A study of $B_c^+ \to K^+ K^- \pi^+$ decays is performed for the first time using data corresponding to an integrated luminosity of 3.0 fb$^{-1}$ collected by the LHCb experiment in pp collisions at center-of-mass energies of 7 and 8 TeV. Evidence for the decay $B_c^+ \to \chi_c(3350) \to K^+ K^- \pi^+$ is reported with a significance of 4.0 standard deviations, giving $\sigma(B_c^+) \times \mathcal{B}(B_c^+ \to \chi_c(3350) \pi^+) = (9.8_{-3.4}^{+3.4} \text{ (stat)} \pm 0.8 \text{ (syst)}) \times 10^{-6}$. Here \mathcal{B} denotes a branching fraction while $\sigma(B_c^+)$ and $\sigma(B^+)$ are the production cross sections for B_c^+ and B^+ mesons. An indication of $b c$ weak annihilation is found for the region $m(K^- \pi^+) < 1.834 \text{ GeV}/c^2$, with a significance of 2.4 standard deviations.

DOI: 10.1103/PhysRevD.94.091102(R) (2016)

A study of $B_c^+ \to K^+ K^- \pi^+$ decays is performed for the first time using data corresponding to an integrated luminosity of 3.0 fb$^{-1}$ collected by the LHCb experiment in pp collisions at center-of-mass energies of 7 and 8 TeV. Evidence for the decay $B_c^+ \to \chi_c(3350) \to K^+ K^- \pi^+$ is reported with a significance of 4.0 standard deviations, giving $\sigma(B_c^+) \times \mathcal{B}(B_c^+ \to \chi_c(3350) \pi^+) = (9.8_{-3.4}^{+3.4} \text{ (stat)} \pm 0.8 \text{ (syst)}) \times 10^{-6}$. Here \mathcal{B} denotes a branching fraction while $\sigma(B_c^+)$ and $\sigma(B^+)$ are the production cross sections for B_c^+ and B^+ mesons. An indication of $b c$ weak annihilation is found for the region $m(K^- \pi^+) < 1.834 \text{ GeV}/c^2$, with a significance of 2.4 standard deviations.

DOI: 10.1103/PhysRevD.94.091102(R) (2016)

Heavy-flavor physics involves studying the decays of hadrons containing at least one b or c valence quark, and offers the possibility of making precision measurements of Standard Model (SM) parameters and detecting effects of new physics. The B_c^+ meson ($b c$), the only currently established hadron having two different heavy-flavor quarks, has the particularity of decaying weakly through either of its flavors.\(^1\) In the SM, the B_c^+ decays with no charm and beauty particles in the final or intermediate states can proceed only via $\bar{b} c \to W^+ \to u\bar{q}$ ($q = d, s$) annihilation, with an amplitude proportional to the product of Cabibbo-Kobayashi-Maskawa matrix elements $V_{cb} V_{ub}$. Calculations predict branching fractions in the range $10^{-8} - 10^{-6}$ [1–3]. Any significant enhancement could indicate the presence of $\bar{b} c$ annihilations involving particles beyond the SM, such as a mediating charged Higgs boson (see, e.g., Ref. [4,5]).

Experimentally, the decays of B_c^+ mesons to three light charged hadrons provide a good way to study such processes. These decay modes have a large available phase space and can include other processes such as $B_c^+ \to D^0(\to K\pi) h^+$ ($h = \pi, K$) [6] mediated by $\bar{b} \to \bar{u} \bar{d}$ and \bar{s} transitions, $B_c^+ \to B_0^0(\to h_1^+ h_2^-) h_3^+$ decays [7] mediated by $c \to q$ transitions, or charmonium modes $B_c^+ \to (c\bar{c})(\to h_1^+ h_2^-) h_3^+ [8]$ mediated by the $b \to c$ transition [9]. In this study, special consideration is given to decays leading to a $K^+ K^- \pi^+$ final state in the region well below the D^0 mass, taken to be $m(K^- \pi^+) < 1.834 \text{ GeV}/c^2$, where, after removing possible contributions from $B_c^+ \to K^+ K^- \pi^+$, only the annihilation process remains. The other contributions listed above are also examined. The decay $B^+ \to D^0(\to K^+ K^-) \pi^+$ is used as a normalization mode to derive

$$R_f = \frac{\sigma(B_c^+) \times \mathcal{B}(B_c^+ \to f)}{\sigma(B^+) \times \mathcal{B}(B^+ \to f)},$$

where \mathcal{B} is the branching fraction, and $\sigma(B_c^+)$ and $\sigma(B^+)$ are the production cross sections of the B_c^+ and B^+ mesons. The quantity R_f is measured in the fiducial region $p_T(B) < 20 \text{ GeV}/c$ and $2.0 < y(B) < 4.5$, where p_T is the component of the momentum transverse to the proton beam and y denotes the rapidity. The data sample used corresponds to integrated luminosities of 1.0 and 2.0 fb$^{-1}$ collected by the LHCb experiment at 7 and 8 TeV center-of-mass energies in pp collisions, respectively. Since the kinematics of B meson production is very similar at the two energies, the ratio $\sigma(B_c^+) / \sigma(B^+)$ is assumed to be the same for all the measurements discussed in this paper.

The LHCb detector is a single-arm forward spectrometer covering the pseudorapidity range $2 < \eta < 5$, described in detail in Refs. [10,11]. The detector allows the reconstruction of both charged and neutral particles. For this analysis, the ring-imaging Cherenkov detectors [12], distinguishing pions, kaons and protons, are particularly important. Simulated events are produced using the software described in Refs. [13–19].

The $B_c^+ \to K^+ K^- \pi^+$ decay candidates are reconstructed applying the same selection procedure as in Ref. [20]. A similar multivariate analysis is implemented, using a boosted decision tree (BDT) classifier [21]. Particle identification (PID) requirements are then applied to reduce the combinatorial background and suppress the cross feed from pions misidentified as kaons. The BDT and PID requirements are optimized to maximize the sensitivity to small event yields.

\(^1\)Charge conjugation is implied throughout the paper.
The B^+_L signal yield is determined from a simultaneous fit in three bins of the BDT output O_{BDT}, 0.04 $< O_{\text{BDT}} < 0.12$, 0.12 $< O_{\text{BDT}} < 0.18$ and $O_{\text{BDT}} > 0.18$, each having similar expected yield but different levels of background [20]. The normalization channel $B^+ \rightarrow D^0(\rightarrow K^+K^-)\pi^+$ uses the same BDT classifier, with tighter PID requirements to suppress the abundant background from $B^+ \rightarrow K^+\pi^+\pi^-$ decays. Its yield is determined requiring $O_{\text{BDT}} > 0.04$, and demanding 1.834 $< m(K^+K^-) < 1.894$ GeV/c^2 to remove charmless $B^+ \rightarrow K^+K^-\pi^+$ candidates.

Signal and background yields are obtained from extended unbinned maximum likelihood fits to the distribution of the invariant mass of the $K^+K^-\pi^+$ combinations. The $B^+_L \rightarrow K^+K^-\pi^+$ and $B^+ \rightarrow K^+K^-\pi^+$ signals are each modelled by the sum of two Crystal Ball functions [22] with a common mean. For $B^+_L \rightarrow K^+K^-\pi^+$ all the shape parameters and the relative yields in each bin of O_{BDT} are fixed to the values obtained in the simulation, while for $B^+ \rightarrow K^+K^-\pi^+$ the mean and the core width are allowed to vary freely in the fit. A Fermi-Dirac function is used to model a possible partially reconstructed component from decays with $K^+K^-\pi^+\pi^0$ final states where the neutral pion is not reconstructed, resulting in a $K^+K^-\pi^+$ invariant mass below the nominal B^+_L or B^+ mass. All shape parameters of these background components are fixed to the values obtained from simulation. The combinatorial background is modelled by an exponential function. Figure 1 shows the result of the fit to determine the yield of the $B^+ \rightarrow D^0(\rightarrow K^+K^-)\pi^+$ channel, $N_y = 8577 \pm 109$.

In the B^+_L region 6.0 $< m(K^+K^-\pi^+) < 6.5$ GeV/c^2, the signals are fitted separately for regions of the phase space corresponding to the different expected contributions: the annihilation region ($m(K^-\pi^+) < 1.834$ GeV/c^2), the $D^0 \rightarrow K^-\pi^+$ region ($1.834 < m(K^-\pi^+) < 1.894$ GeV/c^2) and the $B^0 \rightarrow K^-\pi^+$ region ($5.3 < m(K^+K^-) < 5.4$ GeV/c^2). For the first two regions, the ranges $3.38 < m(K^+K^-) < 3.46$ GeV/c^2 and $5.2 < m(K^+K^-) < 5.5$ GeV/c^2 are vetoed to remove contributions from χ_{c0} (as discussed below) and $B^{0}_{(s)} \rightarrow h^+_1 h^-_2$ decays. A possible signal is seen in the annihilation region, as shown in Fig. 2. The corresponding yield is $N_y = 20.8^{+11.4}_{-9.9}$, with a statistical significance of 2.5 standard deviations (σ), inferred from the difference in the logarithm of the likelihood for fits with and without the signal component.

The distribution of events in the $m^2(K^-\pi^+)$ vs $m^2(K^+K^-)$ plane, for the B^+_L signal region 6.2 $< m(K^+K^-\pi^+) < 6.35$ GeV/c^2, is shown in Fig. 3. A concentration of events is observed around $m^2(K^+K^-) \sim 11$ GeV2/c4. A one-dimensional projection of $m^2(K^+K^-)$ shows clustering near 3.41 GeV/c^2, close to the mass of the charmonium state χ_{c0}. Among all the charmonia, χ_{c0} has the highest branching fraction into the K^+K^- final state [23].
m^2(K^+K^-) \sim 29 \text{ GeV}^2/c^4 for the loose O_{BDT} cut appears to be mainly caused by B^0 \to K^+K^- decays combined with random pions since no peak is seen in m(K^+K^-\pi^+) at the B^+_c mass [9].

To determine the B^+_c \to \chi_{c0}(\to K^+K^-)\pi^+ signal yield, the two-dimensional m(K^+K^-\pi^+) vs m(K^+K^-) distributions are fitted simultaneously for each of the three BDT bins. The m(K^+K^-\pi^+) distribution is modeled in the same way as described above. The m(K^+K^-) distribution is fitted in the range 3.20 < m(K^+K^-) < 3.55 GeV/c^2. The \chi_{c0} \to K^+K^- shape is modeled by a Breit-Wigner function, with mean and width fixed to their known values [23], convolved with a Gaussian resolution function, while a first-order polynomial is used to represent the K^+K^- background. Figure 4 shows the projections of the fit result. The yield obtained is N_{\chi_{c0}} = 20.8^{+7.2}_{-6.4}.
statistical significance of 4.1σ. The fits for the D^0 and B^0 regions, where no signal is observed, can be found at Ref. [9].

For each region of phase space considered, the efficiencies for the signals, ϵ_s, and normalization channel, ϵ_u, are inferred from simulated samples and are corrected using data-driven methods as described in Ref. [20]. They include the effects of reconstruction, selection and detector acceptance. An efficiency map defined in the $m^2(K^-\pi^+)$ vs $m^2(K^-K^-)$ plane is computed. Because of limited statistics, the distribution of the signal events in the annihilation region is not well known. Therefore, the efficiency for the annihilation region is estimated in two ways: first, by taking the simple average efficiency from the map for $m(K^-\pi^+)<1.834$ GeV/c2 and, alternatively, by taking the efficiency weighted according to the signal to the distribution of candidates in data in the $m^2(K^-\pi^+)$ vs $m^2(K^-K^-)$ plane. The average of the two values is taken as the efficiency and the difference is treated as a systematic uncertainty (labeled as “event distribution” in Table I). A correction accounting for the vetoed $m(K^-K^-)$ regions described above is included. In the calculation of the observable R_f the efficiency ratio ϵ_u/ϵ_s is required. The values obtained are 1.698 ± 0.015 for the annihilation region and 1.241 ± 0.012 for the $B_c^+ \rightarrow \chi_{c0}(K^+K^-)\pi^+$ mode. The uncertainties are due to the limited sizes of the simulated samples. The differences between B^+ and B_c^+ efficiencies are caused by the different lifetimes and masses of the two mesons.

The measured quantities are determined as

$$R_{an, KK}\pi = \frac{N_c}{N_u} \times \frac{\epsilon_u}{\epsilon_s(\text{an, } KK\pi)} \times B(B^0 \rightarrow K^+K^-) \times B(D^0 \rightarrow K^+K^-)$$

for the annihilation region and

| TABLE I. Relative systematic uncertainties (in %) of the measurements of $R_{an, KK\pi}$ and $R_{f, \sigma}$. |
|-------------------------------|------------------|------------------|
| Source | $R_{an, KK\pi}$ | $R_{f, \sigma}$ |
| Normalization yield | 1.3 | 1.3 |
| Event distribution | 1.6 | ... |
| Fit model | 2.4 | 2.3 |
| BDT shape | 5.0 | 2.9 |
| PID | 1.0 | 1.0 |
| Simulation | 0.8 | 0.8 |
| Detector acceptance | 0.4 | 0.3 |
| B_c^+ lifetime | 2.0 | 2.0 |
| Hardware trigger | 1.5 | 1.4 |
| Fiducial cut | 0.1 | 0.1 |
| Branching fractions | 3.6 | 6.2 |
| Total | 7.5 | 7.8 |

for the $B_c^+ \rightarrow \chi_{c0}(K^+K^-)$ decay, where ϵ_s are the efficiencies and N_c are the yields obtained from the fits.

Systematic uncertainties are associated with the yield ratios, the efficiency ratios and the branching fractions $B(B_c^+ \rightarrow D^0\pi^+) = (4.81 \pm 0.15) \times 10^{-3}$, $B(D^0 \rightarrow K^-K^+) = (4.01 \pm 0.07) \times 10^{-3}$ and $B(\chi_{c0} \rightarrow K^-K^+) = (5.91 \pm 0.32) \times 10^{-3}$ [23]. Table I summarizes the uncertainties. The yields are affected by the uncertainties on the fit functions and parameters, and by the variation of the yield fractions in the BDT output bins, due to the uncertainty on the BDT output distribution. The uncertainties on the efficiency ratios reflect the PID calibration, the limited sizes of the simulated samples, the effect of the detector acceptance, the B_c^+ lifetime, and fiducial cut corrections.

The results obtained are $R_{an, KK\pi} = (8.0^{+4.3}_{-3.8} (\text{stat}) \pm 0.6 (\text{syst})) \times 10^{-8}$ and $R_{f, \sigma} = (9.8^{+3.4}_{-2.5} (\text{stat}) \pm 0.8 (\text{syst})) \times 10^{-6}$. Accounting for the systematic uncertainties related to the signal extraction, the significances of these measurements are 2.4σ and 4.0σ, respectively. For the annihilation region, a 90(95)% confidence level (C.L.) upper limit, $R_{an, KK\pi} < 15(17) \times 10^{-8}$, is estimated by making a scan of $R_{an, KK\pi}$, comparing profile likelihood ratios for the “signal + background” and “background-only” hypotheses [9,25].

For the modes $B_c^+ \rightarrow B_0^0(\rightarrow K^+K^-)\pi^+$ and $B_c^+ \rightarrow D^0(\rightarrow K^-\pi^+)K^+$, no significant deviation from the background-only hypothesis is observed. Using $B(B_0^0 \rightarrow K^+K^-) = (2.50 \pm 0.17) \times 10^{-5}$ and $B(D^0 \rightarrow K^-\pi^+) = (3.93 \pm 0.04)\%$ [23], the following 90(95)% C.L. upper limits are obtained: $R_{B_0^0} \equiv \sigma(B_0^0)/\sigma(B_c^+) < 4.5(5.4) \times 10^{-3}$ and $R_{D^0K} \equiv \sigma(B_c^+)/\sigma(D^0K) < 1.3(1.6) \times 10^{-6}$. The first limit is consistent with the result of Ref. [26], which gives $R_{B_0^0} < (6.2 \pm 1.0) \times 10^{-4}$, using $\sigma(B_0^0)/\sigma(B_c^+) = 0.258 \pm 0.016$ [27,28].

In summary, a study of B_c^+ meson decays to the $K^+K^-\pi^+$ final state has been performed in the fiducial region $p_T(B) < 20$ GeV/c and $2.0 < y(B) < 4.5$. Evidence for the decay $B_c^+ \rightarrow \chi_{c0}\pi^+$ is found at 4.0σ significance. This result can be compared to the measurement involving another charmonium mode, $\sigma(B_c^+)/\sigma(B_0^0) \times B(B_0^0 \rightarrow J/\psi\pi^+) = (7.0 \pm 0.3) \times 10^{-6}$, obtained from Refs. [23,29].

A indication of $\bar{b}c$ weak annihilation with a significance of 2.4σ is reported in the region $m(K^-\pi^+) < 1.834$ GeV/c2. The branching fraction of $B_c^+ \rightarrow K^{0*}(892)K^+$ has been recently predicted to be $(10.0^{+13.0}_{-3.0}) \times 10^{-7}$ [3]. The contribution of the mode...
\(B^+_c \rightarrow \bar{K}^0(892)(\rightarrow K^-\pi^+)K^+\) to \(R_{\text{susy}}^+\) could be prominent, for which an estimate is made as follows. Using the predictions listed in Ref. [30] for \(B(B^+_c \rightarrow J/\psi\pi^+),\) which span the range \([0.34, 2.9] \times 10^{-3}\), and the value of \(\sigma(B^+_c \rightarrow J/\psi\pi^+)\) based on Ref. [29] quoted above, \(\frac{\sigma(B^+_c \rightarrow J/\psi\pi^+)}{\sigma(B^+_c)} \sim [0.23, 2.1]\%\) is obtained. Combined with the prediction of Ref. [3], a value of \(\frac{\sigma(B^+_c \rightarrow \bar{K}^0(892)(\rightarrow K^-\pi^+)K^+)}{\sigma(B^+_c)} \sim [0.1, 1.7] \times 10^{-8}\) is obtained, including the theoretical uncertainties and the \(\bar{K}^0(892) \rightarrow K^-\pi^+\) branching fraction. This estimate is lower than the \(R_{\text{susy}}^+\) measurement. The statistical uncertainty, however, is at present too large to make a definite statement. The data being accumulated in the current run of the LHC will allow LHCb to clarify whether the weak annihilation process of \(B^+_c\) meson decays involves significant contributions from heavier \(K^-\pi^+\) states, or is enhanced by other sources.

ACKNOWLEDGMENTS

We express our gratitude to our colleagues in the CERN (European Laboratory for Particle Physics) accelerator departments for the excellent performance of the LHC. We thank the technical and administrative staff at the LHCb institutes. We acknowledge support from CERN and from the following national agencies: CAPES, CNPq, FAPERJ and FINEP (Brazil); NSFC (China); CNRS/IN2P3 (France); BMBF, DFG and MPG (Germany); INFN (Italy); FOM and NWO (Netherlands); MNiSW and NCN (Poland); MEN/IFA (Romania); MinES and FANO (Russia); MinECo (Spain); SNSF and SER (Switzerland); NASU (Ukraine); STFC (United Kingdom); NSF (USA). We acknowledge the computing resources that are provided by CERN, IN2P3 (France), KIT and DESY (Germany), INFN (Italy), SURF (Netherlands), PIC (Spain), GridPP (United Kingdom), RRCKI and Yandex LLC (Russia), CSCS (Switzerland), IFIN-HH (Romania), CBPF (Brazil), PL-GRID (Poland) and OSC (USA). We are indebted to the communities behind the multiple open source software packages on which we depend. Individual groups or members have received support from AvH Foundation (Germany), EPLANET, Marie Sklodowska-Curie Actions and ERC (European Union), Conseil Général de Haute-Savoie, Labex ENIGMASS and OCEVU, Région Auvergne (France), RFBR and Yandex LLC (Russia), GVA, XuntaGal and GENCAT (Spain), Herchel Smith Fund, The Royal Society, Royal Commission for the Exhibition of 1851 and the Leverhulme Trust (United Kingdom).

\[1\] S. Descotes-Genon, J. He, E. Kou, and P. Robbe, Nonleptonic charmless \(B_c\) decays and their search at LHCb, Phys. Rev. D 80, 114031 (2009).

\[2\] X. Liu, Z.-J. Xiao, and C.-D. Lu, Pure annihilation type \(B_c \rightarrow M_1M_2\) decays in the perturbative QCD approach, Phys. Rev. D 81, 014022 (2010).

\[4\] W.-S. Hou, Enhanced charged Higgs boson effects in \(B^- \rightarrow \tau\nu, \mu\bar{\nu}\) and \(b \rightarrow \tau\bar{\nu} + X\), Phys. Rev. D 48, 2342 (1993).

\[6\] Z. Rui, Z.-T. Zou, and C.-D. Lu, The two-body \(B_c \rightarrow \bar{D}^{(*)}\) decays in the perturbative QCD approach, Phys. Rev. D 86, 074008 (2012).

\[7\] J. Sun, Y. Yang, Q. Chang, and G. Lu, Phenomenological study of the \(B_c \rightarrow BP, BV\) decays with perturbative QCD approach, Phys. Rev. D 89, 114019 (2014).

\[8\] C.-F. Qiao, P. Sun, D. Yang, and R.-L. Zhu, \(B_c\) exclusive decays to charmonium and a light meson at next-to-leading order accuracy, Phys. Rev. D 89, 034008 (2014).

\[14\] I. Belyaev et al., Handling of the generation of primary events in Gauss, the LHCb simulation framework, J. Phys. Conf. Ser. 331, 032047 (2011).

R. Aaij et al. (LHCb Collaboration), Search for B_c decays to the $p\bar{p}\pi$ final state, Phys. Lett. B 759, 313 (2016).

R. Aaij et al. (LHCb Collaboration), Observation of the Decay $B^{\pm}_c \to B^{\mp}_c \pi^\pm$, Phys. Rev. Lett. 111 (2013) 181801.

Z. Rui and Z.-T. Zhou, S-wave ground state charmonium decays of B_c mesons in the perturbative QCD, Phys. Rev. D 90, 114030 (2014), and references therein.

R. Aaij et al. (LHCb Collaboration), Observation of the Decay $B^{\pm}_c \to B^{\mp}_c \pi^\pm$, Phys. Rev. Lett. 111 (2013) 181801.

Z. Rui and Z.-T. Zhou, S-wave ground state charmonium decays of B_c mesons in the perturbative QCD, Phys. Rev. D 90, 114030 (2014), and references therein.

32 Institute of Theoretical and Experimental Physics (ITEP), Moscow, Russia
33 Institute of Nuclear Physics, Moscow State University (SINP MSU), Moscow, Russia
34 Institute for Nuclear Research of the Russian Academy of Sciences (INR RAN), Moscow, Russia
35 Yandex School of Data Analysis, Moscow, Russia
36 Budker Institute of Nuclear Physics (SB RAS), Novosibirsk, Russia
37 Institute for High Energy Physics (IHEP), Protvino, Russia
38 ICCUB, Universitat de Barcelona, Barcelona, Spain
39 Universidad de Santiago de Compostela, Santiago de Compostela, Spain
40 European Organization for Nuclear Research (CERN), Geneva, Switzerland
41 Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
42 Physik-Institut, Universität Zürich, Zürich, Switzerland
43 Nikhef National Institute for Subatomic Physics, Amsterdam, The Netherlands
44 NSC Kharkiv Institute of Physics and Technology (NSC KIPT), Kharkiv, Ukraine
45 Institute for Nuclear Research of the National Academy of Sciences (KINR), Kyiv, Ukraine
46 University of Birmingham, Birmingham, United Kingdom
47 H.H. Wills Physics Laboratory, University of Bristol, Bristol, United Kingdom
48 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
49 Department of Physics, University of Warwick, Coventry, United Kingdom
50 STFC Rutherford Appleton Laboratory, Didcot, United Kingdom
51 School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
52 School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
53 Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
54 Imperial College London, London, United Kingdom
55 School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
56 Department of Physics, University of Oxford, Oxford, United Kingdom
57 Massachusetts Institute of Technology, Cambridge, MA, United States
58 University of Cincinnati, Cincinnati, OH, United States
59 University of Maryland, College Park, MD, United States
60 Syracuse University, Syracuse, NY, United States
61 Pontificia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil (associated with Universidade Federal do Rio de Janeiro (UFRJ))
62 University of Chinese Academy of Sciences, Beijing, China (associated with Tsinghua University)
63 Institute of Particle Physics, Central China Normal University, Wuhan, Hubei, China (associated with Tsinghua University)
64 Departamento de Fisica, Universidad Nacional de Colombia, Bogota, Colombia (associated with Université Pierre et Marie Curie)
65 Institut für Physik, Universität Rostock, Rostock, Germany (associated with Physikalisches Institut)
66 National Research Centre Kurchatov Institute, Moscow, Russia (associated with Institute of Theoretical and Experimental Physics (ITEP))
67 Instituto de Fisica Corpuscular (IFIC), Universitat de Valencia-CSIC, Valencia, Spain (associated with Universitat de Barcelona)
68 Van Swinderen Institute, University of Groningen, Groningen, The Netherlands (associated with Nikhef National Institute for Subatomic Physics)

a Also at Università di Ferrara, Ferrara, Italy
b Also at Università di Milano Bicocca, Milano, Italy
c Also at Università di Modena e Reggio Emilia, Modena, Italy
d Also at Novosibirsk State University, Novosibirsk, Russia
e Also at LIFAELS, La Salle, Universitat Ramon Llull, Barcelona, Spain
f Also at Università di Bologna, Bologna, Italy
g Also at Università di Roma Tor Vergata, Roma, Italy
h Also at Università di Genova, Genova, Italy
i Also at Scuola Normale Superiore, Pisa, Italy
j Also at Università di Cagliari, Cagliari, Italy
k Also at Università di Padova, Padova, Italy
l Also at Università di Bari, Bari, Italy
m Also at Laboratoire Leprince-Ringuet, Palaiseau, France
Also at Università degli Studi di Milano, Milano, Italy
Also at Universidade Federal do Triângulo Mineiro (UFTM), Uberaba-MG, Brazil
Also at AGH - University of Science and Technology, Faculty of Computer Science, Electronics and Telecommunications, Kraków, Poland
Also at Iligan Institute of Technology (IIT), Iligan, Philippines
Also at Hanoi University of Science, Hanoi, Viet Nam
Also at Università di Roma La Sapienza, Roma, Italy
Also at Università di Pisa, Pisa, Italy
Also at Università della Basilicata, Potenza, Italy
Also at Università di Urbino, Urbino, Italy
Also at P.N. Lebedev Physical Institute, Russian Academy of Science (LPI RAS), Moscow, Russia