A model for void-induced back reaction between radiolytic products in NaCl
Turkin, A.A.; Dubinko, V.I.; Vainshtein, D.I.; Hartog, H.W. den

Published in:
Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms

DOI:
10.1016/S0168-583X(02)00517-7

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2002

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

Download date: 18-09-2023
A model for void-induced back reaction between radiolytic products in NaCl

A.A. Turkin a, V.I. Dubinko a, D.I. Vainshtein b,*, H.W. den Hartog b

a National Science Center Kharkov Institute of Physics and Technology, 61108 Kharkov, Ukraine
b Solid State Physics Laboratory, University of Groningen, 4 Nijenborgh, NL-9747AG Groningen, The Netherlands

Abstract

A kinetic model is formulated for the chemical reaction between radiolytic sodium colloids and gas bubbles, which are brought into contact with each other during the exposure to ionising radiation by the growing voids. The reaction starts with the evaporation of Na atoms into the void due to the localized heat release caused by reactions between chlorine molecules colliding with the colloid surface. It is shown that this exothermic and autocatalytic reaction leads to a sudden temperature increase inside the void, which gives rise to thermoelastic stresses in the surrounding matrix. Tangential stresses might exceed the threshold stress required for localized cleavage of the matrix resulting in crack formation and mechanical instability of NaCl under high dose irradiation.

Keywords: NaCl radiolysis; Radiation-induced fracture

1. Introduction

Rock salt is considered as one of the candidate host rock materials for retrievable storage of high level radioactive waste. Irradiation of NaCl samples generates H and F centres, which are collected together to form chlorine bubbles and sodium colloids [1]. Our experiments [2–4] on different NaCl samples, heavily irradiated with 0.5 MeV electrons up to fluences of 6×10^{18} cm$^{-2}$, have shown that with increasing irradiation dose, voids are formed followed by explosion-like fracture of the material. We explain this by a back reaction between radiolytic products. Indeed, according to our model of void formation [5,6], fast growing voids bring chlorine bubbles and Na colloids into contact, which results in the instantaneous back reaction between the radiolytic Na and Cl. In our previous paper [7] the kinetics of the exothermic back reaction was considered assuming that after colloid–void collision the colloid instantaneously evaporates into the void. Here we present a more detailed description of the kinetics of back reaction taking into account the initial stages of the Na colloid evaporation into the void. It will be shown that the temperature increase due to the reaction gives rise to thermoelastic stresses in the NaCl matrix.

2. Back reaction model

According to the model in [6], radiation-induced chlorine bubbles are the most finely dispersed
extended defects in the sample: \(R_B < R_C < R_V \) (here subscripts B, C and V refer to bubbles, colloids and voids, respectively). Because of their higher growth rate voids collect chlorine gas by sweeping the bubbles by its moving boundary. The concentration of chlorine molecules, \(c_{Cl_2} \), captured by the void equals to \(0.5 V_C \), where \(V_C \) is the colloid volume fraction [8] (all concentrations are defined in terms of atomic fractions). Further growth of the void results in collision with a Na colloid. This is expected to occur when the radius of the void reaches values equal to the mean distance between colloids \(R_V = \left(\frac{3}{4\pi N_C} \right)^{1/3} \), where \(N_C \) is the colloid density. When the void collides with a Na colloid, chlorine molecules start hitting the colloid surface and react with Na atoms. The reaction between \(\text{Cl}_2 \) and Na is a fast exothermic reaction, with null threshold energy [9]. It takes place practically during all collisions of the appropriate particles and proceeds in two stages:

\[
\begin{align*}
\text{Na} + \text{Cl}_2 & \rightarrow \text{NaCl} + \text{Cl} + q_{\text{NaCl}} \\
\text{Na} + \text{Cl} & \rightarrow \text{NaCl} + q_{\text{NaCl}}
\end{align*}
\]

The first stage of the reaction is envisaged as the transfer of a valence electron of the alkali metal atom to the halogen molecule. The metal atom, in effect, uses its valence electron as a “harpoon” in order to pull in the halogen molecule. The largest separation at which the charge transfer can take place from Na to Cl is estimated as [9]

\[
R_{\text{trap}} = \frac{1}{4\pi \varepsilon_0} \frac{e^2}{\rho_{\text{Na}} - \rho_{\text{Cl}}} = 0.95 \text{ nm},
\]

where \(e \) is the electron charge. \(^1\) Due to the formation of one NaCl molecule the energy \(q_{\text{NaCl}} \) is released locally at the colloid surface. The amount of energy is large enough to cause evaporation of several Na atoms, since \(q_{\text{NaCl}} / (q_1 + q_e) = 4.08 \) (Fig. 1). We assume that each reaction at the colloid surface leads to the injection into the void of one chlorine atom and of \(m = 3 \) atoms of sodium. Let us estimate the reaction rate due to thermal fluxes of chlorine atoms and molecules at the colloid surface. The number of reaction events at the colloid surface per second equals the total flux of corresponding particles at the colloid surface,

\[
J_i = \zeta 2\pi R_C^2 \frac{c_i}{\bar{v}_i}, \quad i = \text{Cl}_2, \text{Cl},
\]

where \(\zeta \) is the fraction of the colloid hemisphere exposed to the gas in the void, \(\bar{v}_i = (8k_B T / \pi m_i) \) is the average thermal velocity \((m_i \) is the mass). Because of reaction-induced sputtering, the colloid shrinks with time. Initially, on the average, the total number of Na atoms in the colloid equals the number of chlorine atoms captured by the void. Since the total number of Na atoms is conserved, the colloid radius can be related to the void radius and concentrations, \(c_{\text{Na}} \) and \(c_{\text{NaCl}} \), of Na and NaCl in the gas phase,

\[
R_C = R_V \left(2c_{\text{Cl}_2} \right)_{|T=0} - c_{\text{Na}} - c_{\text{NaCl}} \right)^{1/3} = R_V \left(V_C - c_{\text{Na}} - c_{\text{NaCl}} \right)^{1/3}.
\]

To describe the accumulation and dissipation of heat we use a phenomenological model of diffusion-controlled bimolecular reactions with temperature dependent reaction rate constants. The concentrations of particles in the gas phase change with time according to the following equations:
\[\dot{c}_{Na} = -\alpha_{NaCl}c_{Na}c_{Cl} - \alpha_{NaCl}c_{Na}c_{Cl} + m(j_{Cl} + j_{Cl}), \]
\[\dot{c}_{Cl} = -\alpha_{NaCl}c_{Na}c_{Cl} - j_{Cl}, \]
\[\dot{c}_{Cl} = \alpha_{NaCl}c_{Na}c_{Cl} - \alpha_{NaCl}c_{Na}c_{Cl} + j_{Cl} - j_{Cl}, \]
\[\dot{c}_{NaCl} = \alpha_{NaCl}c_{Na}c_{Cl} + \alpha_{NaCl}c_{Na}c_{Cl} + j_{Cl} + j_{Cl}. \]

(5)

Differently from the equations in [7], these equations contain terms describing contributions to the rates of change due to reactions at the colloid surface, which are induced by thermal fluxes of chlorine atoms and molecules (Eqs. (3) and (4)),

\[j_i = \frac{3\omega}{4\pi R_V} J_i = \zeta \frac{3}{2R_V} c_i(v_i)(V_C - c_{Na} - c_{NaCl})^{2/3}, \]

\[i = Cl_2, Cl. \]

(6)
The diffusion-controlled reaction rates \(\alpha_{ij} \) are given by

\[\alpha_{ij} = \frac{4\pi r_{ij}}{\omega} (D_i + D_j), \quad D_i = \frac{1}{3} \lambda_i(v_i), \]

i, j = Na, Cl, Cl, NaCl,

(7)

where \(D_i \) and \(D_j \) are the diffusion coefficients; \(r_{ij} \) is the distance of closest approach between the participating atoms/molecules \(i \) and \(j \), which is greater than the sum of the radii \(r_i + r_j \), but less than \(R_{trap} \) (see Eq. (2)). The collision free path \(\lambda_i \) in the gas mixture is defined as

\[\lambda_i = \omega \left(\sum_j c_j \pi (r_i + r_j)^2 \sqrt{1 + m_i/m_j} \right)^{-1}. \]

(8)

Using the heat balance condition equation describing the time evolution of the temperature inside the void is

\[\frac{dT}{dt} = \frac{[g_{NaCl} + (2C_1 - C_2)T]g_{NaCl}c_{Na}c_{Cl} + g_{NaCl}g_{NaCl}c_{Na}c_{Cl} - 3\omega}{C_1(c_{Na} + c_{Cl}) + C_2(c_{NaCl} + c_{Cl})} \]

\[- \frac{j_{out}}{R_V} C_1(c_{Na} + c_{Cl}) + C_2(c_{NaCl} + c_{Cl}) \]

\[- T \frac{C_1(m + 1)/c_{Na} + C_2(m - 1)/c_{Cl}}{C_1(c_{Na} + c_{Cl}) + C_2(c_{NaCl} + c_{Cl})}. \]

(9)

To find the heat flux from the void to the matrix \(j_{out} \) the temperature \(T(t) \) inside the void is assumed to be uniform and equal to its value at the void boundary. Then \(j_{out} \) is given by [8]

\[j_{out} = \frac{k}{\sqrt{\pi a}} \frac{d}{dt} \int_0^t \frac{T(t) - T_0}{\sqrt{t - \tau}} d\tau + \frac{k}{R_V} (T(t) - T_0), \]

(10)

where \(a = k/C_m d_m \) is the thermal diffusivity.

Eqs. (5), (9) and (10) form a complete set of integro-differential equations with the initial conditions

\[T(0) = T_0, \quad c_{Cl}(0) = V_C/2, \]

\[c_{Na}(0) = c_{Cl}(0) = c_{NaCl}(0) = 0. \]

(11)

Once the set is solved, the temperature distribution \(\Theta(r, t) + T_0 \) around the void can be found,

\[\Theta(r, t) = \frac{R_V(r - R_V)}{2r \sqrt{\pi a}} \int_0^t \frac{T(t) - T_0}{(t - \tau)^{3/2}} \]

\[\times \exp \left(-\frac{(r - R_V)^2}{4a(t - \tau)} \right) d\tau. \]

(12)

A non-uniform temperature distribution produces thermoelastic stresses in an elastic medium [10]. In a spherical system of coordinates the tangential stresses around the void \(\sigma_{\theta \theta} \) and \(\sigma_{\phi \phi} \) are greater than radial stresses,

\[\sigma_{\theta \theta} = \sigma_{\phi \phi} = \sigma_{Gr}, \]

\[= 0.5\sigma_{Gr} = 0.5 \sqrt{\frac{E \gamma}{\pi(1 - \nu^2)R_V}}. \]

(13)

where the last term is due to the gas pressure inside the void. To find the criterion for the matrix stability against cracking the thermoelastic stresses should be compared with the threshold stress required for cleavage of the matrix [11]

\[\sigma_{Gr}(R_V) = 0.5\sigma_{Gr} = 0.5 \sqrt{\frac{E \gamma}{\pi(1 - \nu^2)R_V}}. \]

(14)

where \(\sigma_{Gr} \) is the stress corresponding to the Griffith crack of the length \(2R_V \). Note that real voids are not spherical [2-4], so the actual stresses can be higher than estimated by Eq. (13).
3. Results of calculations

The set of Eqs. (5), (9)–(11) was solved numerically using material parameters listed in Table 1. The algorithm of the solution is described in [7]. It was found that the time dependence of the back reaction is controlled by the evaporation process and heat conduction into the matrix. Reaction in the void volume is much faster than these two processes. Below we present the typical results of calculations. Fig. 2(a) shows time dependence of concentrations of reagents and reaction products. The concentration of Na atoms in the gas phase is small because the evaporated atoms react very quickly with chlorine molecules and atoms in the void. Fig. 2(b) depicts the build up and decrease of the temperature at the void surface during the back reaction. The temperature increase results in the appearance of large thermoelastic stresses around the void. The time dependence of the tangential stresses at the void surface is shown in Fig. 2(c) along with the threshold value \(\sigma_{fr} \) for the stress to cause cleavage. Assuming that the crack propagates with the sound velocity, we estimate that the crack may propagate over a distance of about \(10^3 \) nm during the time interval when the local stresses exceed the threshold stress. Fig. 3 shows the dependence of the maximum tangential stress at the void surface, \(\max(\sigma_{00}(r,t)) \) on the colloid parameters. It is seen that the matrix is stable with respect to crack formation (\(\max(\sigma_{00}(r,t)) < \sigma_{fr} \)) at low volume fractions and/or high colloid densities. The maximum stress increases approximately linearly with the colloid volume fraction. Fig. 4 summarizes the results of this work in the form of a stability diagram for irradiated NaCl samples. This diagram correlates with experimental data – NaCl samples doped with Li and Br exhibit enhanced mechanical stability, whereas

Table 1

<table>
<thead>
<tr>
<th>Material parameters used in calculations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matrix temperature, (T_0), K</td>
</tr>
<tr>
<td>Multiplication coefficient, (m)</td>
</tr>
<tr>
<td>Fraction of colloid hemisphere exposed to Cl gas, (\zeta)</td>
</tr>
<tr>
<td>Ionization potential of Na, (p_{Na}), eV</td>
</tr>
<tr>
<td>Electron affinity of Cl, (\phi_{Cl}), eV</td>
</tr>
<tr>
<td>Heat of formation of NaCl-molecule, (q_{NaCl}), eV</td>
</tr>
<tr>
<td>Heat of fusion of Na, (q_f), eV atom(^{-1})</td>
</tr>
<tr>
<td>Heat of vaporization of Na, (q_e), eV atom(^{-1})</td>
</tr>
<tr>
<td>Density of NaCl, (d_{NaCl}), kg m(^{-3})</td>
</tr>
<tr>
<td>Atomic volume of NaCl, (\omega), nm(^3)</td>
</tr>
<tr>
<td>Young’s modulus of NaCl, (E), Gpa</td>
</tr>
<tr>
<td>Poisson ratio, (\nu)</td>
</tr>
<tr>
<td>Thermal conductivity of NaCl, (k), W m(^{-1}) K(^{-1})</td>
</tr>
<tr>
<td>Specific heat capacity of NaCl, (C_w), J kg(^{-1}) K(^{-1})</td>
</tr>
<tr>
<td>Specific heat capacity at a constant volume of mono and di-atomic gases, (C_1) and (C_2), per particle</td>
</tr>
<tr>
<td>Coefficient of thermal expansion, (\alpha), K(^{-1})</td>
</tr>
<tr>
<td>Sound velocity in NaCl, (V_{sound}), m s(^{-1})</td>
</tr>
<tr>
<td>Surface energy of NaCl, (\gamma_v), J m(^{-2})</td>
</tr>
</tbody>
</table>
NaCl samples with K and natural rock salt are characterized by an early start and a rapid progress of the void-crack transition, resulting in unconstrained propagation of cracks and subsequent explosive fracture of the material.

4. Conclusions

- Growing voids in NaCl subjected to ionizing irradiation absorb radiolytic chlorine and sodium providing a place for instantaneous back reactions accompanied by rapid heat release.
- The maximum thermoelastic tangential stresses induced by the back reaction at the void surface increase almost linearly with colloid volume fraction and might easily exceed the threshold pressure required for crack propagation from the void along one of the (1 0 0) cleavage planes of the matrix.
- The diagram of mechanical stability agrees with experimental data and shows that no fracture is expected in NaCl materials containing a low volume fraction of voids and/or a high colloid density.

Acknowledgements

The authors are grateful to Prof. H.J. de Haan for discussions concerning the problem of void heating as a result of back reactions of radiolytic products.

References