Transformation of group A streptococci by electroporation

Suvorov, Alexander; Kok, Jan; Venema, Gerhardus

Published in:
FEMS Microbiology Letters

DOI:
10.1111/j.1574-6968.1988.tb03156.x

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
1988

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

Download date: 01-11-2023
Transformation of group A streptococci by electroporation

Alexander Suvorov 1, Jan Kok 2 and Gerard Venema 2

1 Institute of Experimental Medicine, Leningrad, U.S.S.R., and 2 Institute of Genetics, University of Groningen, Haren, The Netherlands

Received 15 July 1988
Accepted 16 July 1988

Key words: Streptococcus pyogenes; Transformation; Electroporation; Plasmid

1. SUMMARY

The introduction, via electroporation, of free plasmid DNA into three strains of Streptococcus pyogenes is described. The method is very simple and rapid and efficiencies vary from 1 × 10^3 to 4 × 10^4 per μg of DNA. The method was also used to introduce an integrative plasmid and transformants were obtained, albeit at a somewhat lower frequency (2 × 10^2). Some of the plasmids used in this study are derivatives of the Lactococcus lactis subsp. cremoris Wg2 plasmid pWV01. These broad host range vectors replicate in Gram-positives as well as Gram-negatives (viz. Escherichia coli). Here we show that they also replicate in S. pyogenes and S. sanguis.

2. INTRODUCTION

Group A streptococci (Streptococcus pyogenes) are important human pathogens causing a variety of serious inflammatory diseases, sometimes followed by acute rheumatic fever or poststreptococcal glomerulonephritis. Their importance in view of medical care has resulted in an intensification of research aimed at the elucidation of the genetic background of these organisms. Only recently, this has led to the identification, cloning and sequencing of a number of genes, amongst which several M protein genes [1–5], the genes for streptolysin [6] and streptococcal exotoxin A [7,8], the Immunoglobulin G-receptor gene [9], and the hyaluronidase gene from an S. pyogenes bacteriophage [10]. A major drawback in the genetic research in this field is the fact that no direct system for transformation of group A streptococci is available. Transduction and conjugation have been shown to operate in these organisms (for a review see Wannamaker [11], and [12]). Using conjugative mobilization, Scott et al. [13] were able to transfer the emm6 gene, coding for type 6 M protein, to an M– strain of S. pyogenes, which became functionally M+.

The development of a transformation system for group A streptococci is essential, however, for further rapid increase in the knowledge of the factors involved in virulence and pathogenicity. This would offer the possibility of applying recombinant DNA technologies to the group A streptococci, without using an intermediate host, and would allow studies of protein and gene structure and function in the natural environment. In this communication we demonstrate the uptake of free plasmid DNA by two strains of S. pyogenes using the electroporation technique, a method suc-
cessfully applied to an increasing number of microorganisms [14–20]. In addition, we show that vectors based on the cryptic Lactococcus lactis subsp. cremoris plasmid pWV01 are able to replicate in group A and H (S. sanguis) streptococci. Because these vectors also replicate in Escherichia coli and Bacillus subtilis [21], these observations open a new avenue for future genetic studies in group A streptococci.

3. MATERIALS AND METHODS

3.1. Strains, plasmids and media

The strains and plasmids used in this study are summarized in Table 1. All strains were routinely grown at 37°C in Brain Heart Infusion (BHI) broth with 5% horse serum (both from Difco, U.S.A.). Plasmids were isolated on a miniprep scale essentially as described by Birnboim and Doly [22]. To digest the cell wall of overnight cultures, the cells were incubated for 20 min at 37°C in lysis solution containing 10 mg/ml lysozyme and 30 U/ml mutanolysin. Agarose gel electrophoresis and restriction enzyme digestions were done as described by Maniatis et al. [23].

3.2. Transformation

Transformation of Streptococcus sanguis was done according to Golubkov et al. [24] except that S. sanguis was grown in BHI without sheep erythrocytes.

3.3. Electroporation

Electroporation was done essentially as described by van der Lelie et al. [19]. An overnight culture of Streptococcus pyogenes in Todd Hewitt Broth (Difco, U.S.A.) supplemented with 40 mM dl-threonin was diluted 100-fold in the same medium and grown to an optical density at 650 nm of 0.2 (5–8 × 10⁸ cells per ml). For electroporation, the cells in 25 ml of the culture were washed twice in electroporation buffer (EB: 5 mM phosphate buffer, pH 6.9, 0.3 M sucrose, 1 mM MgCl₂), resuspended in 2 ml EB and cooled on ice for at least 15 min. DNA was added to 0.6 ml of the cell suspension and electroporation was carried out at 2500 V, 25 μF in a Gene Pulser™ (Bio-Rad Laboratories). After the electric pulse, the cells were kept on ice for 10 min and subsequently diluted 10-fold in BHI, containing 0.3 M sucrose and 5% horse serum. After allowing time for expression (2 h at 37°C), the cells were plated onto BHI-agar plates containing 5 μg of erythromycin per ml. Transformant colonies were visible after 48 h of incubation at 37°C.

4. RESULTS

4.1. Electroporation

To investigate whether electroporation was possible in group A streptococci, Streptococcus pyogenes strain 154 was chosen as the model strain. Various plasmids were used as donor molecules. These are listed in Table 1 and all carry an erythromycin resistance gene as the selectable marker. After the first pilot experiments, in which we found some Em⁻ colonies with plasmid pGK13, we decided to use this plasmid, a broad host range
vector derived from a cryptic plasmid of *Lactococcus lactis* subsp. *cremoris* [21], to optimize the system parameters. We found that the best electroporation results for strain 154 were obtained when logarithmically growing cells were used (OD at 650 nm approximately 0.2; 5–8 × 10^8 cells per ml). A 100-fold diluted overnight culture of the strain usually reached this optical density after 2.5 to 3 h of growth at 37 °C. The rate of survival of the cells after the high-voltage electric pulse was 40–55% in the various experiments. The number of transformants varied from 10^4 to 10^5 per µg of DNA (Table 2). With the streptococcal vectors pVI101 and pGT128 transformation frequencies of 10^3 and 5 × 10^3 were obtained, respectively (Table 2). Using the same conditions of electroporation, we were able also to introduce plasmid DNA in the *S. pyogenes* strains CS112 and 1800 (Table 2). Even after several trials, no transformants of strain 1800 with plasmid pGK13 were found. In all cases, the plasmid content of several transformants was checked using a plasmid minipreparation procedure. The molecular mass of the plasmids in the transformants was the same as the original plasmids used for the electroporation, as deduced from restriction enzyme analysis and subsequent agarose gel electrophoresis (Fig. 1). Furthermore, restriction enzyme analysis confirmed that no major rearrangements had occurred during or after the uptake process (results not shown). Plasmid pGK13 contains, apart from the erythromycin resistance gene, a gene conferring resistance to chloramphenicol in all the hosts it has been transferred to. Both resistance genes originate from *Staphylococcus aureus*. To investi-

![Fig. 1](image)

Table 2

<table>
<thead>
<tr>
<th>Plasmid (size in kb)</th>
<th>Strain of S. pyogenes</th>
</tr>
</thead>
<tbody>
<tr>
<td>pGK13 (4.9)</td>
<td>154</td>
</tr>
<tr>
<td>pVI101 (7.4)</td>
<td>1800</td>
</tr>
<tr>
<td>pGT128 (5.4)</td>
<td>CS112</td>
</tr>
<tr>
<td>pPPCV5 (4.3)</td>
<td>NT</td>
</tr>
</tbody>
</table>

NT: not tested; efficiencies are expressed as number of transformants per µg of DNA.

4.2. Transformation of *S. sanguis* with *Lactococcus lactis* derived vectors

The cryptic plasmid pWV01 from *Lactococcus lactis* subsp. *cremoris* Wg2 has been used to construct a series of small versatile antibiotic resistance vectors [21]. The plasmids are extremely useful as they bridge the gap between Gram-posit
tives and Gram-negatives and replicate in members of both groups (e.g. Escherichia coli, Bacillus subtilis and lactic acid bacteria). As shown above, derivatives of pWV01 also replicate in group A streptococci. To see whether it was possible to introduce these plasmids in the naturally transformable Streptococcus sanguis, we chose the challis strains 57 and GS10.1 as the recipients in transformation experiments. pWV01 derivatives pGK12, pGK13 and pGK20 were used as well as a control plasmid: pVI101. All plasmids efficiently transformed both strains to erythromycin resistance. The number of transformants per μg of DNA ranged from 1 to 2.6 × 10⁴ for the pWV01 derivatives and was 3 × 10⁵ for pVI101. Plasmid pGK20 is a pWV01 derivative carrying an in-frame fusion between the 9th codon of the L. lactis subsp. cremor is Wg2 proteinase gene [25] and the E. coli lacZ gene. Transcription and translation of the fused genes is directed by signals derived from the proteinase gene (J. Kok, unpublished). When plated on BHI-agar plates supplemented with 0.004% 5-bromo-4-chloro-3-indolyl-β-galactoside (X-gal), all the EmR resistant transformants from pGK20 show up as blue colonies, indicative of lacZ gene expression and β-galactosidase activity in the S. sanguis transformants.

5. DISCUSSION

The lack of a method to introduce free DNA into group A streptococci is a major drawback in the dissection of the genetics of the diseases these pathogens are involved in. Until now, only one report deals with an indirect method of DNA transfer [13]. A co-integrate shuttle vector, a derivative of the E. coli/streptococcus plasmid pVA838, was used to transform S. sanguis challis. After introduction of pVA797, a conjugative plasmid which has homology with pVA838, this challis host was used as a donor in matings with an S. pyogenes recipient. It is clear that an efficient direct method of transformation of group A streptococci would be of eminent importance. The electrotransformation protocol described here is the first example of such a procedure and it offers the possibility to apply recombinant DNA technology to these organisms. Although the efficiency of transformation is only moderate, an increase can be expected soon from the optimization of the physical parameters of the electroporation equipment.

The fact that pWV01 derived vectors replicate in S. pyogenes offers a number of possibilities which might accelerate genetic studies in these organisms. A large number of small cloning vectors have been constructed from pWV01, some of which contain multiple cloning sites, some allowing cloning with marker inactivation (of antibiotic resistance genes). With some derivatives LacZ α-complementation is possible in E. coli. Some of the vectors can be used to screen for promoter and terminator sequences and a number of expression vectors have been developed (van de Guchte, pers. comm. [21,26,27]). The most important property of the vectors, however, is the fact that they replicate in Gram-positives (e.g. Bacillus subtilis) as well as in E. coli. For these two bacterial species, advanced genetic engineering techniques have been developed and, through the pWV01 vector system, these are directly linked to the nascent field of genetics of group A streptococci.

The introduction of the integrative plasmid pPCV5 is the first step in a better understanding of the genetic organization of the chromosome of S. pyogenes, because it offers the possibility to isolate mutants, and, subsequently, to clone the gene(s) involved in the mutation. Furthermore, the strategy could be used to stably insert (in vitro manipulated) genes in the chromosome. In this way, the functioning of factors involved in the starting and development of pathogenicity, i.e. the role of nucleases, proteases, hyaluronidase, neuraminidase, streptolysin and streptokinase can be studied in the natural environment. Ultimately, the development of efficient recombinant DNA techniques for group A streptococci could lead to the construction of artificial vaccine strains, carrying a set of antigens raising an immune response to most types of streptococci.

Only a few possibilities are mentioned here, and we are confident that the method to introduce and express free DNA in S. pyogenes which we describe here will be of great importance to future fundamental and applied research.
REFERENCES

