX Bergen op Zoom, The Netherlands
Bhaskar Patham — SABIC R&T India, Bengaluru 562125, India
Teun Sweere — Siemens Industry Software Netherlands B.V., 2333 BD Leiden, The Netherlands
Sebastian Hochstädt — Institut für Physikalische Chemie, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
Michael Ryan Hansen — Institut für Physikalische Chemie, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany; orcid.org/0000-0001-7114-8051
Katrien V. Bernaerts — Department of Biobased Materials, Maastricht University, 6200 MD Maastricht, The Netherlands; orcid.org/0000-0002-2939-2963

Complete contact information is available at:
https://pubs.acs.org/10.1021/acsapm.2c00839

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS
The work was sponsored by SABIC, Americum International Career Development project#10/2021/IDUB/II.1/AMERI-CUM and NWO LIFT project#731.015.417.

REFERENCES