
Lian van der Krieke, PhD, Frank J. Blaauw, MSc, Ando C. Emerencia, PhD, Hendrika M. Schenk, MSc, Joris P.J. Slaets, PhD, Elisabeth H. Bos, PhD, Peter de Jonge, PhD, and Bertus F. Jeronimus, PhD

ABSTRACT

Objective: Recent developments in research and mobile health enable a quantitative idiographic approach in health research. The present study investigates the potential of an electronic diary crowdsourcing study in the Netherlands for (1) large-scale automated self-assessment for individual-based health promotion and (2) enabling research at both the between-persons and within-persons level. To illustrate the latter, we examined between-persons and within-persons associations between somatic symptoms and quality of life.

Methods: A website provided the general Dutch population access to a 30-day (3 times a day) diary study assessing 43 items related to health and well-being, which gave participants personalized feedback. Associations between somatic symptoms and quality of life were examined with a linear mixed model.

Results: A total of 629 participants completed 28,430 assessments, with a mean (SD) of 45 (32) assessments per participant. Most participants (n = 517 [82%]) were women and 531 (84%) had high education. Almost 40% of the participants (n = 247) completed enough assessments (t = 68) to generate personalized feedback including temporal dynamics between well-being, health behavior, and emotions. Substantial between-person variability was found in the within-person association between somatic symptoms and quality of life.

Conclusions: We successfully built an application for automated diary assessments and personalized feedback. The application was used by a sample of mainly highly educated women, which suggests that the potential of our intensive diary assessment method for large-scale health promotion is limited. However, a rich data set was collected that allows for group-level and idiographic analyses that can shed light on etiological processes and may contribute to the development of empirical-based health promotion solutions.

Key words: ecological momentary assessment, idiographic, dynamic effects, quality of life, person-tailored, self-assessment.

INTRODUCTION

Psychological science and health promotion are rooted in the nomothetic research tradition in which samples of participants are sampled, based on the implicit assumption that such results are informative for individual population members (1), which is known as the “ecological fallacy”...
The nomothetic approach has been criticized for leading to knowledge that is “true on average” (3). Group-based research can be informative for studying variation between persons, but aggregated results are not necessarily applicable at the individual level (1). For example, between-person correlations can diverge from within-person correlations in both magnitude and direction (4). Eventually, readers of health information may think, “Well, these means and correlations are interesting, but what do they mean for me personally?” (5).

This transferability (or “generalizability”) of health research to individuals can be increased by approaches that facilitate idiographic (individual-level) analyses, such as ecological momentary assessment (EMA; (6)) techniques, also known as experience sampling (7) or diary studies (8). Ecological momentary assessment refers to frequent assessments of variables in (near) real-time during participants’ natural flow of life. This reduces recall biases and increases ecological validity (9). Ecological momentary assessment usually consists of multiple repeated assessments, separated by small time intervals, which allows for fine-grained analyses of moment-to-moment fluctuations as well as detection of temporal ordering of effects. Extant EMA research unraveled the momentary effects of drug use, positive or negative effect, quitting smoking, helping others, and self-efficacy among others (10–12).

Within-person associations in EMA data can be identified with, for instance, person-mean-centered multilevel models, which yield group-averaged within-person effects and the degree of variability in these effects (as estimated by the random slopes) (13). Alternatively, when a sufficient number of assessment points (>50) is sampled, within-person effects can be analyzed by using time series analysis (14). Individual-based time series analysis generates regression coefficients for each participant separately. A specific type of time series analysis, called vector autoregressive (VAR) modeling (15–17), also reveals the dynamic relationships between variables. Vector autoregressive analyses enable researchers to identify person-specific sequenced changes in variables and thus to investigate causal effects (18,19).

Quantitative idiographic research provides a promising avenue to develop a more person-tailored approach in health promotion (18–21). The increased availability of smartphones and advanced information and communication technology renders self-assessment by means of EMA feasible, relatively cheap, and easy to implement. Nonetheless, the expansive implementation of EMA methods in practical settings requires nonexperts to be able to deal with the complex statistical processes involved in idiographic data analysis (such as VAR). In the current study, we overcame this obstacle by using automated analysis (22,23).

The present study reports on a Web-based crowdsourcing approach to (a) collect EMA data allowing for research zooming in and out on associations between quality of life/psychological health, behavior, and affect, and to (b) automatically analyze and visualize dynamic effects as a means to provide personal information about health and well-being to participants. We launched a website that enables inhabitants of the Netherlands to assess themselves for 30 consecutive days, after which feedback was automatically provided. Our aim was to investigate both the potential of our approach for enabling research on intensive longitudinal data, and for individual health promotion. The latter is examined based on adherence and completion rates, and participant evaluation data. The potential of our approach for collecting data and enabling research will be explored by investigating the association between somatic symptoms and moment-to-moment quality of life (24). Analysis of cross-sectional data has repeatedly shown a negative association between somatic symptoms and quality of life (25,26), but it is unclear whether this association is also present at the within-individual level. Analysis of intensive EMA data can provide estimates at both the between- and the within-person level and also provide an estimate of the degree of heterogeneity in the within-persons effects. We will conduct a between-persons analysis to see whether earlier group-based results can be replicated with our data, and a within-person analysis to explore associations on an individual level, which have not previously been investigated. We expect that somatic symptoms will be negatively associated with quality of life within individuals, but we hypothesize that the strength of this association differs between individuals.

METHODS

Ethics
The Medical Ethical Committee of the University Medical Center Groningen evaluated the study and judged that it was exempted from review by the Medical Research Involving Human Subjects Act (in Dutch: WMO) because it concerned a nonrandomized open study targeted at anonymous volunteers in the general public (number M13.147422).

Participants and Procedure
The current study is part of a larger research project called HowNutsAreTheDutch (in Dutch “HoeGekIsNL”), henceforth HND. The HND project centers around the website www.HoeGekIs.nl (or www.HowNutsAreTheDutch.com), which was launched on December 19, 2013. HND aims to map the mental health of Dutch citizens via online self-assessment on a number of cross-sectional questionnaire modules, including sociodemographic information, well-being, mood, living situation, physical parameters, personality, optimism, humor, and empathy (see (27) for details). From May 22, 2014 onward, participants were invited to take part in a diary study, consisting of momentary assessments including variables related to quality of life/well-being, behavior, and affect. This latter part of the HND project is the focus of the present study.

A crowdsourcing procedure (28,29) was applied to recruit adult inhabitants of the Netherlands. The launch of the HND website was announced on local and national radio broadcast, television, during local podium discussions, in newspapers, and in magazines. The announcement was picked up and further disseminated by online blogs, tweets, and other social media.
Participants could create a personal account on the website by providing their e-mail address and completing information about their sex, birth year, birth month (optional), postal code area, and country of residence.

Participants were informed about the procedure and requirements of the EMA assessments by a video and a digital booklet. To subscribe to the diary study, participants had to fulfill the following criteria (and check the according boxes): age 18 or older, availability of a smartphone with data plan, intention and opportunity to start the study within 5 days, intention to follow one's usual living pattern (e.g., not being on holiday or admitted to a hospital for scheduled surgery), intention to not miss too many assessments, and approving of one's data being used, anonymously, for scientific research. Subsequently, participants had to configure their personal settings for the daily assessments, namely, the start date (within 5 days), the sampling schedule, and telephone number. Participants could choose the time at which they wanted to receive their last measurement of the day, preferably 30 minutes before their regular bedtime.

Participants had to complete the diary assessments on their smartphone 3 times a day for 30 consecutive days, resulting in a maximum of 90 assessments. The assessments were prompted on fixed and equidistant moments in time (at a 6-hour interval). Participants were asked to fill out the questionnaire immediately after the prompt or, if this was impossible, within 1 hour. After that hour, the questionnaire could no longer be accessed. At the end of the diary, study participants received personalized feedback on the HowNutsAreTheDutch website, including a personal network showing dynamic relationships between variables. Five iPads were allotted among participants who completed at least 85% of the diary assessments. The present study uses the data that have been provided before December 13, 2014.

Measures

The diary questionnaire contained 43 items. It combined items from existing and validated questionnaires and a few newly created items. We assessed subjective well-being, sleep, mood, anxiety, depression, physical activity, physical discomfort, self-esteem, worrying, loneliness, mindfulness, context (location, social company, activities), and the appraisal of this context, stressfulness, events, time pressure, the feeling one makes a difference, laughing, and being outdoors (27). All questionnaire items and literature references are presented elsewhere (27). Additionally, participants could define a personal item that they felt relevant to their situation. This item could be chosen from a list of options or could be self-created during the configuration of personal settings. Examples of personal items were "I worry a lot" or "I smoked a lot since the last assessment." All items except categorical ones were rated on a visual analog scale ranging from zero to 100, with appropriate labels at the extremes and middle of the scale, and the middle as default positive. To answer a question, the slider had to be moved.

The diary assessments were preceded by a baseline assessment consisting of the items of the Positive And Negative Affect Schedule (30,31), the Quick Inventory of Depressive Symptomatology (32) and 2 extra items retrieved from the Inventory of Depressive Symptomatology (33) to assess anxiety/panic symptoms.

Design Features of the Diary Assessments

Assessments were sent to participants as a hyperlink in a short text message. The hyperlink referred to a website with a responsive design, namely, that scaled to the appropriate size corresponding to the resolution of different types of smartphones. The diary items were divided over 7 pages, ranging from 2 to 8 items per page. Most items could be rated with a slider on a visual analog scale to maximize the degree of variation in response options, as variation is prerequisite for meaningful time series analyses. Categorical items had a radio button format such that participants could only choose one option. When participants skipped an item, a notification appeared in the form of a red line frame, and all items on the page had to be completed before one could turn to the next. Questionnaire completion time was estimated at approximately 3 to 4 minutes per assessment. In a pilot study, this duration was found to be acceptable.

Statistical Analysis

Sample Characteristics and Assessment Adherence

Calculation of descriptive statistics and analyses regarding assessment adherence were performed in SPSS (version 22, SPSS Inc.). Multiple linear regression analyses were performed to predict the number of completed diary assessments per participant. The predictors used were (a) sex, age, and level of education; (b) symptoms of depression, anxiety, and stress (as assessed with the Depression Anxiety Stress Scales (34)), (c) the Ryff scales of Psychological well-being (35), and (d) the Big Five personality domains neuroticism, extraversion, openness, agreeableness, and conscientiousness (assessed with the NEO Five-Factor Inventory-3 (36)). Multivariable logistic regression analyses were fit to test whether participants who completed only a few assessments differed from participants who completed many assessments. Moreover, univariate differences were tested with Kolmogorov-Smirnov and t tests. To ensure the robustness of our results, all analyses were bootstrapped (k = 10,000). Results were converted to standardized effect sizes Cohen's d (37) to enable interpretation and comparison with existing literature. The standardized effect sizes were interpreted as small, from 0.20; medium, 0.50 or greater; and large, 0.80 or greater (38).

Between-Persons and Within-Persons Associations

A mixed linear model was fitted to investigate between-persons and within-persons associations between somatic symptoms ("I experience physical discomfort": not at all (0) to very much (100)) and quality of life ("How are you doing right now?": very bad (0) to very good (100)). Long-time trends were removed for each individual separately (13,39). The person means were added as a predictor to estimate the between-subject associations; the person-mean–centered scores were entered as a predictor to estimate the within-subject association (13,40). Models with random intercepts and random slopes were fit to estimate the heterogeneity in the within-subject effect. A variance-components covariance structure at the first level was found to be optimal, according to the Bayesian Information Criterion. Additionally, the temporal instability of somatic symptoms and quality of life was calculated by means of the mean squared successive difference (MSSD (41); see also Supplementary Table S1, Supplemental Digital Content 1, http://links.lww.com/PSYMED/A314).

Per-Person Analysis of Dynamic Relationships Between Variables

Vector autoregressive analysis was used to analyze the EMA data for each participant separately to generate variable networks for personalized feedback (15–17). Vector autoregressive models contain a system of regression equations in which all variables are treated as endogenous variables, meaning that they function as both outcome and predictor. Vector autoregressive analysis can be conducted without a prior hypothesis about the direction of the association between variables. When variation in one variable (Y) can be better explained by previous measures of Y and another variable (X) than by previous measures of Y alone, variable X is said to Granger-cause variable Y, and this temporal sequence can be tested with the Granger causality test (42). Vector autoregressive analyses can thus elucidate the temporal ordering of dynamic relationships between 2 or more variables and indicate putative causal associations. An extensive description of the VAR technique can be found elsewhere (15–17). An application called Autovar was crafted to automatically estimate and optimize VAR models and to determine the relationships between variables (22,23). These relationships were visualized in...
network images of the models using the Data-Driven Documents-3 JavaScript library (http://d3js.org). We accommodated for potential level differences due to the larger difference between the evening and morning sample by including a dummy variable for the morning. Missing data were imputed using the EM-imputation algorithm implemented by the Amelia library (https://cran.r-project.org/web/packages/Amelia/vignettes/amelia.pdf).

RESULTS

Timeline and Study Enrollment
A timeline of the HND project is presented in Figure 1, with the percentage of participants subscribing to the HND project as a whole and to the diary study in particular. The figure shows several forms of advertising that influenced the number of enrollments.

Sample Characteristics
During the 7-month study period, 629 persons participated in the diary study. Of these persons, 532 (85%) had also participated in the earlier cross-sectional part of the HND project, which is 4% of the total cross-sectional sample (n = 12,503). The mean age of the diary participants was 41 years (range, 18–76) and 82% (n = 517) were women. Compared to the educational level of the general Dutch population (high, 28%; middle, 41%; low education, 31%; Dutch Central Bureau of Statistics), the participants were highly educated (high, 83%; middle, 13%; and low educated, 4%). Participants were mainly Dutch and located throughout the Netherlands; 5 participants were Belgian, and one had another nationality. As reported elsewhere (27), diary study participants were on average 5.4 years younger than the cross-sectional sample of HND, more often women, higher educated, and they reported lower well-being.

Adherence and Completion Rates
The diary study participants completed a total of 28,430 assessments; with a mean (SD) of 45 (32) assessments each (range, 0–90). Assessments completion time was 3 minutes (median), and the assessments were completed within 11.6 minutes (median) after the prompt. Figure 2 shows that the number of completed assessments had a bimodal distribution across participants. Almost half of the participants (n = 278 [44%]) completed less than 45 assessments (mean [SD], 12 [13]), thus quit the study early (henceforth denoted as “early quitters”). The other half (n = 351 [56%]) of the participants adhered to the study and completed 45 assessments or more (henceforth denoted as “adherers”), with a mean (SD) of 73 (11) assessments.

A multivariable linear regression model was fit to test whether early quitters differed from adherers with regard to personal characteristics, which included 356 participants who had provided data on the variables of interest in the cross-sectional part of the HND study. Surprisingly, no effects were observed (all p values ≥ .15; see Supplementary Table S2, Supplemental Digital Content 1, http://links.lww.com/PSYMED/A314). Additionally, a multivariate logistic regression to compare study adherers (n = 228) with early quitters (n = 128) showed no differences (p ≥ .13; see Supplementary Table S2). Finally, univariate differences between early quitters and adherers were tested with Kolmogorov-Smirnov and t tests (see Supplementary Table S3, Supplemental Digital Content 1, http://links.lww.com/PSYMED/A314), but no differences were encountered (all p values ≥ .09).

Participants could quit the diary study passively (by ceasing to respond to assessment prompts) or actively (by unsubscribing from the study), and the active quitters were asked to check 1 of 3 prespecified reasons for quitting.
Most quitters were “passive quitters.” Of the 79 active quitters (mean age, 39; 79% women), 46% \((n = 36)\) indicated that the diary study was “too intensive;” 2% \((n = 2)\) checked the option “I can no longer comply to the study criteria due to a change in my daily rhythm,” whereas 52% \((n = 41)\) had “other reasons” (e.g., quit the study because the time schedule did no longer fit or too many assessments were missed).

Automatically Generated Feedback and Evaluation

All participants who completed at least 65% \((t = 59)\) of the diary assessments \((n = 302)\) received basic personalized feedback consisting of several graphs (time plots, bar graphs, pie charts, and scatter plots) and explanatory text including information about positive and negative affect, sleep, location, social company, time pressure, physical discomfort, self-esteem, worrying, special events, physical activity, and the personal item. An example of the graphs presented in the basic feedback is shown in Figure 3.

Participants who completed at least 75% \((t = 68)\) of the diary assessments \((n = 247)\) also received 2 personal networks showing concurrent and dynamic relationships between their mood, health behaviors, and emotions over time. Initially, our threshold for receiving advanced feedback was 85%, but during the study, we lowered the threshold to 75% because this proved sufficient to create meaningful networks (14). For one participant, no personal networks could be generated because of extremely low variability in variable values (namely, the response pattern of this participant was highly similar across assessments). Example networks of 3 random participants are presented in Figure 4.

The network models in the left part of Figure 4 show the concurrent relationships between variables. For instance, the concurrent network of person “A” shows that (i) when A was enacting a healthy lifestyle, A was also more physically active; (ii) when A was more physically active, A spent more time outside; (iii) when A spent more time outside, A had more humor; (iv) when A reported more humor, A felt less down; and (v) when A felt more down, A felt lonelier. Furthermore, the size of the nodes indicate that physical activity, spending time outside, humor, and feeling down had most connections with other variables (also known as degree), and the thickness of the line indicates that the relationship between physical activity and spending time outside was the strongest relationship. The relationships in the concurrent network show that a participant’s mood, emotions, and behaviors are related to each other at the same moment in time but do not indicate the temporal ordering of these associations.

The dynamic network models on the right illustrate the temporal ordering of the relationships between variables (namely, how variables affect each other across time). The dynamic network for person A shows that (i) an increase in physical activity preceded (thus predicted) an increase in spending time outside; (ii) an increase in humor predicted an increase in physical activity and a decrease in loneliness; (iii) an increase in feeling down predicted an increase in physical activity; and (iv) enacting a healthy lifestyle did not predict, and was not predicted, by any of the included variables.

After completion of the diary study, participants who received feedback were invited to complete an evaluation form about the study on the HND website, which 102 participants did (mean [SD] age, 46 (14) years and 73.5\% \((n = 75)\) women). Results are presented in Table 1.

Between-Persons and Within-Person Associations

To explore the value of our collected EMA data, a mixed linear model was fit to test the association between somatic symptoms and moment-to-moment quality of life. At the
between-persons level, a significant negative association between somatic symptoms and quality of life was observed ($B = -0.25; p < .001$). At the within-person level, the mixed linear model also showed significant, but slightly weaker, negative associations between somatic symptoms and quality of life ($B = -0.22; p < .001$). The random slope indicated significant heterogeneity in the strength of the within-person association between somatic symptoms and quality of life (variance, 0.02; $p < .001$). Additionally, the within-person fluctuation in the experience of somatic symptoms was much larger than the within-person fluctuation in momentary quality of life (MSSD, 395.8 versus 257.3; see Supplementary Table S1 for the MSSDs of all diary items).

DISCUSSION

Our crowdsourcing approach resulted in the recruitment of 629 participants who completed more than 28,000 diary assessments covering a range of health-related items. For those participants who completed a sufficient number of diary assessments, a personal network of dynamic associations between affect, cognitions, and behaviors could be successfully generated.

Potential for Automated Self-Assessment and Health Promotion

We created an application that automates self-assessment protocols, complex statistical procedures, and feedback. By using an online platform, we enabled all inhabitants of the Netherlands to access our diary study, although only small groups of people were actively informed about the study. An active approach seems to have been crucial in the recruitment, given that the number of subscriptions increased noticeably after presentations and other advertising activities by the research team. As many of our participants were female, relatively high educated (both >80%) and they enrolled via self-selection, the sample is not representative of the general Dutch population. Moreover, only a fraction of the total Dutch population (17 million) participated. This indicates that the potential of diary studies for national health promotion through self-assessment, in the format that we applied, is limited. In fact, our format appealed most to higher educated, and we may assume highly motivated, women. A comparison with the broader HND sample indicates that their motivation may have been partly driven by a lower sense of well-being. The overrepresentation of women

![FIGURE 3. Sample of basic feedback. Activities and behavior ranked by perceived pleasantness. The size of the nodes indicates the frequency of the activity; the bigger the node, the more frequent a participant reported to be engaged with that activity. Color image is available only in online version (www.psychosomaticmedicine.org).](www.psychosomaticmedicine.org)
and higher educated people on health websites and online programs has been documented before (e.g., (43,44)). Women tend to be more inclined than men toward seeking health information in general and therefore also via the Internet (45). Furthermore, higher education has since long been identified as a characteristic of early adapters to innovations (46,47).

Adherence to our intensive diary assessments was mixed. On the one hand, there were early quitters who only briefly took note of the diary study. Barriers to access the study were low, causing many noncommitted participants to subscribe and drop out, like in many other anonymous Internet-based studies (48). On the other hand, there were

FIGURE 4. Advanced feedback. Concurrent (left) and dynamic (right) networks. Striped (red in online version) nodes represent variables that tend to be perceived as negative (e.g., loneliness, feeling down). Dotted (green) nodes represent variables that tend to be perceived as positive (e.g., humor, feeling cheerful). The blank (blue) node represents the personal variable that participants could choose to add to the diary assessment. This variable could either be negative or positive and could be different for each participant. The size of the node indicates its relative importance (i.e., the bigger the node, the more relationships that a variable has with other variables; also known as “degree”). The lines represent the relationship between variables; the thickness indicates the strength of the relationship. A plus refers to a positive relationship; a minus refers to a negative relationship. The arrowheads (only in the dynamic networks) indicate the direction of the relationships. Color image is available only in online version (www.psychosomaticmedicine.org).
Usability (technical/practical) has been most promising in a health care context. In this setting, diary assessments, in a more or less intensive format, may be realized by using less intensive assessments, with fewer questionnaire items or having sensor technology replacing health promotion approach. Broader usage could possibly be generated for all but one participant completing at least 68 diary assessments. A preliminary participant evaluation suggested that the technical and practical usability and the diary study as a whole were adequate, but the comprehensibility of the feedback was suboptimal. Arguably, the relatively low comprehensibility scores mainly reflect participants’ judgment of the networks rather than the basic feedback. Additional participant feedback and e-mail conversations indicated that these network models were sometimes perceived as rather abstract and difficult to grasp. We are currently working on improvement by redesigning the network and modifying the explanation. The evaluation data also suggested that the assessments made participants more conscious about their feelings, actions, and thoughts. This is consistent with previous studies (49,50). As diary assessments frequently and repeatedly ask participants to reflect on their daily life, they may function as a low-level intervention (50). The latter has not been assessed in the present study, but recent work suggests that network feedback based on diary assessments can improve subjective well-being (51). The uptake of intensive diary assessments combined with automated and personalized feedback in the HND study is not large and broad enough to be used as a general health promotion approach. Broader usage could possibly be realized by using less intensive assessments, with fewer questionnaire items or having sensor technology replacing self-report measurement, as we are currently experimenting with (e.g., (52)). However, quantifying oneself by means of diary assessments, in a more or less intensive format, may be most promising in a health care context. In this setting, patients, no longer anonymous participants, can use the diary assessments as part of their treatment trajectory to gain insight into their health condition. Their health care provider may serve as an external motivator.

Potential for Research

From a research perspective, the crowdsourcing approach has been very successful. Our largely automated diary study has proven to be an important vehicle for sampling experiences about health and well-being in everyday environments and circumstances in a substantial number of people. Our data sample is among the largest ambulatory assessment samples that we know of. It is a rich source of information collected at low cost and low effort. Whereas the biased nature of our sample needs to be taken into account, it does not necessarily invalidate estimates of associations between variables. Moreover, the validity of idiographic models is not touched by selective nonparticipation because in individual-based analyses individuals serve as their own controls. Furthermore, the large number of assessments for each individual enhances the statistical power for eventual group analyses, which may also be adjusting for sampling bias using sampling weights.

As to explore the scientific value of our data, we investigated the association between somatic symptoms and quality of life. On both the between- and the within-person level, more somatic symptoms were associated with a lower quality of life, but individuals differed substantially in the strength of this association, as we expected. In addition, the experience of somatic symptoms fluctuated more over time than quality of life. The presence of the heterogeneity in within-person association and the differences in temporal stability of the variables demonstrate the importance of analyses on the within-person level as a complement to cross-sectional, group-based analyses.

Idiographic analysis with VAR was performed to create dynamic network feedback to each individual participant. Extant research has shown that this detailed level can be crucial to derive knowledge about the exact dynamics of health-related variables that tend to be overlooked in

TABLE 1. Participants' Evaluation

<table>
<thead>
<tr>
<th>Item</th>
<th>Mean (SD)</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall judgment of the study*</td>
<td>64.5 (14.7)</td>
<td>24–90</td>
</tr>
<tr>
<td>Usability (technical/practical)*</td>
<td>64.8 (20.2)</td>
<td>10–100</td>
</tr>
<tr>
<td>Comprehensibility of the results*</td>
<td>57.1 (24.2)</td>
<td>0–97</td>
</tr>
<tr>
<td>To what extent did you benefit from the study?b</td>
<td>44.4 (22.0)</td>
<td>0–89</td>
</tr>
<tr>
<td>To what extent did the assessments make you more conscious about what you did/felt/thought?b</td>
<td>61.7 (20.8)</td>
<td>0–100</td>
</tr>
<tr>
<td>To what extent did you change your behavior or thinking as a result of the diary study?b</td>
<td>30.9 (22.2)</td>
<td>0–100</td>
</tr>
</tbody>
</table>

* Rated from very bad (0) to very good (100).

b Rated from very little (0) to very much (100).
nomothetic analyses (e.g., (53)). Currently, several idiographic studies using the HND diary data are submitted or in preparation (e.g., (12,54)). To perform a reliable VAR analysis, we set the lower limit to 68 assessments, and approximately 40% of the diary participants met this criterion. The data of the other participants can be used for within-person analysis with other methods, such as person-mean–centered multilevel models in which at least 2 completed assessments per participant are needed. Moreover, large diary data sets like ours open the possibility for statistical procedures such as the Group Iterative Multiple Model Estimation (GIMME) method that enables for the identification of both individual-level associations as well as the identification of commonalities across individuals (55). These methods can help to identify subgroups of people that are characterized by specific dynamic patterns (thus induce “general rules”) and still enable for personalized models that can reveal personal dynamics.

Rich and detailed data such as collected in our study can help create an empirical basis for the development of personalized health promotion solutions. Zooming into the individual level, we may identify key factors driving a person’s symptom patterns, and thus provide clues for targeted intervention. Further research should examine whether targeting key variables in individual variable patterns, such as in the VAR networks, can affect other variables. If so, idiographic data might provide concrete guidance for advice. If it is known from a participant that he smokes to relax, but the dynamic network shows that smoking predicts decrease rather than an increase in relaxed mood (see also Person “B” in Fig. 4), he might be offered the advice to perform an activity that the network does show to have a beneficial effect on relaxation (or when the network lacks information about the latter, to try out relaxation exercises). This approach merits a perspective of health as people's ability to adapt to their environment and self-manage (56,57).

EMA Methodology

There are various methodological issues inherent to EMA studies including recency effects priming effects, and reactions to repeated measurements (58). Because the assessments in the current study were prompted at fixed and equidistant time intervals, participants knew when a prompt was coming. These time intervals were chosen because equidistance is a statistical assumption that needs to be met to perform VAR analysis. The clear disadvantage is that participants can anticipate on assessments as a result of which the ecological validity can be limited. Moreover, it remains unclear to what extent a 30-day study period is representative for a broader time period, or a comparable period later on. Hitherto, we are unaware of studies that investigated the stability of diary study results, but this issue is currently studied in the HND project, by inviting participants to complete a second series of diary assessments for test-retest purposes. Finally, the VAR networks are sometimes hard to interpret when the signs (+ or –) of associations between variables are counterintuitive. Some of the associations may be counterintuitive but still be true (what holds for most people does not have to hold for the individual); in other cases, unmeasured third variables may explain the association. Further development of EMA and statistical techniques can help to sort this out.

CONCLUSION

We successfully built an application for automated diary assessments and personalized feedback on multidirected relationships between health-related variables. The application was used by a small sample of highly educated women, which suggests that the potential of our intensive diary assessment method for large-scale health promotion is limited. Nonetheless, our crowdsourcing study resulted in the collection of a valuable data set that allows for group-level and idiographic analyses that can shed light on etiological processes and may contribute to the development of empirical-based health promotion solutions.

Part of the HowNutsAreTheDutch project was realized in collaboration with the Espria Academy. Espria is a health care group in the Netherlands consisting of multiple companies targeted mainly at the elderly population. We thank all participants of HowNutsAreTheDutch for their participation and valuable contribution to this research project. We also thank the HowNutsAreTheDutch team, RoQua, Esther Hollander, Ester Kuiper and Chantal Bosman for their contributions.

Source of Funding and Conflicts of Interest: The study was funded by a VICI grant (no: 91812607) received by Peter de Jonge from the Netherlands Organization for Scientific Research (NWO-ZonMW) and by the University Medical Center Groningen Research Award 2013, also received by Peter de Jonge. The authors report no conflicts of interest.

REFERENCES

54. Van Loo H, Jeronimus BF, Wichers M. Differential daily life activities and rewards in subjects who experience high symptom levels of anxiety, depression, or both. In preparation.

