Supplementary material

Evidence for Cobalt-Cobalt bond homolysis and wavelength dependent CO loss in (μ₂-alkyne)Co₂(CO)₆ complexes

Nicola M. Boyle, Anthony C. Coleman, Conor Long, Kate L. Ronayne, Wesley R. Browne, Ben L. Feringa, Mary T. Pryce*

Contents

1. General Experimental details S2
2. Synthesis of Metal Carbonyls S3
3. Quantum yield determinations S5
4. Theoretical calculations S15
5. Examples of Time Resolved IR kinetics for Compounds 1 and 2, and IR data for the parent compounds and intermediate produced S21
6. References S23
1. **General Experimental Details**

All manipulations were carried out under an atmosphere of argon or nitrogen using standard Schlenk techniques. Silica Gel (Merck) was used as received. All mobile phases for column chromatography were dried over MgSO$_4$ before use. All solutions were deoxygenated by purging with argon or nitrogen for ~10 min. Column chromatography was carried out using neutral silica gel or neutral aluminum oxide. Diphenyl acetylene, 1-ethynylferrocene, and dicobalt octacarbonyl were obtained from Sigma-Aldrich and used without further purification. Carbon monoxide was obtained from Air Products Ltd. Steady state IR spectra were recorded on a Perkin-Elmer 2000 FTIR spectrophotometer (2 cm$^{-1}$ resolution) in a 0.1 mm sodium chloride liquid cell using spectroscopic grade pentane, cyclohexane, and dichloromethane. NMR spectra were recorded on a Varian VXR-300 (1H NMR at 300 MHz, 13C NMR at 75.5 MHz), or on a Varian Mercury Plus 400 (1H NMR at 400 MHz, 13C NMR at 100 MHz). Chemical shifts (δ) are denoted in ppm and referenced to the residual solvent peak unless stated otherwise (CDCl$_3$, 1H δ = 7.24, 13C δ = 77.0). The splitting patterns are designated as follows: s (singlet), d (doublet), dd (double doublet), t (triplet), q (quartet), m (multiplet), and br (broad). Coupling constants (J) between two nuclei separated by n chemical bonds are denoted in hertz (Hz). Chemical ionisation mass spectra (MS-CI+), electron impact (MS-EI+), and exact mass determination (HRMS) were recorded on a AEI MS-902 or Applied Biosystems Q-STAR mass spectrometer. Electrospray ionisation mass spectrometry (MS-ESI+) was performed on a Triple Quadrupole LC-MS-MS mass spectrometer (API 3000, Perkin-Elmer Sciex Instruments). UV-vis spectra were recorded on a Hewlett-Packard 8453 diode array. Picosecond time resolved infra-red spectroscopy were carried out as described previously.i
2. Synthesis

2-(Phenylethynyl)thiophene was prepared via the Sonogashira coupling reaction.ii Anhydrous triethylamine was added to a round bottom flask, purged with argon for 10 min and then charged with 2-bromothiophene (3.0 mmol, 0.29 ml). Following this a catalytic quantity of bis(triphenylphosphine)palladium(II)chloride (0.06 mmol, 42 mg, 2 %), triphenylphosphine (0.12 mmol, 32 mg, 4%) and cuprous iodide (0.06 mmol, 11 mg, 2 %) were added to the flask followed by 1-phenylacetylene (4.5 mmol, 0.63 ml) in rapid succession. The reaction mixture was heated under a gentle reflux overnight under an inert atmosphere and then allowed to cool to room temperature. Solvent and excess aryl alkyne were removed in vacuo. The crude product was extracted from the brown oil by first washing in ca. 5 ml of dichloromethane followed by the addition of ca. 25 ml of hexane. The solvent was then decanted off. This process was repeated several times until the washings remained colourless. The washings were combined and dried over magnesium sulphate. The solvent was then removed in vacuo affording a viscous oil. The crude product was purified by Kugelrohr distillation (160 °C, 0.04 mmHg) affording a white solid. Yield: 502 mg, 2.73 mmol, 91 %. Spectroscopic data were in agreement with reported data.iii 1H-NMR (CDCl$_3$): δ 7.54 – 7.51 (2H, m), 7.37 – 7.34 (3H, m), 7.30 – 7.29 (2H, m), 7.01 (1H, dd, $J = 4.8, 3.9$ Hz). 13C-NMR (CDCl$_3$): δ 131.93, 131.44, 128.45, 128.40, 127.29, 127.13, 123.34, 122.94. IR (pentane) ν (C≡C): 2130 cm$^{-1}$, m.p. = 51-52 °C.

$(\mu_2$-C$_6$H$_5$CCC$_6$H$_5$)Co$_2$(CO)$_6$ (I)

$(\mu_2$-C$_6$H$_5$CCC$_6$H$_5$)Co$_2$(CO)$_6$ (I) was prepared according to the method outlined by Champeil and Draperiv with minor modifications. Diphenylacetylene (1.12 mmol / 200 mg) was dissolved in 30 ml of hexane and purged with nitrogen for 10 min. Dicobalt octacarbonyl (1.12 mmol / 384 mg) was added to the reaction vessel and stirred under a stream of nitrogen for 20 h (in the dark). The product mixture (deep red) was purified by column chromatography on silica using petroleum ether (40:60) as mobile phase. A deep red fraction was collected and the solvent removed in vacuo. Yield: 483 mg, 1.04 mmol, 93 %. 1H-NMR (400 MHz, CDCl$_3$): δ 7.60 (2H, m), 7.58 (2H, m), 7.39-7.37 (3H, m), 7.35-7.33 (3H, m), IR (n-pentane): ν (CO) 2026, 2055, 2089 cm$^{-1}$.
(µ₂-C₆H₅CCC₄H₄S)Co₂(CO)₆ (2)
(µ₂-C₆H₅CCC₄H₄S)Co₂(CO)₆ (2) was prepared in a manner similar to that described above. 2-phenylethynyl-thiophene (0.80 mmol / 150 mg) was dissolved in 30 ml of hexane and purged with nitrogen for 10 min. Dicobalt octacarbonyl (0.85 mmol / 290 mg) was then added to the reaction vessel and stirred under a stream of nitrogen for 20 h (in the dark). The product mixture (deep red) was purified by column chromatography on silica using petroleum ether (40:60) as mobile phase. A deep red fraction was collected and the solvent removed in vacuo. Yield: 338 mg, 0.72 mmol, 90 %.

¹H-NMR (600 MHz, CDCl₃): δ 7.70-7.68 (2H, m), 7.42-7.35 (5H, m), 7.06-7.04 (1H, m); ¹³C-NMR (CDCl₃), δ 198.6, 141.6, 137.2, 137.6, 128.9, 128.7, 128.4, 127.9, 126.7, 91.6, 82.0. IR (n-pentane): v (CO) 2034, 2062, 2095 cm⁻¹.

(µ₂-Ethylnylferrocene)Co₂(CO)₆ (3)
(µ₂-Ethylnylferrocene)Co₂(CO)₆ (3) was prepared in a similar manner. Ethynylferrocene (0.95 mmol / 200 mg) was dissolved in 30 ml of hexane and purged with nitrogen for 10 min. Dicobalt octacarbonyl (0.93 mmol / 320 mg) was added to the reaction vessel and stirred under a stream of nitrogen for 18 h (in the dark). The product mixture (deep green) was purified by column chromatography on silica using petroleum ether (40:60) as mobile phase. A deep green fraction was collected and the solvent removed in vacuo. Yield: 210 mg, 0.42 mmol, 44 %.

Spectroscopic data were in good agreement with reported data.

¹H NMR (400 MHz, CDCl₃): 6.28 (s, 1H), 4.38 (d, 2H), 4.32 (s, 5H), 4.16 (d, 2H); ¹³C-NMR (100 MHz, CDCl₃): δ 75-76 (C≡C), 69.2 (α, Cp), 70.1 (Cp), 70.5 (β, Cp); IR (CH₂Cl₂): v (CO) 2091, 2053, 2030, 2024 and 2210 cm⁻¹; Mass Spec.: E.I m/z 328 (-6 x CO), 356 (-5 x CO); HRMS (E.I.) calcd. for C₁₈H₁₀O₆Co₂Fe: 495.8491, found 495.8514; Anal. Calcd. for C₁₈H₁₀O₆Co₂Fe: C 43.59 %, H 2.03 %, Found C 43.46 %, 1.99 %
3. Quantum yield determinations

Photochemical quantum yields were determined by actinometry using potassium ferrioxalate as the reference reaction. Solutions of complexes 1-3 were irradiated at each excitation wavelength in pentane, with PPh$_3$ (10% molar excess) as trapping agent. Irradiation was achieved using band pass filtering of the output of a 150 W Hg arc lamp. Conversions of the starting materials were driven to a maximum of 10%, to minimize the effect of product absorption at the excitation wavelength. Changes in absorbance were monitored at 400 nm, which corresponds to λ_{max} of the photoproduct, as displayed in figure 1.

![Figure 1. UV-vis spectra for (µ$_2$-C$_6$H$_5$CCC$_4$H$_4$S)Co$_2$(CO)$_6$ (2) (solid dark line) and (µ$_2$-C$_6$H$_5$CCC$_4$H$_4$S)Co$_3$(PPh$_3$) (dashed line) in pentane.](image)

<table>
<thead>
<tr>
<th>compound</th>
<th>Irradiation wavelength</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>313 nm</td>
</tr>
<tr>
<td>1</td>
<td>0.078</td>
</tr>
<tr>
<td>2</td>
<td>0.145</td>
</tr>
<tr>
<td>3</td>
<td>0.269</td>
</tr>
</tbody>
</table>

Table 1 Quantum yields for CO-loss for the (µ$_2$-alkyne)Co$_2$(CO)$_6$ complexes studied.
(a) Quantum yield determinations of CO loss for \([\mu_2-C_6H_5CCC_6H_5]Co_2(CO)_6\) \(1\)

Molar excitation coefficients at 400 nm

\[
\begin{align*}
(\mu_2-C_6H_5CCC_6H_5)Co_2(CO)_6 & \quad 1,140 \text{ L mol}^{-1} \text{ cm}^{-1} \\
(\mu_2-C_6H_5CCC_6H_5)Co_2(CO)_5(PPh_3) & \quad 8,179 \text{ L mol}^{-1} \text{ cm}^{-1}
\end{align*}
\]

Irradiation of \(1\) at 313 nm (21 mins)

Increase in intensity of band at 400 nm = 0.16

Molar increase = \(2.34 \times 10^{-5}\) molar

Moles converted per second = \(1.9 \times 10^{-8}\) moles/s

For a 3 cm\(^3\) sample, number of molecules photolysed per second = \(3.35 \times 10^{13}\) molecules/s

Change in absorbance of actinometer solution at 510 nm

Absorbance at 510 nm = 0.8228

Number of Fe\(^{2+}\) ions = \(6.70 \times 10^{17}\) ions

Using a quantum yield for Fe\(^{2+}\) production of 1.24 at 313 nm

Number of photons emitted by the source at 313 nm = \(5.40 \times 10^{17}\)

Number of photons emitted per second by the source at 313 nm = \(4.29 \times 10^{14}\) photons/s

Number of photons absorbed by the sample = \(4.29 \times 10^{14}\) photons/s

Quantum yield of photochemical reaction is \(\frac{3.35 \times 10^{13}}{4.29 \times 10^{14}} = 0.078\)

Irradiation of \(1\) at 365 nm (20 mins)

Increase in intensity of band at 400 nm = 0.15

Molar increase = \(2.19 \times 10^{-5}\) molar

Moles converted per second = \(1.8 \times 10^{-8}\) moles/s

For a 3 cm\(^3\) sample, number of molecules photolysed per second = \(3.30 \times 10^{13}\) molecules/s

Change in absorbance of actinometer solution at 510 nm

Absorbance at 510 nm = 1.70

Number of Fe\(^{2+}\) ions = \(1.39 \times 10^{18}\) ions
Using a quantum yield for Fe2+ production of 1.21 at 365 nm

Number of photons emitted by the source at 365 nm = 5.40 x 1017

Number of photons emitted per second by the source at 313 nm = 9.56 x 1014 photons/s

Number of photons absorbed by the sample = 9.56 x 1014 photons/s

Quantum yield of photochemical reaction is (3.30 x 1013) / (9.56 x 1014) = 0.035

Irradiation of I at 405 nm (15 mins)

Increase in intensity of band at 400 nm = 0.074

Molar increase = 1.09 x 105 molar

Moles converted per second = 1.2 x 108 moles/s

For a 3 cm3 sample, number of molecules photolysed per second = 2.19 x 1013 molecules/s

Change in absorbance of actinometer solution at 510 nm

Absorbance at 510 nm = 1.02

Number of Fe2+ ions = 8.31 x 1017 ions

Using a quantum yield for Fe2+ production of 1.14 at 405 nm

Number of photons emitted by the source at 405 nm = 7.29 x 1017

Number of photons emitted per second by the source at 405 nm = 8.10 x 1014 photons/s

Number of photons absorbed by the sample = 8.10 x 1014 photons/s

Quantum yield of photochemical reaction is (2.19 x 1013) / (8.10 x 1014) = 0.027

Irradiation of I at 546 nm (60 mins)

Increase in intensity of band at 400 nm = 0.114

Molar increase = 1.69 x 105 molar

Moles converted per second = 5.0 x 109 moles/s

For a 3 cm3 sample, number of molecules photolysed per second = 8.47 x 1012 molecules/s
Change in absorbance of actinometer solution at 510 nm

Absorbance at 510 nm = 0.123

Number of Fe$^{2+}$ ions = 1.00 x 1017 ions

Using a quantum yield for Fe$^{2+}$ production of 0.15 at 546 nm

Number of photons emitted by the source at 546 nm = 6.68 x 1017

Number of photons emitted per second by the source at 546nm = 1.87 x 1014 photons/s

Number of photons absorbed by the sample = 1.87 x 1014 photons/s

Quantum yield of photochemical reaction is (8.47 x 1012) / (1.87 x 1014) = 0.045
(b) Quantum yield determinations of \([\mu_2-C_6H_5CCC_4H_4S]Co_2(CO)_6\) (2)

Molar excitation coefficients at 400 nm
\[
\begin{align*}
(\mu_2-C_6H_5CCC_4H_4S)Co_2(CO)_6 & \quad 2.314 \text{ L mol}^{-1} \text{ cm}^{-1} \\
(\mu_2-C_6H_5CCC_4H_4S)Co_2(CO)_5(PPh_3) & \quad 4.829 \text{ L mol}^{-1} \text{ cm}^{-1}
\end{align*}
\]

Irradiation of 2 at 313 nm (10 mins)

Increase in intensity of band at 400 nm = 0.077
Molar increase = 3.07 \times 10^{-5} \text{ molar}
Moles converted per second = 5.1 \times 10^{-8} \text{ moles/s}
For a 3 cm\(^3\) sample, number of molecules photolysed per second = 9.21 \times 10^{13} \text{ molecules/s}

Change in absorbance of actinometer solution at 510 nm

Absorbance at 510 nm = 0.5862
Number of Fe\(^{2+}\) ions = 4.77 \times 10^{17} \text{ ions}
Using a quantum yield for Fe\(^{2+}\) production of 1.24 at 313 nm
Number of photons emitted by the source at 313 nm = 3.85 \times 10^{17}
Number of photons emitted per second by the source at 313 nm = 6.41 \times 10^{14} \text{ photons/s}
Number of photons absorbed by the sample = 6.41 \times 10^{14} \text{ photons/s}
Quantum yield of photochemical reaction is \((9.21 \times 10^{13}) / (6.41 \times 10^{14}) = 0.145\)

Irradiation of 2 at 365 nm (15 min)

Increase in intensity of band at 400 nm = 0.099
Molar increase = 3.94 \times 10^{-5} \text{ molar}
Moles converted per second = 4.4 \times 10^{-8} \text{ moles/s}
For a 3 cm\(^3\) sample, number of molecules photolysed per second = 7.91 \times 10^{13} \text{ molecules/s}

Change in absorbance of actinometer solution at 510 nm
Absorbance at 510 nm = 1.3191
Number of Fe\(^{2+}\) ions = 1.07 \times 10^{18} \text{ ions}

Using a quantum yield for Fe\(^{2+}\) production of 1.21 at 365 nm
Number of photons emitted by the source at 365 nm = 8.87 \times 10^{17}
Number of photons emitted per second by the source at 313 nm = 9.85 \times 10^{14} \text{ photons/s}
Number of photons absorbed by the sample = 9.85 \times 10^{14} \text{ photons/s}
Quantum yield of photochemical reaction is (7.91 \times 10^{13}) / (9.85 \times 10^{14}) = 0.080

Irradiation of 2 at 405 nm (15 mins)

Increase in intensity of band at 400 nm = 0.046
Molar increase = 1.83 \times 10^{-5} \text{ molar}
Moles converted per second = 2.0 \times 10^{-8} \text{ moles/s}
For a 3 \text{ cm}^3 sample, number of molecules photolysed per second = 3.67 \times 10^{13} \text{ molecules/s}

Change in absorbance of actinometer solution at 510 nm
Absorbance at 510 nm = 1.02
Number of Fe\(^{2+}\) ions = 8.31 \times 10^{17} \text{ ions}
Using a quantum yield for Fe\(^{2+}\) production of 1.14 at 405 nm
Number of photons emitted by the source at 405 nm = 7.29 \times 10^{17}
Number of photons emitted per second by the source at 405 nm = 8.10 \times 10^{14} \text{ photons/s}
Number of photons absorbed by the sample = 8.10 \times 10^{14} \text{ photons/s}
Quantum yield of photochemical reaction is (3.67 \times 10^{13}) / (8.10 \times 10^{14}) = 0.045

Irradiation of 2 at 546 nm (40 mins)

Increase in intensity of band at 400 nm = 0.073
Molar increase = 2.91 \times 10^{-5} \text{ molar}
Moles converted per second = 1.2 \times 10^{-9} \text{ moles/s}
For a 3 cm3 sample, number of molecules photolyzed per second = 2.19×10^{13} molecules/s

Change in absorbance of actinometer solution at 510 nm

Absorbance at 510 nm = 0.0907

Number of Fe$^{2+}$ ions = 7.38×10^{16} ions

Using a quantum yield for Fe$^{2+}$ production of 0.15 at 546 nm

Number of photons emitted by the source at 546 nm = 4.92×10^{17}

Number of photons emitted per second by the source at 546 nm = 2.05×10^{14} photons/s

Number of photons absorbed by the sample = 2.05×10^{14} photons/s

Quantum yield of photochemical reaction is $(2.19 \times 10^{13}) / (2.05 \times 10^{14}) = 0.106$
(e) Quantum yield determinations of \([\mu_2\text{-Ethynylferrocene}]\text{Co}_2(\text{CO})_6\) \((3)\)

Molar excitation coefficients at 400 nm
\((\mu_2\text{-Ethynylferrocene})\text{Co}_2(\text{CO})_6\) \((3)\) \(1.497 \text{ L mol}^{-1} \text{ cm}^{-1}\)
\((\mu_2\text{-Ethynylferrocene})\text{Co}_2(\text{CO})_5(\text{PPh}_3)\) \(2.717 \text{ L mol}^{-1} \text{ cm}^{-1}\)

Irradiation of 3 at 313 nm (20 mins)
Increase in intensity of band at 400 nm = 0.072
Molar increase = \(1.21 \times 10^{-4}\) molar
Moles converted per second = \(1.0 \times 10^{-7}\) moles/s
For a 3 cm\(^3\) sample, number of molecules photolyzed per second = \(1.81 \times 10^{14}\) molecules/s

Change in absorbance of actinometer solution at 510 nm
Absorbance at 510 nm = 1.2258
Number of Fe\(^{2+}\) ions = \(9.98 \times 10^{17}\) ions
Using a quantum yield for Fe\(^{2+}\) production of 1.24 at 313 nm
Number of photons emitted by the source at 313 nm = \(8.04 \times 10^{17}\)
Number of photons emitted per second by the source at 313 nm = \(6.71 \times 10^{14}\) photons/s
Number of photons absorbed by the sample = \(6.71 \times 10^{14}\) photons/s
Quantum yield of photochemical reaction is \((1.81 \times 10^{14}) / (6.71 \times 10^{14}) = 0.269\)

Irradiation of 3 at 365 nm (25 mins)
Increase in intensity of band at 400 nm = 0.084
Molar increase = \(6.68 \times 10^{-5}\) molar
Moles converted per second = \(4.6 \times 10^{-8}\) moles/s
For a 3 cm\(^3\) sample, number of molecules photolyzed per second = \(8.26 \times 10^{13}\) molecules/s

Change in absorbance of actinometer solution at 510 nm

S12
Absorbance at 510 nm = 1.993
Number of Fe$^{2+}$ ions = 1.62×10^{18} ions
Using a quantum yield for Fe$^{2+}$ production of 1.21 at 365 nm
Number of photons emitted by the source at 365 nm = 1.34×10^{18}
Number of photons emitted per second by the source at 365 nm = 1.16×10^{15} photons/s
Number of photons absorbed by the sample = 1.16×10^{15} photons/s
Quantum yield of photochemical reaction is $(8.26 \times 10^{13}) / (1.16 \times 10^{15}) = 0.071$

Irradiation of 3 at 405 nm (25 mins)

Increase in intensity of band at 400 nm = 0.044
Molar increase = 3.61×10^{-5} molar
Moles converted per second = 2.4×10^{-8} moles/s
For a 3 cm3 sample, number of molecules photolysed per second = 4.35×10^{13} molecules/s

Change in absorbance of actinometer solution at 510 nm

Absorbance at 510 nm = 1.952
Number of Fe$^{2+}$ ions = 1.59×10^{18} ions
Using a quantum yield for Fe$^{2+}$ production of 1.14 at 405 nm
Number of photons emitted by the source at 405 nm = 1.39×10^{18}
Number of photons emitted per second by the source at 405 nm = 9.30×10^{14} photons/s
Number of photons absorbed by the sample = 9.30×10^{14} photons/s
Quantum yield of photochemical reaction is $(4.35 \times 10^{13}) / (9.30 \times 10^{14}) = 0.047$

Irradiation of 3 at 546 nm (35 mins)

Increase in intensity of band at 400 nm = 0.133
Molar increase = 5.27×10^{-5} molar
Moles converted per second = 2.5×10^{-8} moles/s
For a 3 cm\(^3\) sample, number of molecules photolysed per second = 4.54 x 10\(^{13}\) molecules/s

Change in absorbance of actinometer solution at 510 nm
Absorbance at 510 nm = 0.075
Number of Fe\(^{2+}\) ions = 6.14 x 10\(^{16}\) ions
Using a quantum yield for Fe\(^{2+}\) production of 0.15 at 546 nm
Number of photons emitted by the source at 546 nm = 4.09 x 10\(^{17}\)
Number of photons emitted per second by the source at 546 nm = 1.95 x 10\(^{14}\) photons/s
Number of photons absorbed by the sample = 4.09 x 10\(^{14}\) photons/s
Quantum yield of photochemical reaction is \(\frac{4.54 \times 10^{13}}{1.95 \times 10^{14}} = 0.233\)
4. Theoretical methods

Initial coordinates for the structural optimization of \((\mu\text{-C}_2\text{H}_2)\text{Co}_2(\text{CO})_6\) were obtained from Platts et al. The B3LYP/LANL2DZp model chemistry was used for all the calculations as implemented in Gaussian03.

The Hessian matrix was calculated to predict the infrared spectrum of \((\mu\text{-C}_2\text{H}_2)\text{Co}_2(\text{CO})_6\). The predicted \(\nu_{\text{CO}}\) bands of this complex were corrected by comparison with the published IR spectrum. This yielded a correction factor of 1.0222 which was then used to correct the calculated \(\nu_{\text{CO}}\) bands of the equivalent ground state triplet species.

<table>
<thead>
<tr>
<th></th>
<th>(\nu_{\text{CO}}) (cm(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obs.</td>
<td>2097.8 2058.5 2033.7 2028.1 2016.6</td>
</tr>
<tr>
<td>Singlet</td>
<td>2097.9 2051.3 2037.6 2035.1 2012.7</td>
</tr>
<tr>
<td>Triplet</td>
<td>2087.5 2057.9 2024.1 2021.7 2015.2</td>
</tr>
<tr>
<td>(\Delta \nu)</td>
<td>10.3 0.6 9.6 6.3 1.4</td>
</tr>
</tbody>
</table>

Table 1. Observed spectrum and calculated singlet and triplet state spectra for \((\mu\text{-C}_2\text{H}_2)\text{Co}_2(\text{CO})_6\)

Mulliken atomic spin densities:

1. Co 1.092758
2. Co 1.092758
3. C -0.052279
4. C -0.052279
5. H -0.009581
6. H -0.009581
7. C -0.007863
8. O -0.017921
9. C -0.007863
10. O -0.017921
11. C -0.007863
12. O -0.017921
13. C -0.007863
14. O -0.017921
15. C 0.044255
16. O -0.023586
17. C 0.044255
18. O -0.023586

Sum of Mulliken spin densities= 2.00000

Table 2. Mulliken atomic spin densities: for \(^3(\mu\text{-C}_2\text{H}_2)\text{Co}_2(\text{CO})_6\) at UB3LYP/LANL2DZp
TD DFT Results for Singlet to Singlet transitions in $(\mu-C_2H_2)Co_2(CO)_6$

Excitation energies and oscillator strengths:

<table>
<thead>
<tr>
<th>Excited State</th>
<th>1: Singlet-B1</th>
<th>2.1748 eV</th>
<th>570.09 nm</th>
<th>$f=0.0013$</th>
</tr>
</thead>
<tbody>
<tr>
<td>59 -> 67</td>
<td>-0.12921</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>66 -> 67</td>
<td>0.64946</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This state for optimization and/or second-order correction. Copying the excited state density for this state as the 1-particle RhoCI density.

<table>
<thead>
<tr>
<th>Excited State</th>
<th>2: Singlet-B2</th>
<th>2.9485 eV</th>
<th>420.50 nm</th>
<th>$f=0.0006$</th>
</tr>
</thead>
<tbody>
<tr>
<td>57 -> 67</td>
<td>-0.10783</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>64 -> 67</td>
<td>0.66633</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65 -> 67</td>
<td>0.10100</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Excited State</th>
<th>3: Singlet-A2</th>
<th>3.0145 eV</th>
<th>411.29 nm</th>
<th>$f=0.0000$</th>
</tr>
</thead>
<tbody>
<tr>
<td>58 -> 67</td>
<td>0.10349</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62 -> 67</td>
<td>0.66856</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Excited State</th>
<th>4: Singlet-A1</th>
<th>3.0321 eV</th>
<th>408.90 nm</th>
<th>$f=0.0002$</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 -> 67</td>
<td>0.52324</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>63 -> 67</td>
<td>0.41758</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Excited State</th>
<th>5: Singlet-A1</th>
<th>3.0944 eV</th>
<th>400.67 nm</th>
<th>$f=0.0012$</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 -> 67</td>
<td>-0.44065</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>63 -> 67</td>
<td>0.50257</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Excited State</th>
<th>6: Singlet-B2</th>
<th>3.2176 eV</th>
<th>385.33 nm</th>
<th>$f=0.1090$</th>
</tr>
</thead>
<tbody>
<tr>
<td>59 -> 68</td>
<td>-0.10106</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>61 -> 67</td>
<td>-0.22033</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>64 -> 67</td>
<td>-0.10484</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65 -> 67</td>
<td>0.53699</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>66 -> 72</td>
<td>0.11054</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>66 -> 76</td>
<td>-0.23921</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>66 -> 78</td>
<td>0.16302</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MO 66 HOMO

MO67 LUMO

MO64 HOMO-2
MO63 HOMO-3
Energy calculations on parallel and perpendicular structures as per Hoffmann et al. (reference 13 in manuscript)

Repeated attempts to locate a parallel isomer on the singlet potential energy surface using both B3LYP/Lanl2dzp and B3LYP/Tzvp model chemistries failed. However the semi-empirical approach used by Hoffmann (reference 13 in manuscript) was used to estimate the energy of this species and this was compared to the energy of the optimized perpendicular structure at the B3LYP/Tzvp level. The results are outlined in the following table

<table>
<thead>
<tr>
<th></th>
<th>delta E</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>a.u.</td>
</tr>
<tr>
<td>Parallel</td>
<td>-3523.192744</td>
</tr>
<tr>
<td>Perpendicular</td>
<td>-3523.379393</td>
</tr>
</tbody>
</table>

Coordinates used in calculation of energy

Perpendicular

<table>
<thead>
<tr>
<th>Center Number</th>
<th>Atomic Number</th>
<th>Atomic Type</th>
<th>Coordinates (Angstroms)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>1</td>
<td>27</td>
<td>0</td>
<td>0.000000</td>
</tr>
<tr>
<td>2</td>
<td>27</td>
<td>0</td>
<td>0.000000</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>0</td>
<td>0.664790</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>0</td>
<td>-0.664790</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td>1.519242</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0</td>
<td>-1.519242</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>0</td>
<td>-1.466459</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>0</td>
<td>-2.392424</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>0</td>
<td>1.466459</td>
</tr>
<tr>
<td>10</td>
<td>8</td>
<td>0</td>
<td>2.392424</td>
</tr>
<tr>
<td>11</td>
<td>6</td>
<td>0</td>
<td>-1.466459</td>
</tr>
<tr>
<td>12</td>
<td>8</td>
<td>0</td>
<td>-2.392424</td>
</tr>
<tr>
<td>13</td>
<td>6</td>
<td>0</td>
<td>1.466459</td>
</tr>
<tr>
<td>14</td>
<td>8</td>
<td>0</td>
<td>2.392424</td>
</tr>
<tr>
<td>15</td>
<td>6</td>
<td>0</td>
<td>0.000000</td>
</tr>
<tr>
<td>16</td>
<td>8</td>
<td>0</td>
<td>0.000000</td>
</tr>
<tr>
<td>17</td>
<td>6</td>
<td>0</td>
<td>0.000000</td>
</tr>
<tr>
<td>18</td>
<td>8</td>
<td>0</td>
<td>0.000000</td>
</tr>
</tbody>
</table>
Parallel (using semi empirical approach cf Hoffmann reference 13 in Manuscript)

<table>
<thead>
<tr>
<th>Center Number</th>
<th>Atomic Number</th>
<th>Atomic Type</th>
<th>Coordinates (Angstroms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>27</td>
<td>0</td>
<td>-1.487486, -0.000006, -0.492449</td>
</tr>
<tr>
<td>2</td>
<td>27</td>
<td>0</td>
<td>1.264463, 0.000003, 0.177477</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>0</td>
<td>-0.097841, -0.000007, -1.908892</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>0</td>
<td>1.225453, 0.000014, -1.778237</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td>-0.667274, -0.000023, -2.852391</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0</td>
<td>2.002389, 0.000025, -2.538454</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>0</td>
<td>-2.913345, -0.000002, 0.600978</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>0</td>
<td>-3.892387, 0.000001, 1.300668</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>0</td>
<td>2.068659, -1.590428, 0.087772</td>
</tr>
<tr>
<td>10</td>
<td>8</td>
<td>0</td>
<td>2.740401, -2.552648, 0.003461</td>
</tr>
<tr>
<td>11</td>
<td>6</td>
<td>0</td>
<td>0.803169, -0.000010, 1.914838</td>
</tr>
<tr>
<td>12</td>
<td>8</td>
<td>0</td>
<td>0.483037, -0.000017, 3.044055</td>
</tr>
<tr>
<td>13</td>
<td>6</td>
<td>0</td>
<td>-1.218637, -1.775736, -0.511149</td>
</tr>
<tr>
<td>14</td>
<td>8</td>
<td>0</td>
<td>-1.031831, -2.929402, -0.550616</td>
</tr>
<tr>
<td>15</td>
<td>6</td>
<td>0</td>
<td>2.068627, 1.590449, 0.087789</td>
</tr>
<tr>
<td>16</td>
<td>8</td>
<td>0</td>
<td>2.740351, 2.552683, 0.003490</td>
</tr>
<tr>
<td>17</td>
<td>6</td>
<td>0</td>
<td>-1.218640, 1.775725, -0.511155</td>
</tr>
<tr>
<td>18</td>
<td>8</td>
<td>0</td>
<td>-1.031841, 2.929392, -0.550628</td>
</tr>
</tbody>
</table>
5. Examples of Time Resolved IR kinetics for Compounds 1 and 2, and IR data for the parent compounds and intermediate produced

<table>
<thead>
<tr>
<th>Compound 1</th>
<th>CH$_3$CN cm$^{-1}$</th>
<th>THF cm$^{-1}$</th>
<th>Pentane cm$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parent bands</td>
<td>2092, 2056, 2028</td>
<td>2084, 2050, 2022</td>
<td>2089, 2055, 2031</td>
</tr>
<tr>
<td>‘Hot’ species</td>
<td>2072, 2044, 2009</td>
<td>2064, 2036, 2008</td>
<td>2074, 2040, 2016</td>
</tr>
<tr>
<td>Triplet diradical</td>
<td>2082, 2048, 2019</td>
<td>2073, 2040, 2012</td>
<td>2079, 2045, 2021</td>
</tr>
</tbody>
</table>

Table 3. IR data for compound 1, and the bands observed in the IR spectrum following excitation at 400 nm.

<table>
<thead>
<tr>
<th>Compound 2</th>
<th>CH$_3$CN cm$^{-1}$</th>
<th>THF cm$^{-1}$</th>
<th>Pentane cm$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parent bands</td>
<td>2093, 2058, 2029</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>‘Hot’ species</td>
<td>2078, 2049, 2008</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Triplet diradical</td>
<td>2083, 2052, 2018</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 4. IR data for compound 2, and the bands observed in the IR spectrum following excitation at 400 nm.

<table>
<thead>
<tr>
<th>Compound 3</th>
<th>CH$_3$CN cm$^{-1}$</th>
<th>THF cm$^{-1}$</th>
<th>Pentane cm$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parent bands</td>
<td>2090, 2052, 2024</td>
<td>2089, 2050, 2022</td>
<td>-</td>
</tr>
<tr>
<td>‘Hot’ species</td>
<td>2071, 2042, 2005</td>
<td>2079, 2041, 2002</td>
<td>-</td>
</tr>
<tr>
<td>Triplet diradical</td>
<td>2080, 2046, 2009</td>
<td>2084, 2046, 2007</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 5. IR data for compound 3, and the bands observed in the IR spectrum following excitation at 400 nm.
Time resolved IR spectra and kinetics

Compound 1 in Pentane

Compound 2 in THF
6. References

vi Platts, J. A.; Evans, G. J. S.; Coogan, M. P.; Overgaard, J. Inorg. Chem. 2007, 46, 6291-6298
