Dominant control region of the human β-like globin gene cluster
Blom van Assendelft, Margaretha van

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
1989

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
SUMMARY

The structure and regulation of the human β-like globin gene cluster has been studied extensively. Genetic disorders connected with this gene cluster are responsible for human diseases associated with high levels of morbidity and mortality, such as β-thalassaemia and sickle cell anaemia. The work described in this thesis is concerned with a novel tissue-specific regulatory element. The human β-globin Dominant Control Region (DCR) confers integration-site independent, copy-number related, high-level expression to a linked β-globin gene in a tissue-specific manner in transgenic mice (see Chapter 2) and mouse erythroleukemia (MEL) cells (Chapter 3). The discovery of the human β-globin DCR sequences is an important step towards somatic gene therapy for thalassaemia and sickle-cell patients (Chapter 5).

The globin DCR as originally cloned in the "mini-locus" cosmid construct spans 33kb of DNA sequences. Deletion constructs were made to determine different functional areas within the DCR sequences (Chapter 3 and 4). It is now thought that the DCR functional elements are located within defined regions (as discussed in Chapter 5) characterized by the presence of strong DNase I hypersensitive sites (Chapters 2 and 3).

The human β-globin DCR can confer high level expression to other erythroid genes, namely the human α- and γ-globin genes (Chapter 5), and non-erythroid genes such as Thy-1 and tk-neo (Chapter 3).

The recent discovery of a region 3' flanking to the human T-cell specific CD2 gene with functional properties similar to those of the human β-globin DCR (discussed in Chapter 5) suggests that expression of other tissue-specific genes might also be regulated by DCR-like elements.