Pulmonary arterial hypertension in congenital heart disease

van der Feen, Diederik E.; Bartelds, B.; de Boer, Rudolf A.; Berger, Rolf M. F.

Published in:
European Heart Journal

DOI:
10.1093/eurheartj/ehx034

IMPORTANT NOTE: You are advised to consult the publisher’s version (publisher’s PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher’s PDF, also known as Version of record

Publication date:
2017

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Pulmonary arterial hypertension in congenital heart disease: translational opportunities to study the reversibility of pulmonary vascular disease

Diederik E. van der Feen1*, B. Bartelds1, Rudolf A. de Boer2, and Rolf M.F. Berger1

1Centre for Congenital Heart Diseases, Department of Pediatric Cardiology, Beatrix Children’s Hospital, University Medical Centre Groningen, University of Groningen, The Netherlands; and 2Experimental Cardiology, Department of Cardiology, University Medical Centre Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands

Received 22 August 2016; revised 9 November 2016; editorial decision 11 January 2017; accepted 16 January 2017; online publish-ahead-of-print 23 February 2017

Pulmonary arterial hypertension (PAH) is a progressive and lethal pulmonary vascular disease (PVD). Although in recent years outcome has improved by new treatments that delay disease progression, a cure has not yet been achieved. In PAH associated with congenital heart disease (CHD), remodeling of the pulmonary vasculature reaches an irreversible phenotype similar to all forms of end-stage PAH. In PAH-CHD, however, also an early stage is recognised, which can be completely reversible. This reversible phase has never been recognised in other forms of PAH, most likely because these patients are only diagnosed once advanced disease has developed. We propose that the clinical model of PAH-CHD, with an early reversible and advanced irreversible stage, offers unique opportunities to study pathophysiological and molecular mechanisms that orchestrate the transition from reversible medial hypertrophy into irreversible plexiform lesions. Comprehension of these mechanisms is not only pivotal in clinical assessment of disease progression and operability of patients with PAH-CHD; specific targeting of these mechanisms may also lead to pharmacological interventions that transform ‘irreversible’ plexiform lesions into a reversible PVD: one that is amenable for a cure. In recent years, significant steps have been made in the strive to ‘reverse the irreversible’. This review provides an overview of current clinical and experimental knowledge on the reversibility of PAH, focussing on flow-associated mechanisms, and the near-future potential to advance this field.

Keywords

Congenital heart disease • Reversible/irreversible• Operability • Vascular remodelling • Pulmonary blood flow • Neointimal/plexiform lesions

Introduction

Pulmonary arterial hypertension (PAH) is an obstructive arterial pulmonary vascular disease (PVD) that is progressive, irreversible and usually fatal, despite current treatment options.1–3 PAH in congenital heart disease (PAH-CHD) is unique in this respect, as it also knows an early phase in which the arteriopathy can generally be reversed.1 The potential for reversibility in PAH-CHD was first identified in the 1950’s,5 but mechanisms, timing, and identification of such reversibility are still obscure today.

We know that in PAH-CHD, systemic-to-pulmonary shunting can ultimately remodel the pulmonary vasculature to a characteristic irreversible phenotype similar to other forms of PAH.6–8 We also know that timely closure of the shunt will generally result in normalisation of pulmonary hemodynamics and vascular morphology, i.e. cure PAH.9 Yet, it appears that closure beyond the reversible phase relates to accelerated disease progression, as these patients have a prognosis substantially worse than those with uncorrected PAH-CHD.10

Our knowledge is still limited regarding the factors that distinguish reversible from irreversible PVD.11 Identification of these factors would not only be pivotal to improve assessment of operability in PAH-CHD, it could also give clues to comprehend the mechanisms that orchestrate the

* Corresponding author. Tel: +31 64 244 46 14, Email: d.e.van.der.feen01@umcg.nl

Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For permissions, please email: journals.permissions@oup.com.
Development of irreversible PVD. Specific targeting of the mechanisms involved could help to reverse the irreversible, also in other forms of PAH. This review will discuss features and putative mechanisms associated with reversibility of PAH-CHD.

Reversibility in PAH-CHD: concepts and observations

To normalise vs. to stabilise

The current literature generally refers to survival in PAH as disease stability rather than disease reversal. Targeted pharmacotherapy may stabilise or decelerate disease progression, and improve clinical condition, but still does not cure the disease. Here, disease reversibility is defined as complete and permanent normalisation of both pulmonary hemodynamics and vascular morphology. Reversible PAH was first described in children with PAH associated with congenital cardiac shunts. Timely correction of the shunt, removing the disease trigger, was found to result in full disease regression. This unique feature distinguishes PAH-CHD from other forms of PAH. In idiopathic, heritable or PAH associated with connective tissue disease, the trigger cannot be removed, and a normalisation of vascular morphology has never been described. In PAH induced by suppressible triggers, like HIV- or schistosomiasis-associated PAH, treatment may stabilise progression, but complete normalisation remains debated. Still, recent cases suggest that reversibility may not be exclusive to PAH-CHD. For instance, dasatinib, used in the treatment of leukaemia, can induce near systemic rises in pulmonary arterial pressure that may fully reverse after discontinuation of the drug. PAH complicating bone marrow transplantation has also shown potential to completely normalise over time. These cases support the clinical and histological concepts of reversibility that have been reported extensively in PAH-CHD.

Epidemiology of regressive and progressive PAH-CHD

All children born with a systemic-to-pulmonary shunt are at risk for PAH (Figure 1A). CHD-type and shunt size are considered principal determinants for the progression of PAH-CHD and the development of irreversible disease. Increased pulmonary blood flow is considered a prerequisite, combination with high pressure an accelerator. Large post-tricuspid shunts (high flow, high pressure) more frequently and quickly induce irreversible PAH than restrictive or prorticuspid shunts (high flow, normal pressure) (Figure 1A). In contrast, CHD-types associated with normal flow and high pressure, like congenital mitral stenosis, generally do not induce PAH. Improved monitoring of CHD has enabled paediatric cardiologists to identify and treat patients at risk for PAH early in life. Currently,

Figure 1 (A) CHD-type and shunt determine the progression of PAH. TA: Truncus Arteriosus, AVSD: Atrio-ventricular septal defect; TGA: Transposition of the great arteries. (B) Correction of a left-to-right shunt may lead to full disease regression, but not after a certain zone of no return. Correction beyond this ‘zone’ is associated with accelerated deterioration of PAH-related symptoms. (C) When diagnostic criteria for PAH are met in paediatric left-to-right shunt, 90% is evaluated eligible for shunt correction. In a portion of corrected CHD, PAH will progress due to misjudged irreversible disease. When shunt correction is contra-indicated (PAH is evaluated as irreversible or other co-morbidities do not permit surgery), PAH will progress.
around 90% of all children with PAH-CHD are considered surgically correctable. In the majority of these children, shunt closure completely normalises the disease: reversible PAH. Unfortunately, the portion of children with disease progression despite early surgery is still significant (2–6%, Figure 1C). This is 5–13% for adults. While in PAH-CHD, older age at correction is a well-recognised risk factor for irreversible disease, the occurrence of post-operative PAH in infants suggests that also other factors than timing of correction are involved. Conditions such as disturbed perinatal transition or co-morbidities like Down syndrome are often associated with, and may contribute to progression of PVD after correction of the cardiac defect in these children. Genetic susceptibility could also modify progression of PVD, albeit not through the gene-mutations identified in ‘idiopathic’ or heritable PAH, since these are rarely found in paediatric PAH-CHD.

Whatever the reason for disease progression after correction, its prognosis is detrimental. Post-operative PAH is associated with lower survival rates bot at short- and long-term follow up: 36 vs. 87% for non-operated PAH-CHD (Figure 1B). This difference might be explained by the loss of potential for unloading of the right ventricle (RV) after correction of the defect. Whereas RV failure is recognised a major risk factor for mortality in adults, RV function in children is generally better preserved at diagnosis. Interestingly, pressure unloading of the RV in PAH (e.g. by lung transplantation) is generally associated with a marked reversal of RV function and remodeling, even when severe dysfunction and hypertrophy was present.

Of all children with CHD who present with PAH, ±10% is regarded not eligible for shunt closure, mostly due to concerns of irreversible PVD in the context of complex CHD and/or co-morbidities that prohibit invasive surgery. The most ominous clinical sign of irreversible PAH is the Eisenmenger syndrome (ES). In ES, pulmonary vascular resistance (PVR) has exceeded systemic values, which reverses the direction of the shunt, causing cyanosis. The mean survival of ES when developed during childhood is 11.4 years, with a 4-year survival rate of 77%. Currently, indexed PVR > 8 Woods Units m\(^2\) is regarded a contra-indication for shunt closure, and 6–8 WU m\(^2\) a ‘grey zone’. Unfortunately, these cut-off values are mainly based on expert opinions and are not supported by prospective data.

The vascular morphology in PAH-CHD: which lesions reverse?

In end-stage disease, all forms of PAH share a common histology, typically hallmarked by the occurrence of neointimal lesions such as concentric laminar intimal fibrosis and plexiform lesions. Plexiform lesions are present in 90% of biopsies in various forms of advanced PAH. In early-stage PAH-CHD, these neointimal lesions are generally still absent. Early-stage PAH is predominantly characterised by medial hypertrophy of pre-acinar vessels and muscularisation of normally non-muscularised arterioles: the first visible structural change in the vascular remodeling process. This may be accompanied by mild proliferation of intimal cells (Figure 2). The link of vascular histopathology to disease reversibility dates back to the studies of Wagenvoort, and Heath & Edwards published in the 1950’s. They postulated that PAH-CHD might be reversible when histology shows medial hypertrophy only. In fact, all healthy new-borns display medial hypertrophy directly after birth, which reverses in the first 8 weeks of life. Children with a ventricular septal defect (VSD), however, maintain this medial hypertrophy postnatally and often display proliferative intimal changes within 1 year, and plexiform lesions within 2.5 years after birth. The number and size of acinar arterioles in these children were also reported to be reduced at this age, suggesting developmental rarefaction that may contribute to disease progression.

Heath & Edwards classified concentric laminar intimal fibrosis, plexiform lesions, dilatation lesions, and necrotizing arteritis as severe lesions, conjoined to irreversible, progressive disease. Wagenvoort used a descriptive analysis of these vascular lesions to predict outcome after cardiac surgery in 137 PAH-CHD cases.
were likely to improve after surgery, whereas those with more severe intimal fibrosis or plexiform lesions were likely to deteriorate. The concept of vascular reversibility was confirmed in study that assessed morphological change of various lesions in consecutive lung biopsies prior to and several years after pulmonary artery banding; medial hypertrophy reversed, whereas neo-intimal lesions and plexiform lesions did not.

Despite these opportunities, pre-operative morphologic evaluation has largely disappeared from clinical practice since the eighties, due to the procedural risks of open lung biopsy (13% morbidity and 20% mortality in children with PAH-CHD). Furthermore, it should be noted that absence of neo-intimal lesions in a lung biopsy does not ensure post-operative regression of PAH, since the advanced lesions may not be distributed equally through the lungs. Still, vascular morphology has been confirmed as a useful tool to understand reversibility and should be considered the gold standard when phenotyping PAH in experimental models.

Reversibility in animal models

The first animal study that investigated the reversibility of PAH by manipulating pulmonary blood flow, used a rat model that induced over circulation in the left lung by right lung excision. Isolated medial hypertrophy developed in the remaining left lung, which reversed after unloading by lung transplantation into a healthy recipient rat. In piglets with shunt-induced medial hypertrophy, shunt closure also decreases medial thickness and PVR. These studies confirm the clinical observation that isolated medial hypertrophy has the biological potential to reverse. This also warrants a critical appraisal towards studies that claim reversibility by pharmacological compounds in PAH-CHD an ideal ‘human model’ to study the mechanisms involved in early disease progression, disease reversal and transition to irreversibility: (1) the trigger is known, (2) the onset and magnitude of the trigger can be estimated, (3) the trigger can be removed, (4) timely removal of the trigger potentiates disease reversal, and (5) persistence of the trigger leads to progressive PVD that shares many characteristics with other forms of PAH. Moreover, (6) the subgroup of patients that do not reverse despite trigger removal allows to identify conditions and mechanisms specifically associated with (the transition towards) irreversible disease.

Comparison of human reversible to irreversible PAH-CHD could help to identify pathways related to (ir)reversibility (Figure 3A). The ‘liquid biopsy’ could be an innovative, minimally-invasive alternative to ‘solid’ lung biopsy to investigate human PAH. The concept of liquid biopsy originated from oncology and utilises the fact that tumours shed cells and DNA directly into the bloodstream, and tumour-RNA into platelets, which can be analysed to determine stage and treatment response. Liquid biopsy may also be applicable in PAH, for instance by performing high-throughput screening on platelets and circulating endothelial cells, which have already been shown detectable in blood samples of PAH(-CHD) patients (Figure 3B). Specifically, new markers such as Micro-RNAs may be identified in these samples. This knowledge can be confirmed (bedside-to-bench) in animal models that show normalisation of established neo-intimal lesions, either by hemodynamic unloading or pharmacotherapy. We advise the use of multiple, complementary animal models to increase robustness of the data.

The next section describes potential pathways that may be involved in the transition from reversible to irreversible PAH. A proposed mechanistic overview of the relationship of increased flow to neo-intimal remodeling is presented in Figure 4.

Pathobiology: what could make PAH irreversible?

Apoptosis and apoptosis-resistance

The balance between endothelial cell (EC) apoptosis and apoptosis-resistance appears to shift during disease progression. In lung biopsies obtained during shunt correction in paediatric PAH-CHD, the pro-apoptotic marker p53 dominated the tissue of patients that had reversed one year after closure, whereas Bcl-2 (associated to apoptosis-resistance) was expressed abundantly in patients with end-stage PAH. Survivin, another marker for apoptosis-resistance, is expressed abundantly in patients with progressive disease. Survivin and Bcl-2, has shown to reverse established neo-intimal lesions.

In SuHx rats, anti-apoptotic factors appear late in the disease, specifically in neo-intimal lesions. Recently, in the SuHx model, inhibition of Bromodomain-containing protein 4, an indirect stimulator of survivin and blc-2, has shown to reverse established neo-intimal lesions. These data underline the role of disturbed apoptosis in the formation of neo-intimal lesions and suggest potential for drugs that target apoptosis-resistance in the reversal of irreversible PAH.

Mechanisms of disease progression in PAH-CHD

Triggers for plexogenic remodelling and the unique opportunities of PAH-CHD

Plexiform lesions have a variety of etiological backgrounds, including genetic mutations, infections, connective tissue diseases or certain drugs. In PAH-CHD, increased pulmonary blood flow is regarded the essential trigger for disease development. Several factors make PAH-CHD a unique human model to study the mechanisms involved in early disease progression, disease reversal and transition to irreversibility: (1) the trigger is known, (2) the onset and magnitude of the trigger can be estimated, (3) the trigger can be removed, (4) timely removal of the trigger potentiates disease reversal, and (5) persistence of the trigger leads to progressive PVD that shares many characteristics with other forms of PAH. Moreover, (6) the subgroup of patients that do not reverse despite trigger removal allows to identify conditions and mechanisms specifically associated with (the transition towards) irreversible disease.

Comparison of human reversible to irreversible PAH-CHD could help to identify pathways related to (ir)reversibility (Figure 3A). The ‘liquid biopsy’ could be an innovative, minimally-invasive alternative to ‘solid’ lung biopsy to investigate human PAH.
Inflammation

Inflammatory cytokines (IL-6, IL-1β, MCP-1, and TNF-α) most importantly) and macrophages have been associated with disease progression not only in inflammation-associated PAH, but also in PAH-CHD and IPAH. Plexiform lesions are found both in HIV and schistosomiasis-associated PAH (sch-PAH) and in auto-inflammatory conditions like scleroderma and systemic lupus erythematosus. The inflammation hypothesis (reviewed in) therefore proposes that inflammation can initiate and sustain vascular remodeling up to the formation of neointimal lesions. Indeed, transgenic mice that over-express IL-6 spontaneously develop neointimal lesions, which is particularly remarkable since pulmonary neointimal lesions rarely occur in mice. In severe murine sch-PAH, associated with overwhelming vascular inflammation, established neointimal lesions were reversed by anti-parasitic treatment that inhibited the cytokine response. In MCT+Flow rats, inhibition of mast cells or chymase, both attenuate vascular remodeling, but do not lead to reversal. Considering the emerging evidence for an inflammatory component...

Figure 3 (A) The human model of PAH in CHD. A shunt initiates disease progression up to stage A, in which shunt correction either leads to regression of the disease (stage C) or to progression (stage D). Without shunt correction, stage A will progress to stage B: the Eisenmenger Syndrome. (B) A or B: PAH-CHD that becomes reversible or irreversible. Using liquid biopsy combined with high throughput screening, multiple profiles can be compared with investigate mechanisms associated with (1) flow-dependent progression (A to B), (2) flow-independent progression (A to D), (3) Reversible or Irreversible phenotype before correction, e.g. to judge operability (A to C), or disease course (C to D), and (4) disease reversal (A to C).
in PAH and neointimal formation, anti-inflammatory drugs may have potential as (adjuvant) therapy to reverse irreversible PAH.

Tgf-β/BMP-signalling: a common denominator?
It is intriguing that a disease with such diverse triggers, or associated conditions, leads to a rather uniform end-stage vascular phenotype, regardless of aetiology. So could there be a common denominator? Increasing evidence points towards Tgf-β and BMP signalling as respective orchestrators of plexogenic remodeling, or protection and repair of the pulmonary vasculature (reviewed in 59).

In 2000, mutations in BMP-receptor 2 (BMPR2) were first identified as a cause for hPAH.60 BMPR2-mutations impair vaso-protective BMP signalling and account for 80% of hPAH cases.61 Disturbed Tgf-β/BMP signalling was further identified in IPAH,62 sch-PAH,63 CTD-PAH,64 PAH-CHD,65 drug (cocaine) and HIV-induced PAH,66 and PAH associated with hereditary haemorrhagic telangiectasia.67 Vice versa though, rats with deficient BMPR2-function68 or mice with a BMPR2-knock-out69,70 only develop an inconsistent pattern of mild pulmonary hypertension and medial hypertrophy without neointimal lesions. These observations signify that these models may still lack a second hit, or display an early (reversible) phase of BMPR2-deficiency related PAH.

Mechanistically, BMPR2-deficiency can elicit pro-proliferative and anti-apoptotic responses in murine pulmonary smooth muscle cells;71 factors downstream of Tgf-β also induce these responses in human PAECs.72 Also, both BMPR2-deficiency and increased Tgf-β are able to promote the progression of PAH by a hyper inflammatory response through cytokines such as IL-6 and -8.73,74

Therapeutically, BMP-9, an endogenous stimulator of BMP-signalling, has shown to reverse medial hypertrophy in BMPR2-deficient mice and MCT rats, but also neointimal lesions in SuHx rats.75 Similarly, FK506 (Tacrolimus) showed to (1) restore disturbed BMPR2-signalling and endothelial function in PAECs from IPAH patients, (2) prevent PAH progression in BMPR2-deficient mice, and (3) reverse established neointimal lesions in SuHx rats.69 As a first clinical observation, low-dose Tacrolimus (blood level 1.5–2.5 ng/mL) was associated with relieved symptoms of right heart failure and improved WHO functional class in 3 end-stage IPAH patients.75

Finally, Elafin, an endogenous serine protease inhibitor that enhances BMPR2 signalling, has been shown to reverse neointimal lesions in SuHx rats and reduce neointimal thickness of pulmonary arteries in cultured sections from lung explants of patients with PAH.76 These recent experimental studies serve proof of the concept that reversibility of advanced PAH, considered irreversible, is feasible in animals and cultured human pulmonary arteries. This concept holds promise for future therapeutic potential in patients.

Conclusion
PAH is considered a progressive and irreversible arteriopathy and is still lethal. Although advances in the last decade have led to an
improvement in outcome, mainly by delaying disease progression, reversal or cure has not yet been achieved.

PAH in congenital heart disease has a vascular end-stage that is universal to other forms of PAH, but also becomes irreversible. This unique clinical model of PAH-CHD, with an early reversible and advanced irreversible stage, offers opportunities to study pathophysiological and molecular mechanisms that orchestrate the transition from reversible medial hypertrophy into irreversible neointimal and plexiform lesions. Comprehension of these mechanisms is not only pivotal in clinical assessment of disease progression and operability of patients with PAH-CHD; specific targeting of these mechanisms may also lead to pharmacological reversal of ‘irreversible’ plexiform lesions into a reversible arteriopathy: one that is amenable for a cure. The recent manipulation of the BMPR2 signalling pathway is an example of the steps to make in the strive for ‘reverse remodelling’.

Funding

This work was supported by the Netherlands Cardiovascular Research Initiative CVON 2012-08 PHAEDRA, the Dutch Heart Foundation, Dutch Federation of University Medical Centres, the Royal Netherlands Academy of Sciences, Stichting Hartekind. BB and RMFB were supported by a grant from the Ducth Heart Foundation (NHS-2013T091).

Conflict of interest: none declared.

References

6. Dickinson MG, Bartelds B, Borgdorff MA, Berger RM. The role of disturbed physiological and molecular mechanisms that orchestrate the transition from reversible medial hypertrophy into irreversible neointimal and plexiform lesions. Comprehensive of these mechanisms is not only pivotal in clinical assessment of disease progression and operability of patients with PAH-CHD; specific targeting of these mechanisms may also lead to pharmacological reversal of ‘irreversible’ plexiform lesions into a reversible arteriopathy: one that is amenable for a cure. The recent manipulation of the BMPR2 signalling pathway is an example of the steps to make in the strive for ‘reverse remodelling’.

