A timing view of the heartbeat state of GRS 1915+105

Yan, Shu-Ping; Ji, Li; Méndez, Mariano; Liu, Si-Ming; Wang, Na; Li, Xiang-Dong; Ge, Ming-Yu; Liao, Jin-Yuan; Niu, Shu; Qu, Jin-Lu

Published in:
Monthly Notices of the Royal Astronomical Society

DOI:
10.1093/mnras/stw2916

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2017

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
A timing view of the heartbeat state of GRS 1915+105

Shu-Ping Yan, Li Ji, Mariano Méndez, Si-Ming Liu, Na Wang, Xiang-Dong Li, Ming-Yu Ge, Jin-Yuan Liao, Shu Niu, Jin-Lu Qu, Guo-Qiang Ding, Qing-Zhong Liu and Wei Sun

1Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008, China
2Key Laboratory of Dark Matter and Space Astronomy, Chinese Academy of Sciences, Nanjing 210008, China
3Key Laboratory of Modern Astronomy and Astrophysics (Nanjing University), Ministry of Education, Nanjing 210093, China
4Kapteyn Astronomical Institute, University of Groningen, PO Box 800, NL-9700 AV Groningen, the Netherlands
5Xinjiang Astronomical Observatory, Chinese Academy of Sciences, Xinjiang 830011, China
6Department of Astronomy, Nanjing University, Nanjing 210093, China
7Key Laboratory for Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China

ABSTRACT
We present a timing analysis of two *Rossi X-ray Timing Explorer* observations of the microquasar GRS 1915+105 during the heartbeat state. The phase–frequency–power maps show that the intermediate-frequency aperiodic X-ray variability weakens as the source softens in the slow rise phase, and when the quasi-periodic oscillation disappears in the rise phase of the pulse of the double-peaked class, its sub-harmonic is still present with a hard phase lag. In the slow rise phase, the energy–frequency–power maps show that most of the aperiodic variability is produced in the corona, and may also induce the aperiodic variability observed at low energies from an accretion disc, which is further supported by the soft phase lag especially in the intermediate-frequency range (with a time delay up to 20 ms). In the rise phase of the pulse, the low-frequency aperiodic variability is enhanced significantly and there is a prominent hard lag (with a time delay up to 50 ms), indicating that the variability is induced by extension of the disc towards small radii as implied by the increase in flux and propagates into the corona. However, during the hard pulse of the double-peaked class, the variability shows no significant lag, which may be attributed to an optically thick corona. These timing results are generally consistent with the spectral results presented by Neilsen, Remillard & Lee which indicated that the slow rise phase corresponds to a local Eddington limit and the rise phase of the pulse corresponds to a radiation pressure instability in the disc.

Key words: accretion, accretion discs – black hole physics – X-rays: binaries – X-rays: individual: GRS 1915+105.

1 INTRODUCTION

Accretion plays a crucial role in the evolution of black hole binaries (BHBs). Timing analysis is an important tool for studying the accretion flow. The fast Fourier transformation is one of the most popular methods of timing analysis. However, the origins of the X-ray aperiodic variabilities and the low-frequency quasi-periodic oscillations (LFQPOs) in Fourier power density spectra (PDS) from BHB accretion flows remain yet unsolved (e.g. Miller et al. 2014). GRS 1915+105 is a BHB suitable for studying the X-ray variability. The source has a rapidly spinning black hole (Zhang, Cui & Chen 1997; McClintock et al. 2006; Middleton et al. 2006; Miller et al. 2013) with a mass of \(\sim 12 M_\odot \), and a K-M III secondary with a mass of \(\sim 0.8 M_\odot \) (Greiner et al. 2001; Harlaftis & Greiner 2004; Reid et al. 2014). It is \(\sim 10 \) kpc away from the Earth (e.g. Fender et al. 1999; Zdziarski et al. 2005; Reid et al. 2014), and is considered a microquasar because it shows a relativistic jet whose inclination to the line of sight is \(\sim 60^\circ \) (Mirabel & Rodríguez 1994; Fender et al. 1999; Reid et al. 2014). GRS 1915+105 has been active for more than 20 years (Castro-Tirado, Brandt & Lund 1992), and is intensively observed with the *Rossi X-ray Timing Explorer* (RXTE). The various kinds of source variabilities (Belloni et al. 2000; Klein-Wolt et al. 2002; Hannikainen et al. 2005) and the abundance of LFQPOs (e.g. Chen, Swank & Taam 1997; Morgan, Remillard & Greiner 1997; Belloni, Méndez & Sánchez-Fernández 2001;
Strohmayer 2001; Belloni et al. 2006; Yan et al. 2013a) displayed in the RXTE data make it a unique source for studying the X-ray variability.

The variabilities of GRS 1915+105 are classified into 14 classes based on the count rate and the colour characteristics of the source (Belloni et al. 2000; Klein-Wolt et al. 2002; Hannikainen et al. 2005). Each class is regarded as transitions among three states, A, B and C. State C is a low-luminosity, spectrally hard state while states A and B are high-luminosity, soft states. The \(\rho \) class (heartbeat state) is a peculiar class where the source oscillates quasi-periodically between states B and C. The light curves in the \(\rho \) class have one to several peaks per \(\rho \)-cycle (e.g. Taam, Chen & Swank 1997; Vilhu & Nevalainen 1998; Belloni et al. 2000; Massaro et al. 2010). We call the \(\rho \) class with one peak per cycle the single-peaked \(\rho \) class (hereafter called \(\rho_1 \) class), and the \(\rho \) class with two peaks per cycle the double-peaked \(\rho \) class (hereafter called \(\rho_2 \) class).

Neilsen et al. (2011, 2012) carried out a phase-resolved spectral analysis of the RXTE observations 60405-01-02-00 during the \(\rho_2 \) class and 40703-01-07-00 during the \(\rho_1 \) class. In order to investigate the origin of the LFQPO, Yan et al. (2013b) performed a phase-resolved timing analysis of the \(\rho_2 \) class, and showed that the LFQPO was tightly related to the corona. Besides, for one phase interval of the \(\rho_2 \) class, Yan et al. (2013b) first detected a high-frequency (\(\gtrsim 10 \) Hz) aperiodic variability from the disc through the amplitude-ratio spectrum method.

In this paper, we present the results of the diagram of the power density as a function of Fourier frequency and \(\rho \)-cycle phase (phase–frequency–power map), the diagram of the power density as a function of Fourier frequency and photon energy (energy–frequency–power map), and the phase lag as a function of Fourier frequency and photon energy (energy–frequency–power map). In the phase–frequency–power maps, we correct these PDS for background due to the energy dependence of the background (Berger & van der Klis 1994; Rodriguez & Varniègre 2011). We compute the significance of the QPOs with the method adopted by Strohmayer & Watts (2005). The 3.9 Hz QPO in the phase 0.84–0.86 of the \(\rho_2 \) class has the minimum significance of 0.0017 among all of the QPOs studied.

We produce the PDS in different energy bands for phases i (0.00–0.08), II (0.08–0.26), III (0.26–0.40), IV (0.40–0.60) and V (0.60–1.00) of the \(\rho_1 \) class, and for phases i (0.02–0.12), ii (0.12–0.26), iii (0.26–0.40), iv (0.40–0.74), v (0.74–0.92) and vi (0.92–0.02) of the \(\rho_2 \) class, and use these PDS to produce the energy–frequency–power maps. We correct these PDS for background due to the energy dependence of the background (Berger & van der Klis 1994; Rodriguez & Varniègre 2011).

We calculate the Fourier cross-power spectra of two light curves extracted in different energy bands following Nowak et al. (1999) to obtain the phase-lag spectra. For the \(\rho_1 \) class, a positive phase lag denotes that the variability in the 5.1–38.4 keV band lags that in the 1.9–5.1 keV band. For the \(\rho_2 \) class, a positive phase lag denotes that the variability in the 4.9–37.8 keV band lags that in the 2.1–4.9 keV band. The reference bands for the phase-lag calculations for the two classes cannot be the same due to that they were observed in different gain epochs while archived with the same binning modes. All error bars in this paper correspond to the 1σ confidence level.

3 RESULTS

In this section, we present the phase–frequency–power maps, the energy–frequency–power maps, and the phase-lag spectra of the \(\rho_1 \) and \(\rho_2 \) classes. We show the phase-folded RXTE/Proportional Counter Array (PCA) light curves and the \(\rho \)-cycle phase divisions of the two \(\rho \) classes in Fig. 1. For the aperiodic variability, we define three frequency bands, the low-frequency band (\(\lesssim 1 \) Hz), the intermediate-frequency band (\(\sim 1–10 \) Hz) and the high-frequency band (\(\gtrsim 10 \) Hz).

3.1 Phase–frequency–power maps

Fig. 2 shows the phase–frequency–power maps. The colours denote the values of the power density. The power densities lower than \(10^{-4} \) (rms/mean)\(^2\)/Hz are set to blue.

For the \(\rho_1 \) class, the evolutions of the LFQPO and its second harmonic are visible as a green and a cyan fringe, respectively. The
Figure 1. The phase-folded PCA light curves of the ρ_1 class (black; RXTE Observation 40703-01-07-00) and the ρ_2 class (red; RXTE Observation 60405-01-02-00) in GRS 1915+105. The grey points are the data points of the ρ_1 class. The black and red vertical dashed lines denote phases I (0.00–0.08), II (0.08–0.26), III (0.26–0.40), IV (0.40–0.60), V (0.60–1.00) of the ρ_1 class, and phases i (0.02–0.12), ii (0.12–0.26), iii (0.26–0.40), iv (0.40–0.74), v (0.74–0.92), vi (0.92–0.02) of the ρ_2 class.

Figure 2. The phase–frequency–power maps of the ρ_1 class (upper panel) and the ρ_2 class (lower panel) in GRS 1915+105. The colour bar shows the scale of power density in the plots. The power densities lower than 10^{-4} (rms/mean)2/Hz are set to blue.

Figure 3. The evolutions of the QPO and its sub-harmonic as well as the 0.5–1.0 Hz aperiodic variability of the ρ_2 class in GRS 1915+105. In panels (a) and (b), the black points represent the fundamental QPO in phase 0.12–0.92, and the blue points represent the sub-harmonic in phase 0.84–0.02. We doubled the frequencies of the sub-harmonic and show these values as red points.

red, yellow, green, cyan and blue regions, which are clearly separated in the maps, show the evolution of the aperiodic variability. As the ρ-cycle phase, ϕ, increases from \sim0.25 to \sim0.80, the transition frequency between the red and green regions, f_{tr1}, decreases from \sim3.5 to \sim0.7 Hz, and the transition frequency between the green and blue regions, f_{tr2}, decreases from \sim5.0 to \sim3.0 Hz. At $\phi \sim$ 0.20 and \sim0.85, which correspond to the end and the start of the flux peak, respectively, f_{tr2} decreases to \sim2.0 and \sim1.2 Hz, respectively. At $\phi \sim$ 0.20, f_{tr1} decreases to \sim0.5 Hz. In the phase \sim0.92–0.15, the power density of the aperiodic variability below \sim1.5 Hz is enhanced.

For the ρ_2 class, the evolutions of the LFQPO and its second harmonic are also displayed as a green and a cyan fringe, respectively. Another LFQPO is present in the phase 0.84–0.02 as a cyan fringe. We show the phase dependence of the fundamental LFQPO (black points) and the LFQPO in the phase 0.84–0.02 (blue points) in Fig. 3. We show the double of the frequencies of the LFQPO in the phase 0.84–0.02 as red points in panel (a). In the phase 0.84–0.92, the frequency of the fundamental LFQPO is about double of the frequency of the other LFQPO. Considering that the LFQPO with lower frequency evolves smoothly to the phase 0.92–0.02, we argue that the LFQPO in the phase 0.84–0.02 is the sub-harmonic of the fundamental LFQPO in the phase 0.12–0.92. As ϕ increases from \sim0.18 to \sim0.80, f_{tr2} decreases from \sim5.5 to \sim3.0 Hz. At $\phi \sim$ 0.17 and \sim0.85, f_{tr1} decreases to \sim1.5 Hz. f_{tr1} is not obvious here. In the phase \sim0.90–0.15 excluding \sim0.04–0.08, the power density of the aperiodic variability below \sim1.5 Hz is enhanced. This result is further demonstrated by the amplitude of the 0.5–1.0 Hz aperiodic variability as a function of phase presented in panel (c) of Fig. 3.

3.2 Energy–frequency–power maps

Figs 4 and 5 show the energy–frequency–power maps. The colour scale is the same as that of the phase–frequency–power maps. The LFQPOs and their harmonics are displayed as vertical
Figure 4. The energy–frequency–power maps for different phases of the ρ_1 class in GRS 1915+105. The colour bar is the same as that in Fig. 2.

pencil-like patterns in the maps. These maps indicate that the power density is larger in the high-energy/low-frequency part of the maps than in the low-energy/high-frequency part for all phases of both ρ classes, and is larger in the high-energy/low-frequency part than in the low-energy/low-frequency part for phases III, IV, V in the ρ_1 class and for phases iii, vi, v in the ρ_2 class. For other phases, the power density decreases in the high-energy/intermediate-frequency part while increases in the low-energy/low-frequency part.

Figure 5. Same as Fig. 4 for different phases of the ρ_2 class in GRS 1915+105.
Figure 6. The PDS and the phase-lag spectra for different phases of the ρ_1 class in GRS 1915+105. The top panels show the PDS in the soft band (1.9–5.1 keV; black lines) and in the hard band (5.1–38.4 keV; blue lines). In the bottom panels, a positive lag means that the hard band photons lag the soft band photons. The vertical red dashed lines denote the centroid frequencies of the LFQPO and its harmonic. The horizontal red dot–dashed line denotes the zero phase lag.

Figure 7. Same as Fig. 6 for different phases of the ρ_2 class in GRS 1915+105. Here the soft band is 2.1–4.9 keV, and the hard band is 4.9–37.8 keV.

3.3 Phase-lag spectra

Figs 6 and 7 show the PDS and the phase-lag spectra in different phases of the ρ_1 and ρ_2 classes, respectively. Though the details are different, the phase-lag spectra of the aperiodic variabilities of the two ρ classes have a common feature: the phase lag is usually lower in the intermediate-frequency band than in the low-frequency band. When the source is in the rise phase of the pulse (e.g. phases V in the ρ_1 class and vi in the ρ_2 class), the phase lag is hard in the low-frequency band (the corresponding time lag, $\tau = \varphi/2\pi f$, where f is Fourier frequency and φ is phase lag, is up to \sim50 ms). In the high-frequency band, the phase lag approximates zero for the ρ_2 class and is soft for a narrow range of frequencies for the ρ_1 class. When the source is in the slow rise phase (e.g. phases III, IV in the ρ_1 class and iii, iv in the ρ_2 class), the phase lag is soft (τ is up to \sim20 ms). A main difference between the two ρ classes is that at frequencies below \sim3 Hz, the phase lag approximates zero in phase i of the ρ_2 class while it is hard in phase I of the ρ_1 class.

For phases III, IV, V of the ρ_1 class and phases iii, iv of the ρ_2 class, there is a dip at LFQPO frequency in the phase-lag curve, indicating that the phase lag of the LFQPO is soft (τ is about several ms). The phase lag approximates zero for the LFQPO in phase II of the ρ_1 class and phase ii of the ρ_2 class, and is hard (τ is about 10 ms) for the LFQPO in phase vi of the ρ_1 class. It is soft (τ is about several ms) for the second harmonic in phase iv of the ρ_2 class, while approximates zero for the second harmonic in other phases.

4 DISCUSSION

In this section, we discuss the timing results of two RXTE observations of GRS 1915+105 during the heartbeat state to investigate the origin of the LFQPO and the aperiodic X-ray variability, and combine the timing results with the spectral results of Neilsen et al. (2011, 2012) to obtain a spectral-timing unified picture of the accretion in the heartbeat state of GRS 1915+105. We first introduce some interpretations for the phase lag in order to facilitate the discussion.

In black hole X-ray binaries, the phase/time lag between the high- and low-energy bands in the frequency range \sim0.1–10 Hz has been studied by many authors as an important property of the X-ray variability (e.g. Cui et al. 1997; Hua, Kazanas & Titarchuk 1997; Morgan et al. 1997; Nowak et al. 1999; Poutanen &
the source becomes soft in the slow rise phase (Fig. 2). The significant enhancement of the power density of the low-frequency aperiodic variability in the phase $\sim 0.92 - 0.15$ of ρ_1 class and in the phase $\sim 0.90 - 0.15$ excluding $\sim 0.04 - 0.08$ of the ρ_2 class coincides with the minimum inner radius of the accretion disc (see Neilsen et al., 2012), suggesting that at this time part of the low-frequency aperiodic variability is connected with the disc. However, the power density of the low-frequency aperiodic variability in the phase $\sim 0.04 - 0.08$ of the ρ_2 class is not enhanced. The phase $\sim 0.04 - 0.08$ is included in the phase of the second, hard peak of the phase-folded light curve, which is suggested to be the result from the collision between the corona and the material ejected from the inner disc (Neilsen et al., 2011). The suppression of the power density of the low-frequency aperiodic variability in the phase $\sim 0.04 - 0.08$, which mimics the variability suppression in the phase of the hard peak of the ρ_2 class (see fig. 4 in Neilsen et al., 2011), is thus possibly due to the ejection of the inner disc.

The gradient of the power density in the energy–frequency–power maps clearly shows that most of the aperiodic X-ray variability comes from the corona in the slow rise phase (Figs 4 and 5). The energy–frequency–power maps also indicate that in the slow rise phase the low-frequency aperiodic variability from the corona is significant while in the soft ρ-cycle phase the low-frequency aperiodic variabilities from the corona and the disc are both significant, consistent with the results of the phase–frequency–power maps. These results also demonstrate that the energy–frequency–power map is an effective new method for studying the origin of the X-ray variability.

A natural interpretation of the large (~ 50 ms) hard lag at low frequencies in the soft ρ-cycle phases (Figs 6 and 7) is that the mass accretion fluctuations in the disc propagate inwards and drive the corona variability at smaller radii. The millisecond level phase lag at high frequency may be due to Comptonization and/or reverberation processes. The observed large (up to ~ 20 ms) soft lag cannot be interpreted as a simple reflection delay which is several milliseconds here. The large soft lag could be explained with the scenario of Mir et al. (2016). It also could be caused by propagation of acoustic waves from the hotter corona towards the cooler disc region. In Section 4.3, we continue to interpret the phase lag in the context of a spectral-timing combination analysis.

4.3 Spectral-timing unified picture

In the slow rise phase, the aperiodic X-ray variability from the corona dominates the X-ray variability (Figs 4 and 5) and the phase lag is soft (Figs 6 and 7), indicating that the X-ray variability is produced in the corona initially and then induces the aperiodic variability from the disc. The spectral analysis by Neilsen et al. (2011, 2012) indicated that in this phase the disc was a local Eddington limit disc which had a critical radius inside of which the disc was in a critical state, where some excess mass was expelled in the form of wind/outflow and the accretion rate was kept to be at the critical rate (Fukue 2004). It is plausible that in this phase the corona inside of the critical radius has a strong variability and affects the disc through wind/outflow and radiation.

In the rise phase of the pulse, the low-frequency aperiodic X-ray variabilities from both the disc and the corona dominate the X-ray variability (Figs 4 and 5) and the phase lag is hard in the low-frequency band (Figs 6 and 7), indicating that the low-frequency aperiodic variability is produced in the disc initially and then drives the corona. Neilsen et al. (2011, 2012) argued that in this phase the disc became unstable due to a thermal-viscous radiation
pressure instability and collapsed inwards. It is therefore plausible that the variability of the disc is strong and initiative in this phase.

In the hard pulse of the ρ_2 class, the variability shows no significant lag (Fig. 7). Neilsen et al. (2011) showed that in this phase a warm (~ 6 keV) optically thick corona, which might be formed from the collision of the hot corona and the cold material ejected from the inner disc, scattered almost all of the photons from the disc. This process will blur the phase lag between the warm corona and the disc and results in the observed zero phase lag. For the decay phase of the pulse of the ρ_1 class, the phase lag below ~ 3 Hz is significant, which is consistent with the spectral result that about 10 percent of the disc photons have not been scattered (Neilsen et al. 2012).

In short, we obtained a spectral-timing unified picture: when the disc is in a local Eddington limit, inside of the critical radius part of the mass is expelled by radiation pressure, and the aperiodic variability from the corona is initiative and drives the aperiodic variability from the disc; when there is a radiation pressure instability in the disc, the low-frequency aperiodic variability is initiative and drives the low-frequency aperiodic variability from the corona. When the disc photons are completely scattered by the optically thick corona, no significant phase lag has been observed.

5 CONCLUSIONS

We have performed a detailed timing analysis and made a spectral-timing combination analysis for two RXTE observations of GRS 1915+105 during the single-peaked heartbeat state (ρ_1 class) and the double-peaked heartbeat state (ρ_2 class), respectively.

The phase–frequency–power maps indicate that in the slow rise phase the intermediate-frequency aperiodic X-ray variability weakens as the source softens and in the rise phase of the pulse when the disc inner radius decreases the low-frequency aperiodic variability becomes more significant, and for the ρ_2 class the LFQPO disappears in the rise phase of the pulse while its sub-harmonic is still present with a hard phase lag.

In the slow rise phase, the energy–frequency–power maps indicate that most of the aperiodic X-ray variability is from the corona; the phase-lag spectra indicate that the phase lag is soft at low and intermediate frequencies with a time delay up to 20 ms. In the rise phase of the pulse, the low-frequency aperiodic variabilities from the corona and the disc are both significant; the phase lag is hard at low frequencies with a time delay up to 50 ms. In the hard pulse of the ρ_2 class, the phase lag approximates zero.

A spectral-timing unified picture is derived from the combination of our timing results and the spectral results of Neilsen et al. (2011, 2012). When the disc is in a local Eddington limit, the aperiodic variability from the corona drives the aperiodic variability from the disc; when the disc is in a radiation pressure instability, the low-frequency aperiodic variability from the disc drives the low-frequency aperiodic variability from the corona. In the hard pulse of the ρ_2 class, the zero phase lag may be resulted from a fully scattering of the disc photons by the optically thick corona.

ACKNOWLEDGEMENTS

We thank the anonymous reviewer for comments which greatly improved the quality and clarity of the paper. We also thank Kinwah Wu, Peng-Fei Chen and Min Long for helpful discussions. The research has made use of data obtained from the High Energy Astrophysics Science Archive Research Center (HEASARC), provided by NASA’s Goddard Space Flight Center. This work is supported by National Natural Science Foundation of China (grant nos. 11273062, 11133001, 11333004, 11173041 and 11373006), the Strategic Priority Research Program of CAS (grant no. XDB09000000) and China Postdoctoral Science Foundation (grant no. 2015M571838). LJ is also supported by the 10 Talents programme of Chinese Academy of Sciences.

REFERENCES

Timing view of heartbeat state

This paper has been typeset from a TEX/LATEX file prepared by the author.