Some aspects of the schooling behaviour of fish
Keenleyside, Miles Hugh Alston

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
1955

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

Download date: 18-06-2019
birds flock together when they are not engaged in any other activity. They consider, therefore, that there is a partially independent general social motivation in some birds, comparable to incubation motivation, in which the consummatory situation, as with flocking, consists of being in a certain relation to objects in the environment.

The question of whether there is a separate schooling instinct can be answered tentatively in the affirmative. Schooling behaviour of fish clearly has some of the characteristics of an instinctive activity, although evidence for the presence of some other features is inadequate. There is, however, no superordinated, mystical "social centre" which is at a higher level than other centres and which controls all other types of behaviour. Schooling should probably be placed at a low level in the organization of behaviour because, while some instincts (feeding, escape and others) influence and make use of schooling, the latter does not directly influence other instincts.

SUMMARY

The purpose of this paper is to present a hypothesis on the nature of the schooling behaviour of fish based on an ethological investigation of schooling. Recognizing the disadvantages of a limited amount of data and of the use of different species for different parts of the study, the following tentative picture is suggested.

Schooling may be considered an instinct as defined by Tinbergen and is at a relatively low level in the hierarchical organization of behaviour. A school of fish separated from its school searches until perceiving a group of fish. It then approaches the group. In most cases vision is the only sense involved in this approach. If more detailed specific stimuli are then perceived (possibly through any of the sense organs) the fish ceases searching and remains with the school; if not, it soon leaves, and appetitive behaviour continues until the appropriate consummatory situation (being in a school of the same species) is attained. This hypothesis is based on the following points:

1. A school of fish is an aggregation formed when one fish reacts to others by remaining near them.
2. Typical features of *Gasterosteus aculeatus* and *Scardinius erythrophthalmus* schools are: performance of the same activity at the same time by all fish, lack of aggressiveness between members and equality of rank of all members.
3. Blinded *Scardinius* fail to show typical schooling but remain in an area where odours from other *Scardinius* can be detected. This response may keep schools of this species from scattering widely at night.
4. Visual perception of a school of fish releases approach in single *Scardinius* and *Pristella riddlei*.
5. When presented with two different-sized schools of their own species single *Gasterosteus*, *Scardinius* and *Leuciscus ruthus* prefer the larger to the smaller group.
6. A small *Gasterosteus* prefers six large to six small *Gasterosteus*.
7. A single *Gasterosteus* prefers a school of its own species to a school of *Rhodeus amarus* but shows no consistent preference when either *Pungitius fangus* or *Leuciscus* are presented together with *Gasterosteus*.
8. A single *Pristella* prefers a school of unoperated *Pristella* to a school with amputated dorsal fins. The dorsal fin with its conspicuous black patch is jerked more
rapidly after alarm. This structure and its special movement may be considered a
social releaser.

9. Increased feeding motivation leads to limited dispersal of a school of *Gasterosteus*.
The head-down feeding posture is a signal attracting others in a school to a source of
food.

10. Alarm causes an increase in density of a school of *Gasterosteus*.

11. With increasing reproductive motivation male *Gasterosteus* cease schooling and
try to hold territories. Females disperse to a limited extent.

ACKNOWLEDGEMENTS

This work was carried out during the two years the author was a guest at the
Zoological Laboratory, The University of Groningen. The author wishes to express his
sincere gratitude to Professor G. P. BAERENDS, Director of the laboratory, for making
it possible for him to study there and for guidance, advice and criticisms during the
course of the work.

The ready cooperation and assistance of the members of the scientific and technical
staff of the laboratory are deeply appreciated.

Thanks are extended to Miss A. F. TUCKER for reading and criticizing parts of the
manuscript and to Dr H. F. R. PRECHTL for translating the summary into German.

Two Canadian Government Overseas Scholarships, awarded annually by the Royal
Society of Canada, are gratefully acknowledged. Without this financial assistance the
author would have been unable to study in The Netherlands.

LITERATURE

BAERENDS, G. P. (1950). Specializations in organs and movements with a releasing

— and J. M. BAERENDS-VAN ROON. (1950). An introduction to the study of the

BASTOCK, M., D. MORRIS and M. MOYNIHAN. (1953). Some comments on conflict and
thwarting in animals. — Behaviour 6, p. 66-84.

BERWEIN, M. (1931). Beobachtungen und Versuche über das gesellige Leben von El-

BOULANGER, E. G. (1920). Observations on the nocturnal behaviour of certain in-

BOWEN, E. S. (1931). The role of the sense organs in aggregations of *Amiurus natalis*.

BAEDER, C. M. Jr. (1934). An experimental study of the reproductive habits and life
history of the Cichlid fish, *Aequidens latifrons* (Steindacher). — Zoologica 18,
p. 1-42.

Hist. 98, p. 1-27.

— (1954). Equations descriptive of fish schools and other animal aggregations. —

and F. HALPERN. (1946). Innate and acquired behavior affecting the aggregation