Polystyrene Based Azo-dyes for Non-linear Optics; a New Polymer-diazo Coupling Approach
Lange, Ben de; Jager, Wolter F.; Schudde, Ebe P.; Feringa, Bernard

Published in:
Journal of the Chemical Society, Chemical Communications

DOI:
10.1039/c39900000804

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
1990

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Donor–acceptor substituted benzenes, stilbenes, and azo-dyes have gained considerable interest in recent years owing to possible applications in second-order harmonic generation i.e., frequency doubling. The growing importance of organic molecules in new optical materials and devices is based on large non-linear second-order susceptibilities and exquisite design of individual molecules. Disadvantages associated with the use of organic materials are often the stability and the need to grow non-centrosymmetric crystals. The second problem can partly be solved using chiral derivatives [e.g., N-(4-nitrophenyl)-1-prolinol], Langmuir-Blodgett techniques, or more recently employing centrosymmetric crystals in host matrices. The use of polymeric materials is considered to be more advantageous owing to mechanical strength, their ability to provide thin films, large areas, and often easy polarization. Several studies have been devoted to doped polymers in which molecular orientation is reached with an applied electric field above the glass transition temperature (T_g). Major problems that remain are the phase separation that might occur at higher dye concentrations and the relaxation after removing the electric field used for poling. A more convenient approach is to link potential non-linear optical (NLO) molecules covalently to a polymer backbone. Here we report the facile synthesis of an azo-dye modified polystyrene via diazo coupling directly to a polystyrene functionalized with aniline moieties. The reaction sequence is shown in Scheme 1.

Polystyrene (Dow Styron 666, $M_w = 100000$) was chloromethylated by a modified Galeazzi method. The degree of functionalization ($\alpha = 0.31$) was determined by 1H NMR spectroscopy and elemental analysis. The polymer (2) was then treated with the sodium salt of N-methylaniline in tetrahydrofuran (THF) for 12 h to provide the N-methylanilinopolystyrene derivative (3) as a white powder (75% yield). The diazo coupling to the aniline moiety of (3) was performed by the addition of a ten-fold excess of an aqueous emulsion of 4-nitrobenzenediazonium salt (4) (prepared in situ from 4-nitroaniline and NaNO$_2$) to the solution of (3) in a mixture of THF and acetic acid (4 : 1) using sodium acetate as buffer. Pure dark-red polymer (5) was obtained by precipitation in 70–80% yield. The dye content of (5) was determined to be 13.8% by means of UV analysis and confirmed by 1H NMR spectroscopy and C, H, and N analysis. These results indicate that 45% of the N-methylanilino-substituents in (3) are functionalized during the diazo coupling. Polymer (5) shows excellent solubility properties in various solvents i.e.,

† Purified by repeated precipitation from CHCl$_3$ into MeOH.
‡ 1H NMR, IR, and elemental analysis showed that all chlorine atoms had been substituted with N-methylanilino-groups.
§ Recently the first (and so far only) azo coupling on a polymer has been reported.
¶ UV λ_{max} (CHCl$_3$) 476.7 nm ($\varepsilon = 3.15 \times 10^4$ dm3 mol$^{-1}$ cm$^{-1}$); [(4-nitrophenyl)azo]-N,N-dimethylaniline was used as reference compound.

Scheme 1. Reagents and conditions: i, CH$_2$(OMe)$_2$, ZnCl$_2$, SOCl$_2$, CICH$_2$CH$_2$Cl; ii, PhNHMe, NaH, THF; iii, THF, MeCO$_2$H, MeCO$_2$Na, (4).
chloroform, chlorobenzene, and toluene. This allows facile formation of thin films for application in non-linear optics. To demonstrate the new route, linking a dye directly to a polystyrene backbone, as well as the properties of the polymer (5), we prepared several films of (5) by spincoating (on Pyrex) from a 10% chlorobenzene solution of (5). Preliminary studies of the polymer films thus obtained showed excellent stabilities and optical (transparency) properties. In conclusion we have demonstrated for the first time the formation of a new polystyrene based azo-dye employing an unprecedented direct diazo coupling on an appropriately modified polystyrene. The high solubility of (5) in various solvents should be emphasized considering the solubility problems associated with other approaches. Furthermore modification of the molar fraction of donor-acceptor substitu-
ties. In conclusion we have demonstrated for the first time the formation of thin films for application in non-
linear optics. To demonstrate the advantages of the new route, linking a dye to a polystyrene backbone, as well as the properties of the polymer (5), we prepared several films of (5) by spincoating (on Pyrex) from a 10% chlorobenzene solution of (5). Preliminary studies of the polymer films thus obtained showed excellent stabilities and optical (transparency) properties. In conclusion we have demonstrated for the first time the formation of a new polystyrene based azo-dye employing an unprecedented direct diazo coupling on an appropriately modified polystyrene. The high solubility of (5) in various solvents should be emphasized considering the solubility problems associated with other approaches. Furthermore modification of the molar fraction of donor-acceptor substitu-
ties is easily conceivable via control of the extent of chloromethylation or diazo coupling. Studies along these lines are in progress.

The investigations were supported by the Stichting Technische Wetenschappen (STW) and the Netherlands Foundation for Chemical Research (SON) with financial aid from the Netherlands Organization for Scientific Research (NWO).

Received, 31st January 1990; Com. 0/00475H

References

