Highly enantioselective copper-phosphoramidite catalyzed kinetic resolution of chiral 2-cyclohexenones
Naasz, R.; Arnold, L.A.; Minnaard, A.J.; Feringa, B.L.

Published in:
Angewandte Chemie-International Edition in English

DOI:
10.1002/1521-3773(20010302)40:5<927::AID-ANIE927>3.0.CO;2-K

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2001

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Highly Enantioselective Copper-Phosphoramidite Catalyzed Kinetic Resolution of Chiral 2-Cyclohexenones

Robert Naasz, Leggy A. Arnold, Adriaan J. Minnaard, Ben L. Feringa*

General procedure for the kinetic resolution of 1a, 1b, 1d and 3 on an analytical scale:

All resolution were performed on a 1 mmol scale with 1 mol% Cu(OTf)$_2$ and 2 mol% of the phosphoramidite ligand with n-dodecane as internal standard according to the general procedure (vide infra).

Typical experimental procedure for the resolution of racemic 1a on an analytical scale; In flame dried glassware under an argon atmosphere 3.6 mg (0.01 mmol) Cu(OTf)$_2$ and 10.8 mg (0.02 mmol) (S,R,R)-L1 were dissolved in 10 ml of dry toluene. After stirring at RT for 1 h the colorless solution was cooled to -40°C and 110 mg (1.0 mmol) racemic 1a and 40 iL n-dodecane (internal standard) were added. After stirring for 10 min 0.73 mL Et$_2$Zn (1.1 M
in toluene, 0.8 mmol) was added. Samples of 0.2 mL were taken after 2, 5, 10, 15, 20, 25, 30, 45 and 60 min. The samples were quenched in 1 mL Et₂O saturated with water and filtered over a small plug of silica. The silica plugs were thoroughly rinsed with the “wet” Et₂O. Both conversion and ee were determined by chiral GC. Chiraldex G-TA, 50 m × 0.25 mm, He-flow: 1.0 mL/min, 100°C isotherm. \(T_{\text{ret}} \) 13.4 min (n-dodecane), \(T_{\text{ret}} \) 21.6 min ((S)-1a), \(T_{\text{ret}} \) 22.7 min ((R)-1a).

Determination of conversion and ee for 1a.
In all cases ee and conversion were determined by GC on a Chiraldex G-TA column (vide supra) except for the resolution performed with Me₂Zn because in this case the peaks of (S)-1a and addition product showed overlap. Ee and conversion were therefore measured on a Chiraldex A-TA column.

Determination of conversion and ee for 1b.
Ee and conversion were determined by GC on a Hydrodex-B-3P column, 25 m × 0.25 mm, He-flow: 0.9 mL/min. Initial temp: 90°C, initial time: 10 min, rate: 5°C/min, final temp: 150°C. \(T_{\text{ret}} \) 17.5 min (n-dodecane), \(T_{\text{ret}} \) 21.9 min ((S)-1b), \(T_{\text{ret}} \) 22.1 min ((R)-1b).
Determination of conversion and ee for 1d.

Ee and conversion were determined by GC on a CP-Chirasil-Dex CB column, 25 m x 0.25 mm, He-flow: 1.0 mL/min. Initial temp: 125°C, initial time: 20 min, rate: 10°C/min, final temp: 175°C. \(T_{\text{ret}} \) 6.0 min (\(n \)-dodecane), \(T_{\text{ret}} \) 10.9 min ((S)-1d), \(T_{\text{ret}} \) 11.4 min ((R)-1d).

Determination of conversion and ee for 3.

Ee and conversion were determined by GC on a ChiralDex G-TA column, 50 m x 0.25 mm, He-flow: 1.0 mL/min, 100°C isothermic. \(T_{\text{ret}} \) 13.4 min (\(n \)-dodecane), \(T_{\text{ret}} \) 20.1 min ((R)-3), \(T_{\text{ret}} \) 20.8 min ((S)-3).

Procedure for the kinetic resolution of 1c.

In flame dried glassware under an argon atmosphere 10.5 mg (0.03 mmol) Cu(OTf)\(_2\) and 31.3 mg (0.06 mmol) \((S,R,R)\)-L1 were dissolved in 20 ml of dry toluene. After stirring at RT for 1 h the colorless solution was cooled to -35°C and 1.0 g (5.8 mmol) racemic 1c and 0.40 mL \(n \)-hexadecane (internal standard) were added. After stirring for 10 min 2.85 mL Et\(_2\)Zn (1.1 M in toluene, 3.1 mmol) was added. After stirring overnight at -35°C a sample (0.2 mL) was taken. The sample was quenched in 1 mL Et\(_2\)O saturated with water and filtered over a small plug of silica. The silica plug was thoroughly rinsed with the
wet Et₂O. Analyses on a DB-1 (J&W) GC column showed that
the conversion was 55%. The reaction mixture was quenched
with 20 mL of 1N HCl (aq) and the aqueous layer was
extracted with Et₂O (3 × 25 mL) and the combined organic
layers were washed with brine and dried over Na₂SO₄. Filteration and evaporation of the solvents yielded a
mixture of 1c, addition product and n-hexadecane which
were seperated by column chromatography (SiO₂, hexanes-
ether: 5-1) giving 378 mg (2.2 mmol, 38%) of (R)-(−)-1c.

α₀²⁰ = −37.9° (c = 1.97, CHCl₃). ¹H-NMR (200 MHz, CDCl₃): 2.5-2.8 (m, 4H), 3.4, (m, 1H), 6.1-6.2 (m, 1H), 7.0-7.1
(m, 1H), 7.2-7.4 (m, 5H). ¹³C-NMR (300MHz, CDCl₃): 33.64
(t), 40.91 (d), 44.81 (t), 126.64 (d), 126.94 (d), 128.72 (d), 129.73 (d), 143.13 (s), 149.47 (d), 199.15
(s). HPLC analysis (Chiralcel OJ, heptane-isopropanol: 95-5, flowrate 1.0 mL/min, 220 nm) showed ee = 89%.