Fundamental obstacle for electrical spin injection from a ferromagnetic metal into a diffusive semiconductor
Schmidt, G.; Ferrand, D.; Molenkamp, L.W.; Filip, A.T.; Wees, B.J.van

Published in:
Physical Review B

DOI:
10.1103/PhysRevB.62.R4790

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2000

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Fundamental obstacle for electrical spin injection from a ferromagnetic metal into a diffusive semiconductor

G. Schmidt, D. Ferrand, and L. W. Molenkamp
Physikalisches Institut, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
A. T. Filip and B. J. van Wees
Department of Applied Physics and Materials Science Centre, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
(Received 19 June 2000)

We have calculated the spin-polarization effects of a current in a two-dimensional electron gas which is contacted by two ferromagnetic metals. In the purely diffusive regime, the current may indeed be spin-polarized. However, for a typical device geometry the degree of spin-polarization of the current is limited to less than 0.1% only. The change in device resistance for parallel and antiparallel magnetization of the contacts is up to quadratically smaller, and will thus be difficult to detect.

Spin-polarized electron injection into semiconductors has been a field of growing interest during the last years.1–4 The injection and detection of a spin-polarized current in a semiconductor material could combine magnetic storage of information with electronic readout in a single semiconductor device, yielding many obvious advantages. However, up to now, experiments for spin injection from ferromagnetic metals into semiconductors have only shown effects of less than 1%.5,6 which sometimes are difficult to separate from stray-field-induced Hall- or magnetoresistance-effects.2 In contrast, spin injection from magnetic semiconductors has already been demonstrated successfully7,8 using an optical detection method.

Typically, the experiments on spin injection from a ferromagnetic contact are performed using a device with a simple injector–detector geometry, where a ferromagnetic metal contact is used to inject spin-polarized carriers into a two dimensional electron gas (2DEG).5 A spin-polarization of the current is expected from the different conductivities resulting from the different densities of states for spin-up and spin-down electrons in the ferromagnet. For the full device, this should result in a conductance which depends on the relative magnetization of the two contacts.1

A simple linear-response model for transport across a ferromagnetic/normal metal interface, which nonetheless incorporates the detailed behavior of the electrochemical potentials for both spin directions was first introduced by van Son et al.9 Based on a more detailed (Boltzmann) approach, the model was developed further by Valet and Fert for all-metal multilayers and GMR.10 Furthermore, it was applied by Jedema et al. to superconductor-ferromagnet junctions.11 For the interface between a ferromagnetic and a normal metal, van Son et al. obtained a splitting of the electrochemical potentials for spin-up and spin-down electrons in the region of the interface. The model was applied only to a single contact and its boundary resistance.5 We now apply a similar model to a system in which the material properties differ considerably.

Our theory is based on the assumption that spin-scattering occurs on a much slower timescale than other electron scattering events.12 Under this assumption, two electrochemical potentials μ↑ and μ↓, which need not be equal, can be defined for both spin directions at any point in the device.9 If the current flow is one-dimensional in the x-direction, the electrochemical potentials are connected to the current via the conductivity σ, the diffusion constant D, and the spin-flip time constant τsf by Ohm’s law and the diffusion equation, as follows:

\[
\frac{\partial \mu_{\uparrow \downarrow}}{\partial x} = -\frac{e j_{\uparrow \downarrow}}{\sigma_{\uparrow \downarrow}},
\]

(1a)

\[
\frac{\mu_{\uparrow} - \mu_{\downarrow}}{\tau_{sf}} = \frac{D \sigma^{2} \left(\mu_{\uparrow} - \mu_{\downarrow} \right)}{\partial x^{2}},
\]

(1b)

where D is a weighted average of the different diffusion constants for both spin directions.9 Without loss of generality, we assume a perfect interface without spin scattering or interface resistance, in a way that the electrochemical potentials μ↑ and the current densities j↑↓ are continuous.

Starting from these equations, straightforward algebra leads to a splitting of the electrochemical potentials at the boundary of the two materials, which is proportional to the total current density at the interface. The difference (μ↑ − μ↓) between the electrochemical potentials decays exponentially inside the materials, approaching zero difference at ±∞.

\[
(\mu_{\downarrow}(\pm \infty) = \mu_{\uparrow}(\pm \infty)).
\]

(2)

A typical lengthscale for the decay of (μ↑ − μ↓) is the spin-flip length λ = $D \tau_{sf}$ of the material. In a semiconductor, the spin-flip length λsc can exceed its ferromagnetic counterpart λfm by several orders of magnitude. In the limit of infinite λsc, this leads to a splitting of the electrochemical potentials at the interface which stays constant throughout the semiconductor. If the semiconductor extends to ±∞, Eqs. (1) in combination with Eq. (2) imply a linear and parallel slope of the electrochemical potentials for spin-up and spin-down in the semiconductor, forbidden injection of a spin-polarized current if the conductivities for both spin channels in the 2DEG are equal. At the same time, we see that the
For the spin-up and spin-down channels in the ferromagnets can now be written as $\sigma_{1,3} = \sigma_{1,3}^f(1 + \beta_{1,3})/2$ and $\sigma_{1,3} = \sigma_{1,3}^f(1 - \beta_{1,3})/2$. We assume that the physical properties of both ferromagnets are equal, but allow their magnetization to be either parallel ($\beta_{1} = \beta_{3}$ and $R_{1,1}^f = R_{3,3}^f$) or antiparallel ($\beta_{1} = -\beta_{3}$ and $R_{1,1}^f = R_{3,3}^f$). In the linear-response regime, the difference in conductivity for the spin-up and the spin-down channel in the ferromagnets can easily be deduced from the Einstein relation with $D_{1} \neq D_{3}$ (Ref. 11) and $\rho_{1,f}(E_F) \neq \rho_{1,f}(E_F)$, where $\rho(E_F)$ is the density of states at the Fermi energy, and D the diffusion constant.

To separate the spin-polarization effects from the normal current flow, we now write the electrochemical potentials in the ferromagnets for both spin directions as $\mu_{1,3} = \mu^0 + \mu^1, \; (i = 1,3)$, μ^0 being the electrochemical potential without spin effects. For each part i of the device, Eqs. (1) apply separately.

As solutions for the diffusion equation, we make the Ansatz

$$\mu_{1,1,i}(x) = \mu_i^0 + \mu_i^1 + c_i \exp(\pm((x-x_i)/\lambda_{nm}))$$

for $i = 1,3$ with $x_1 = 0$, $x_3 = x_0$, and the $(+)$ sign referring to index 1 (3), respectively.

From the boundary conditions $\mu_{1,1}(-\infty) = \mu_{1,1}(\infty)$ and $\mu_{3,1}(\infty) = \mu_{3,1}(-\infty)$, we have that the slope of μ^0 is identical for both spin directions, and also equal in region 1 and 3 if the conductivity σ is identical in both regions, as assumed above. In addition, these boundary conditions imply that the exponential part of μ must behave as $c \exp(x/\lambda_{nm})$ in region 1 and as $c \exp(-(x-x_0)/\lambda_{nm})$ in region 3.

In the semiconductor we set $\tau_{fl} = \infty$, based on the assumption that the spin-flip length λ_{sc} is several orders of magnitude longer than in the ferromagnet and much larger than the spacing between the two contacts. This is correct for several material systems, as semiconductor spin-flip lengths up to 100 μm have already been demonstrated. In this limit, we thus can write the electrochemical potentials for spin-up and spin-down in the semiconductor as

$$\mu_{2,1,i}(x) = \mu_{1,1,i}(0) + \gamma_{1,1,i}, \; \gamma_{1,1,i} = \text{const.}$$

While the conductivities of both spin-channels in the ferromagnet are different, they have to be equal in the two-dimensional electron gas. This is because in the 2DEG, the density of states at the Fermi level is constant, and in the diffusive regime the conductivity is proportional to the density of states at the Fermi energy. Each spin channel will thus exhibit half the total conductivity of the semiconductor ($\sigma_{2,1,i} = \sigma_{sc}/2$).

If we combine Eqs. (1) and (4) and solve in region 1 at the boundary $x = 0$ and in region 3 at $x = x_0$ we are in a position to sketch the band bending in the overall device. From symmetry considerations and the fact that $j_{2,1}$ and $j_{2,1}$ remain constant through the semiconductor (no spin-flip) we have

$$\mu_{1,1}(0) - \mu_{1,1}(0) = \pm (\mu_{3,1}(x_0) - \mu_{3,1}(x_0)),$$

where the (\pm) sign refers to parallel (antiparallel) magnetization, respectively. This yields $c_{3,1} = -c_{1,1} = -c_{3,1}$ in the expression for $\mu_{1,1}$ in Eq. (4) for the parallel case, which is shown schematically in Fig. 1(b). The anti-
RAPID COMMUNICATIONS

interfaces under the boundary condition of charge conservation is shown in Fig. 1.

symmetric splitting of the electrochemical potentials at the interfaces leads to a different slope and a crossing of the electrochemical potentials at the symmetric splitting of the electrochemical potentials at the semiconductor. This results either from a contact spacing of more than 10 nm, \(\alpha_2 \) will be below 1% if a standard ferromagnetic metal (\(\beta < 80\% \)) is used.

The physics of this result may readily be understood from the resistor model [Fig. 1(a)]. For parallel (antiparallel) magnetization we have \(R_{11} + R_{31} = 0 \) (\(R_{11} + R_{31} = R_{11} + R_{31} = 0 \)), respectively. Since the voltage across the complete device is identical for both spin channels, this results either in a different (parallel) or an identical (antiparallel) voltage drop over \(R_{SC} \) and \(R_{SC} \).

For parallel magnetization (\(\beta_1 = \beta_3 = \beta \)) the finite spin-polarization of the current density in the semiconductor can be calculated explicitly by using the continuity of \(j_{11} \) at the interfaces under the boundary condition of charge conservation for \((j_{11} + j_{13}) \) and may be expressed as:

\[
\alpha_2 = \beta \frac{\lambda_{fm} \sigma_{sc}}{\sigma_{fm} x_0} \left(\frac{2}{\frac{\lambda_{fm} \sigma_{sc}}{x_0 \sigma_{fm}} + 1} \right) - \beta^2
\]

where \(\alpha_2 \) is evaluated at \(x = 0 \) and constant throughout the semiconductor, because above we have set \(\tau_{sf} = \infty \) in the semiconductor.

For a typical ferromagnet, \(\alpha_2 \) is dominated by \(\frac{(\lambda_{fm} \sigma_{fm})}{(x_0 \sigma_{sc})} \) where \(x_0 \sigma_{sc} \) and \(\lambda_{fm} \sigma_{fm} \) are the resistance of the semiconductor and the relevant part of the resistance of the ferromagnet, respectively. The maximum obtainable value for \(\alpha_2 \) is \(\beta \).

However, this maximum can only be obtained in certain limiting cases, i.e., \(x_0 \rightarrow 0 \), \(\sigma_{sc} \sigma_{sc} \rightarrow \infty \), or \(\lambda_{fm} \sigma_{sc} \rightarrow \infty \), which are far away from a real-life situation. If, e.g., we insert some typical values for a spin injection device (\(\beta = 60\% \), \(x_0 = 1 \mu m \), \(\lambda_{fm} = 10 \) nm, and \(\sigma_{sc} = 10^{12} \sigma_{sc} \)), we obtain \(\alpha \approx 0.002\% \). The dependence of \(\alpha_2 \) on the various parameters is shown graphically in Figs. 2(a) and 2(b) where \(\alpha_2 \) is plotted over \(x_0 \) and \(\lambda_{fm} \), respectively, for three different values of \(\beta \). Apparently, even for \(\beta > 80\% \), \(\lambda_{fm} \) must be larger than 10 nm or \(x_0 \) well below 10 nm in order to obtain significant finite spin-polarization. The dependence of \(\alpha_2 \) on \(\beta \) is shown in Fig. 3(a) for three different ratios \(\sigma_{fm} / \sigma_{sc} \). Even for a ratio of 10, \(\alpha_2 \) is still smaller than 1% for \(\beta < 8\% \), where the other parameters correspond to a realistic device.

By calculating the electrochemical potential throughout the device we may also obtain \(R_{par} \) and \(R_{anti} \) which we define as the total resistance in the parallel or antiparallel configuration, respectively. The resistance is calculated for a device with ferromagnetic contacts of the thickness \(\lambda_{fm} \), because only this is the lengthscale on which spin dependent resistance changes will occur. In a typical experimental setup, the

FIG. 2. Dependence of \(\alpha_2 \) on \(\lambda_{fm} \) (a) and \(x_0 \) (b), respectively for \(\sigma_{fm} = 100 \sigma_{sc} \) and three different values of \(\beta \). In Fig. 2(a), \(x_0 \) is 1 \(\mu m \). Note that \(\alpha_2 \) is only in the range of % for \(\beta \approx 100\% \) or \(\lambda_{fm} \) in the \(\mu m \) range. In Fig. 2(b) we have \(\lambda_{fm} = 10 \) nm and again, we see that for a contact spacing of more than 10 nm, \(\alpha_2 \) will be below 1% if a standard ferromagnetic metal (\(\beta < 80\% \)) is used.

FIG. 3. Dependence of \(\alpha_2 \) and \(\Delta R/R \) on \(\beta \). In (a) \(\alpha_2 \) is plotted over \(\beta \) for different ratios \(\sigma_{fm} / \sigma_{sc} \). For a ratio of 100, \(\alpha_2 \) is well below 0.1% for \(\beta < 99\% \). In (b), again \(\alpha_2 \) is plotted versus \(\beta \) with \(\sigma_{fm} / \sigma_{sc} = 100 \), with the corresponding values for \(\Delta R/R \) on a logarithmic scale. For \(\beta \) between 0 and 90\%, \(\Delta R/R \) is smaller than \(10^{-7} \) and thus difficult to detect in the experiment.
difference in resistance \(\Delta R = (R_{\text{anti}} - R_{\text{par}}) \) between the antiparallel and the parallel configuration will be measured. To estimate the magnitude of the magnetoresistance effect, we calculate \(\Delta R/R_{\text{par}} \) and we readily find

\[
\frac{\Delta R}{R_{\text{par}}} = \frac{\beta^2}{1 - \beta^2} \left(\frac{\lambda_{\text{fm}}}{\sigma_{\text{sc}}} \right)^2 \frac{2}{\lambda_{\text{fm}} \sigma_{\text{sc}} + 1} > \frac{\beta^2}{\lambda_{\text{fm}} \sigma_{\text{sc}} + 1} - \beta^2.
\]

(8)

Now, for metallic ferromagnets, \(\Delta R/R_{\text{par}} \) is dominated by \((\lambda_{\text{fm}}/\sigma_{\text{sc}}) J(x_0/\sigma_{\text{sc}})^2 \) and is \(\approx \alpha_2 \). In the limit of \(x_0 \rightarrow 0 \), \(\sigma_{\text{sc}}/\sigma_{\text{fm}} \rightarrow \infty \), or \(\lambda_{\text{fm}} \rightarrow \infty \), we again obtain a maximum which is now given by

\[
\frac{\Delta R}{R_{\text{par}}} = \frac{\beta^2}{(\beta - 1)(\beta + 1)}. \quad (9)
\]

Figure 3(b) shows the dependence of \(\alpha_2 \) and \(\Delta R/R_{\text{par}} \) on \(\beta \), for a realistic set of parameters. Obviously, the change in resistance will be difficult to detect in a standard experimental setup.

We have thus shown, that, in the diffusive transport regime, for typical ferromagnets only a current with small spin-flip length even if the conductivities of semiconductor and ferromagnet are equal [Fig. 3(a)]. This situation is dramatically exacerbated when ferromagnetic metals are used; in this case the spin-polarization in the semiconductor is negligible.

Evidently, for efficient spin injection one needs a contact where the spin-polarization is almost 100%. One example of such a contact has already been demonstrated: the giant Zeeman-splitting in a semimagnetic semiconductor can be utilized to force all current-carrying electrons to align their spin to the lower Zeeman level. Other promising routes are ferromagnetic semiconductors or the so-called Heusler compounds. Experiments in the ballistic transport regime (where \(\sigma_{\text{sc}} \) has to be replaced by the Sharvin contact resistance) may circumvent part of the problem outlined above. However, a splitting of the electrochemical potentials in the ferromagnets, necessary to obtain spin injection, will again only be possible if the resistance of the ferromagnet is of comparable magnitude to the contact resistance. Similar arguments apply when a Schottky barrier is used as a contact. In that case, the resistance of the semiconductor will be increased by the resistance of the space charge region. However, spin-dependent effects do not occur, as the \(I/V \)-characteristic of the Schottky barrier does not depend on the density of states in the metal.

This work was supported by the European Commission (ESPRIT-MELARI consortium “SPIDER”), the German BMBF under Grant No. 13N7313 and the Dutch Foundation for Fundamental Research FOM.
